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Abstract. This paper considers the point of view on relations that are 

interpreted as generalized spaces, in contrast to the classical definition of a 

relation as a subset of the Cartesian product of sets. The connection of 

generalized spaces with predicates and maps is also considered. Predicates 

accompanying generalized spaces, projection predicates are introduced. 

Possible interpretations of generalized spaces are presented. Looking at the 

attitude as a generalized space leads to the formulation of a number of 

interesting logical-mathematical problems and to the results that are promising 

for use in many areas of artificial intelligence. 

Keywords: Predicate, Quasi-Tolerance, Isomorphism, Cartesian Space, 

Morphological Structures, Characteristic Predicate. 

1 Relevance  

The development of the newest information technologies, computer facilities, 

allowing to automate the processes of information transformation in the mode of user 

requests, is the main direction of modern scientific research in artificial intelligence. 

For the effective design of artificial intelligence systems, a formal presentation of 

information is necessary, which takes into account the polysemy of its structure. As 

such, predicate algebra has been used for many years, which is a generalization of the 

algebra of logic and is used in various industries where intellectual systems and 

interfaces are needed, for example, in [1]. The concept of a predicate used is a 

generalization of a Boolean function. Any finite relations can now be written in the 

form of equations of a predicate algebra [2]. 
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Such an application of the formal presentation of arbitrary relationships and the 

development of their further circuit implementation [2, 3] promotes the development 

of artificial intelligence systems, the improvement of the computer-aided design 

process for digital devices, which, among other things, can be part of the language 

interface [4], computer-based learning systems, expert systems, etc. For example, it 

allows you to develop IP-core, implementing various functions, including syntactic, 

morphological, semantic analysis of intellectual processes. 

However, the standard representation of relations as a subset of a Cartesian product 

may not be enough to describe intellectual processes. In this regard, the purpose of 

this work is to interpret relations as generalized spaces. 

2 The course of research  

Consider some predicate S(x1, x2,..., xn, y), defined on the Cartesian product 

A1A2...AnB of arbitrarily chosen sets A1, A2,..., An, B. Consider the relation s 

corresponding to the predicate S, which is given by the equation 

 S (x1, x2, ..., xn, y) = 1.    (1) 

It binds the variable y to the variables x1, x2, ..., xn. Now, the object y is considered 

as a vector of some n-dimensional space S, and the values of the variables x1A1, 

x2A2,..., xnAn, satisfying condition (1), as its coordinates. However, the space S 

turns out to be not quite ordinary. In classical mathematics, spaces are used that are 

naturally called Cartesian. Their characteristic property (which the Cartesian 

coordinate system has) is that each vector of a Cartesian space is determined by a 

single coordinate representation (set of coordinates) and a single vector corresponds 

to each set of coordinates. Thus, all the vectors of the Cartesian space and their 

coordinate representations are connected by a one-to-one correspondence, which 

makes it possible not to distinguish them from each other. For the space given by 

equation (1), this property for any predicate S, generally speaking, does not hold. That 

is why it is called generalized by us. 

Thus, each relation generates some generalized space, which is a connection 

between the vectors y and their coordinate representations (x1, x2, …, xn). Therefore, 

it is natural to consider the concept of space introduced here as a generalization of the 

concept of a coordinate system introduced by Descartes, which later developed in 

classical mathematics into the concept of space. 

The construction thus obtained is a space in the generalized sense and does not 

fully correspond to the classical space. For example, in mathematics the vectors of 

space can be added, but here it is not true to add elements of the set B. In logical 

mathematics, the concept of relationship is clearly based on the idea of 

multidimensionality, which means that we can identify it with the concept of space, 

by which we can understand any multidimensional formation, i.e. simply coordinate 

system [5]. 

Let S (x1, x2,..., xn, y) be some predicate on A1A2...AnB. We say that the 

predicate S generates the generalized space S on the Cartesian product 



A = A1A2...An over the set B. In the following, for brevity, we will call 

generalized spaces simply spaces. The predicate S is called characteristic for the space 

S. The number n is called the dimension of the space S. The set A is called the 

coordinate system of the space S, and the set A1, A2, …, An - its coordinate axes. The 

elements of the set A are called points or cells (if the set A is finite) of the coordinate 

system. The set B is called the support of the space S, and its elements yB are 

vectors of the space S. Any point x = (x1, x2, ..., xn) satisfying condition (1) is called 

the coordinate representation of the vector y. 

The space S is characterized by a connection (1) between its vectors yB and 

points xA of its coordinate system. For Cartesian spaces, this connection is a 

bijective mapping of the set A into the set B, therefore each Cartesian space can be 

characterized, up to isomorphism, by its coordinate system. If, for a generalized space 

S, we specify only its coordinate system A without specifying the predicate S, then 

the characteristic of such a space will be incomplete. 

S (x1, x2,..., xn) = y                                                       (2) 

A in B, corresponding to the predicate S, is called a mapping of the coordinate system 

A of the space S to its support B [2]. It fully characterizes the space S. The relation s, 

defined by condition (1), connects each vector yB with a set (x1, x2,..., xₙ) its 

coordinates x1A1, x2A2,..., xₙAₙ (one, many or none). Mapping (2) to each set of 

coordinates (x1, x2,..., xₙ)A matches vector yB (one, many or none).  

This is explained by an example. For some values x1, x2{m, n}, y{1, 2, 3}, we 

define the predicate 
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The generalized space S is given by the equation s (x1, x2, y) = 1, which links each 

vector y to its coordinates x1, x2. Set of coordinates (x1, x2) = (n, n) defines two 

vectors y = 1 and y = 2 of this space. The set (m, n) defines only vector 2, the sets (n, 

m) and (m, m) - none. Vector 1 has one (n, n) coordinate representation, vector 2 has 

two (n, n) and (m, n), vector 3 has none. 

Obviously, a given relation generates some generalized space, which is a 

connection between the vectors y and their coordinate representations (x1, x2). Then 

the mapping s (x1, x2) = y is expressed by a system of conditions: 
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It means that to the set (n, n) the map s associates two vectors 1 and 2, to the set 

(m, n) one vector 2, to the sets (n, m) and (m, m) one vector. The mapping s-1(y) = (x1, 

x2), the inverse of mapping s, is written in the condition system 
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which means that the vector 1 corresponds to a single coordinate representation (n, n); 

vector 2 - two (n, n) and (m, n); vector 3 - none. 

The carrier of the space S defined by predicate (3) is the set B = {1, 2, 3}, the 

coordinate axes are the sets A1 = A2 = {m, n}, the set A= {m, n}2 acts as the 

coordinate system. The space S can be visually represented as a graph of the map s 

(x1, x2) = y (Fig. 1). The lower left cell of the graph (x1, x2) = (n, n) contains two 

vectors 1 and 2; in the lower right (m, n) - one vector 2; in the remaining cells of the 

graph there is no vector. Projecting vector 1 on the x1 and x2 axes, we find its unique 

coordinate representation (n, n); vector 2 has two coordinate representations (n, n) and 

(m, n). Vector 3 did not fall within the grid, so it does not have a single coordinate 

representation. If the space S were Cartesian, then all the vectors of the carrier B 

would be located exactly one time in each cell of the coordinate system without 

repetitions. 

 

Fig. 1. Representation of the mapping s (x1, x2) = y. 

Consider the i-th projection predicate of the space S [2]. By this name we will 

understand the predicate. Gᵢ(y, xi) on BAi ( n1,i ), values of which for any yB и 

xiAi determined by equality:  

 Gi(y, xi)=x1A1x2A2…xi-1Ai-1xi+1Ai+1…xnAn   

                              S (x1, x2, …, xi, …, xn, y).                                                     (6)                                              

For example, for the space given by predicate (3), projection predicates are written 

in the form: 
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The predicate Gi (y, xi) corresponds to the map gi (y) = xi from B to Ai, called the i-

th projector of the space S. The projection predicate Gi (y, xi) connects each point 

yB with its coordinates xiAi (one , or even one). The projector gi (y) = xi of each 

point yB assigns its coordinates xiAi (one, many or none). 



For example, for the space given by predicate (3), the projectors g₁(y) = x₁ and 

g₂ (y) = x₂ are written in the form: 
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Move on to examine the internal structures and properties of generalized spaces. 

For this we need some auxiliary concepts. 

The predicate P (x, y) defined on AB is called 

 well defined on the left, if it satisfies the condition 
x  A y  B 

P (x, y); 

 well defined on the right if it satisfies the condition y  B x  A 
P (x, y); 

 and well-defined, if it is well defined both left and right. 

If the predicate P on AB is not well defined, then it can be turned into a well-

defined area defined by the operation of natural narrowing of its definition, which is 

the replacement of area A by area AA, characterized by a predicate 

)yP(x,By(x)A  , and area B - area y)P(x,By(x)A   characterized by the 

predicate B(у) = xA P(x, y). 

In the process of natural narrowing of the predicate definition domain, all zero 

rows and columns are excluded from its table. The rows and columns of the predicate 

table are called zero if they are completely filled with zeros. Zero rows and columns 

do not carry any useful information and therefore can be excluded from the predicate 

table without prejudice to the completeness of its characteristics. If necessary, the 

predicate table can always be expanded to its original size, adding to it the previously 

excluded from it null rows and columns. 

The structure of the spaces under consideration is described by a quasi-tolerant 

predicate, i.e. the following Theorem 1 and equality (9) are valid. 

Theorem 1. On the general form of a quasi-tolerant predicate 

Let E be a predicate on BB. Then E is a quasi-tolerance if and only if there exists a 

set A and such a predicate F on BA that for any x, yB, the equality is true: 

 E(x, y) = uA   (F(x, u)  F(y, u)). (9) 

We introduce the concepts accompanying generalized spaces. 

The predicate Ei ( n1,i ) defined on BB, where B is the carrier of the space S, 

whose values for any y1, y2B are determined by the equality 

 Ei (y1, y2) = ))ix,2(yiG)ix,1(yi(GiAix   (10) 

is called the i-th predicate that accompanies the space S. In Expression (10), the 

predicate Gi is the i-th projection predicate of the space S, defined on BAi. 



According to Theorem 1 on the general form of the quasi-tolerance predicate, all 

predicates (10) accompanying the space S are quasi-tolerances, which allows us to 

formulate the following statement.  

Statement 1. On quasi-tolerances that accompany space. 

a) For each space S on A1A2...An over B there exists a unique set E1, E2, ..., En 

of quasi-tolerances accompanying it; 

b) For any set of quasi-tolerances E1, E2,..., En on BB there are sets A1, A2,..., An 

and the space S on A1A2...An over B for which predicates E1, E2,..., En will be 

accompanying. 

Evidence. Assertion a) is a direct consequence of the definition of the 

accompanying predicates of the space S and Theorem 1. 

We prove assertion b). According to Theorem 1 on the general form of quasi-

tolerance, for any quasi-tolerant predicate Ei ( n1,i ) on BB, there is a set Ai and 

such a predicate Gi on BAi such that for any y1, y2  B  Ei (y1, y2) =  xi  Ai (Gi (y1, 

xi)  Gi(y2, xi)). Put S (x1, x2,..., xn, y) =
i

n



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Gi (y, xi) for all xiAi  ( n1,i ), yB. Then 

the predicate S on A1A2...AnB defines a generalized space S for which the 

predicates E1, E2,..., En are accompanying quasi-tolerance. Note that this choice of the 

sets A1, A2,..., An and the spaces S for a given set of E1, E2,..., En of quasi-tolerances 

on BB is generally not the only possible one. The statement is proven. 

It is certain that the concept introduced is very important. With the help of 

accompanying quasi-tolerances, one can make quite informative experiments. For 

example, in the theory of color vision, if we fix one of the colors - x - and give the 

colors y1 and y2 such that G (y1, x) = G (y2, x) = 1, then E (y1, y2) = 1. This means that 

the colors y1 and y2 are interchangeable, i.e. it is possible to identify whole classes of 

equivalent colors and study one color from such a class instead of the whole class. 

Thus, the accompanying quasi-tolerance define the coordinate grid of the space. Note 

that the connection between generalized spaces and the general form of the second 

kind of predicate is revealed precisely by the concept of quasi-tolerances that 

accompany the generalized space and projective predicates of space. 

Undoubtedly, the presented new view on relations, which in the approach under 

study are considered as mappings that carry out directional information processing, is 

promising for practical application. Therefore, it seems useful to present several 

possible interpretations of generalized spaces. 

Morphological interpretation of space. We study the use of generalized spaces for 

the description of word formation processes in the Russian language. 

Any sentences consist of word forms. The specific form of the word form is 

determined by a given word and a set of grammatical features. The grammatical 

features include case, number, gender, person, time, etc. The word form can be 

studied as a vector y, and the set consisting of a word and grammatical signs can be 

studied as its coordinate representation. 

Usually the word form is uniquely defined by its coordinate representation, and the 

coordinate representation is uniquely determined by the word form. But sometimes 



there are ambiguous cases. For example, a set (wet, male, plural) and (wet, neuter, 

plural) gives rise to one-word form: wet. Such cases emphasize that the concept of the 

formation of a language does not fit into the concept of Cartesian space because of its 

ambiguity, but the concept of a generalized one describes all the nuances of a natural 

language. 

We introduce the space carrier B and interpret it as the set of all word forms of 

adjectives. Let us introduce the axes of the space: А1 - the set of all adjectives 

represented by its dictionary forms (good, beautiful, etc.); А2 - a genus with three 

meanings (male, female, neuter); А3 is a number with values unique, plural. 

We define the predicate S on A1A2A3B as follows: 

 S(x1, x2, x3, y) =





.consistentnot  if0,

,consistent is data all if 1,
                (11) 

Such a predicate S is called a morphological predicate [3, 4]. The morphological 

predicate (11) connects the word, grammatical signs and word form. A native speaker 

can always, to the best of his knowledge of the language, realize this predicate. For 

example, 
                 S (модный, female, singular, модная) = 1, 

                 S (красивый, female, singular, модная) = 0, 

                 S (модный, female, singular, модные) = 0. 
 

The space given by some morphological predicate is called morphological. 

The word form is easily distinguished from the text by analyzing spaces and 

punctuation. Using the morphological predicate, it is relatively easy to perform 

operations on the word form. Operations may be as follows. 

 Word form normalization - transition from word form to the word 

g1 (y) = x1. 

 Word form analysis - finding the gender and the number of the word form 

х2=g2 (y), х3=g3(y). For example, «грубые» (in English «coarse») - 

(neuter, plural) or (male, plural). Those. х2=g2 (y), х3=g3 (y) are 

multivalued mappings, which is very useful for the formalization of the 

language. 

 Synthesis of word form - finding the word form by word and grammatical 

features S (х1, х2, х3) = у (ambiguous mapping). For example: (pen, 

male, plural) = pens. 

Any natural language is characterized by a large number of ambiguities, a native 

speaker easily solves such questions, but a standard mathematical language cannot do 

this. However, generalized spaces will find their application in the study of the 

mechanisms of the language, since human language is a complex mechanism of 

transformation in space [5]. There are a lot of unexplored structures and processes in 

this area: a graphic representation of a word, phonetic speech recognition, etc. 

Perhaps all these problems will be able to find their solution in the near future using 

the theory of generalized spaces. 



Interpretation of the generalized space as a Cartesian coordinate system. Consider 

the generalized space as follows: B (space carrier) is the set of all points of the plane; 

y (vector of space) is a point of the plane; х1, х2 (vector coordinates) - coordinates of a 

point of the plane; А1, А2 - abscissa and ordinate axes; (х1, х2) = y coordinate 

representation of a point. 

Obviously, in this interpretation, у  (х1, х2), and y = s (х1, х2) - that is, the 

mapping of space into its carrier. The space А1А2 is the set of all pairs of the form 

(х1, х2). 

The predicate S(х1, х2, ..., xn, у) is called Cartesian on А1А2…AnВ, if it has 

the following properties: 

1) functionality: х1A1 х2A2…xnAn уВ S (х1, х2, ..., xn, у), i.e. 

everywhere the definiteness and uniqueness of the predicate S, 

2) inverse functionality: уВ х1A1х2A2… xnAn S (х1, х2, ..., xn, у), 

i.e. subjectivity and infectivity of predicate S. 

The space S defined by the predicate S is called Cartesian (bijective) if it is defined 

everywhere, uniquely, infectively and subjectively. Any Cartesian predicate defines 

some Cartesian space. In the Cartesian space, each vector y corresponds to a unique 

coordinate representation (х1, х2, ..., xn) and vice versa. 

Statement 2. On the isomorphism of Cartesian spaces.  

Let S and S' - Decartes predicates on А1А2… AnВ и А1'А2'… An'В'. If 

there are bijections i: AiАi' (i = 1, …, n), then there is a bijection : BB', such 

that for any х1A1, х2A2,…, xnAn, уВ 

 S(х1, х2, …, xn, у) = S'(1(х1), 2(х2), …, n(xn), (у)). (12) 

This property (12) means that when the coordinate axes of two Cartesian spaces 

differ only in the designations of their elements, then the spaces themselves and their 

carriers differ only in the designations of their vectors. The isomorphism property of 

Cartesian spaces is true only for Cartesian spaces. This is the reason for the widest 

dissemination of the concept of a Cartesian coordinate system (it is enough to specify 

a Cartesian space). 

Any Cartesian predicate is injective, so it can be represented using projection 

predicates in the form: 

 S (х1, х2, …, xn, у) = ).nx(y,nG...)2x(y,2G)1x(y,1G     (13) 

Then g1 (y) = x1, g2 (y) = x2 are projectors of the space. For the Cartesian 

space S, g1, g2 are functions. 

Accompanying quasi-tolerance of the space E1(y1, y2), E2(y1, y2), given by 

expression (10), in the case of a Cartesian coordinate system, become accompanying 

equivalences, i.e. the following statement holds. 

 



Statement 3. On predicates accompanying Cartesian space.  

The predicates Е1, Е2, …, Еn, accompanying the Cartesian space А=А1А2… An 

over B, are equivalences on B. They have the property: 

 y1, y2, …, yn B уВ (E1 (y1, y) E2 (y2, y) … En (yn, y)). (14) 

If we arbitrarily take one layer from each product corresponding to the 

equivalences E1, E2, …, En, then at the intersection of such layers we always get one 

element of the set B. Any n vectors define a single vector; it always exists (this is true 

only for the Cartesian coordinate system). Thus, the Е1 partition is a system of vertical 

lines, and Е2 is a system of horizontal lines. In the general case, the coordinate lines 

can be interrupted, occur, connect. 

Statement 4. On the definition of the Cartesian space by its accompanying 

equivalences.  

Any set of equivalences E1, E2, …, En on B, possessing property (14), defines the only 

(up to a separate notation for the elements of A1, A2, …, An) the Cartesian space A= 

А1А2… An over B. 

Statements 3 and 4 are a consequence of Statement 1. 

In other words, if two Cartesian spaces S(х1, х2, …, xn, у) on А1А2…AnВ and 

S'(х1', х2', …, xn', у) on А1'А2'… An'В have the same accompanying 

equivalences E1, E2, …, En, then there exist bijections i: AiАi' (i = 1, …, n), such 

that for any х1A1, х2A2, …, xn An, уВ  

 S (х1, х2, …, xn, у) = S'(1(х1), 2(х2), …, n(xn), у). (15) 

From all of the above, it is obvious that the widely known concept of Cartesian 

space corresponds to the structure of a generalized space. 

Quasi-Cartesian space. Consider the following application of a generalized space. 

A space is called quasi-Cartesian (Fig. 2) if it is unique, injective and surjective. 

Those, in contrast to Cartesian space, there is no condition everywhere for 

definiteness. 

 

 

Fig. 2. Quasi-Cartesian space. 



Predicate S on А1А2…AnВ is called quasi-Cartesian if it possesses the 

properties: 

1)  х1 A1  х2  A2… xn  An  у, у' В (S(х1, х2, ..., xn, у)   S(х1, х2, ..., xn, 

у')  D(у, у')), which means that the predicate S is unique in the variable y, but not 

everywhere definiteness, 

2) inverse functionality: уВ х1A1х2A2… xn  An  S (х1, х2, ..., xn, у). 

The property of isomorphism for quasi-Cartesian spaces is incorrect. But the 

accompanying predicates of the form (10) continue to work properly. 

Statement 5. On predicates accompanying quasi-Cartesian space. 

Predicates E1, E2, …, En, accompanying the quasi-Cartesian space with the coordinate 

system A = А1А2…An over B, are equivalences on B. They have the property: 

y1, y2, …, yn, у', у''B (E1(y1, y')E2(y2, y')…En(yn, y')E1(y1, y'')E2(y2, y'')

… En(yn, y'')  D(у', у'')).                                                                                  (16) 

If we take one layer from the partition corresponding to the equivalences 

E1, E2, …, En, then at the intersection of such layers we either get the empty set or 

only one element of the set B. This is the equivalent of the n-dimensionality of the 

space. 

Statement 6. On the assignment of a quasi-Cartesian space by its accompanying 

equivalences.  

Any set of equivalences E1, E2, …, En on B, possessing property (15), defines a 

unique (up to separate designations of elements of the sets А1, А2, …, An) quasi-

Cartesian space on the part A0  An of the coordinate system A=А1А2…An, 

determined by the condition A0 (х1, х2, ..., xn) = уВ  S (х1, х2, ..., xn, у). 

The above property follows from Statement 1. 

Inside the region A0, the values of y (vectors) are one-to-one determined by their 

coordinate representations (х1, х2). In other words, the quasi-Cartesian space can be 

defined by its coordinate grid. 

3 Conclusions 

The paper studies a formal approach to the description of n-ary relations and their 

arguments, in which relations are considered as mappings that carry out directional 

information processing. A distinctive feature of such spaces is that each vector 

corresponds not to a single (which is true for Cartesian space), but a multi-valued 

coordinate representation. 

It is natural to apply generalized spaces when describing any information objects. 

Moreover, based on such a convenient theory, it will be possible to further study and 

develop the concept of relationship, which plays a fundamental role in the theory of 

intelligence. The developed interpretations can significantly increase the area of

practical application of generalized spaces. They can be used to logically support the 



design of digital devices in artificial intelligence information systems, especially with 

a natural-language intelligent interface. Mathematical results of the work can be used 

in text processing systems (knowledge bases, expert systems, etc.). 
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