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Abstract. This paper presents a generalized approach to the fractal analysis of self-similar random processes by short time series. Several stages of the 

fractal analysis are proposed. Preliminary time series analysis includes the removal of short-term dependence, the identification of true long-term 

dependence and hypothesis test on the existence of a self-similarity property. Methods of unbiased interval estimation of the Hurst exponent in cases of 
stationary and non-stationary time series are discussed. Methods of estimate refinement are proposed. This approach is applicable to the study of self-

similar time series of different nature. 
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UOGÓLNIONE PODEJŚCIE DO ESTYMACJI WYKŁADNIKA HURSTA  

NA PODSTAWIE SZEREGÓW CZASOWYCH 

Streszczenie. W pracy przedstawiono uogólnione podejście do analizy fraktalnej samopodobnych procesów losowych przedstawianych w krótkich 

szeregach czasowych. Zaproponowano kilka etapów analizy fraktalnej. Wstępna analiza szeregów czasowych obejmuje eliminację krótkoterminowej 
zależności, identyfikację prawdziwej długoterminowej zależności oraz weryfikację hipotezy o istnieniu własności samopodobieństwa. Uwzględniono 

metody bezstronnej oceny przedziału czasowego wykładnika Hursta w przypadku stacjonarnych i niestacjonarnych szeregów czasowych. Zaproponowano 

metody walidacji uzyskanego oszacowania wykładnika Hursta. To podejście ma zastosowanie do badania samopodobnych szeregów czasowych o różnym 
charakterze. 

Słowa kluczowe: samopodobny proces stochastyczny, szeregi czasowe, wykładnik Hursta 

Introduction 

The tasks of modern nonlinear physics, radio electronics, 

control theory and image processing require the development and 

application of new mathematical models, methods and algorithmic 

support for data analysis. In recent decades, it has been discovered 

that many stochastic processes in nature and technology have 

long-term dependence and fractal structure. The most suitable 

mathematical apparatus for studying the dynamics and structure of 

such processes is fractal analysis. 

Stochastic process ( )X t  with continuous real time is called to 

be self-similar of parameter H, 0 <H<1, if for any value 0a   

processes ( )X at  and ( )Ha X t  have same finite-dimensional 

distributions: 

    Law ( ) Law ( )HX at a X t . (1) 

The notation Law{*} means finite distribution laws of the 

random process. Parameter H is called Hurst exponent. It is a 

measure of self-similarity. Along with this property, Hurst 

exponent characterizes the measure of the long-term dependence 

of stochastic process, i.e. the decrease of the autocorrelation 

function ( )r k  in accordance with the power law:    kkr , 

1 / 2H   . 

For values 0.5 <H< 1 the time series demonstrates persistent 

behaviour. In other words, if the time series increases (decreases) 

in a prior period of time, then this trend will be continued for the 

same time in future. The value H = 0.5 indicates the independence 

(the absence of any memory about the past) of time series values. 

The interval 0 <H< 0.5 corresponds to antipersistent time series: if 

a system demonstrates growth in a prior period of time, then it is 

likely to fall in the next period.  

Information data flows in telecommunication networks were 

among the first real stochastic processes, where self-similar 

properties were discovered. For self-similar traffic, calculating 

methods of computer network characteristics (channel capacity, 

buffer capacity, etc.) based on classical models do not conform to 

necessary requirements and do not adequately assess the network 

load. Many publications are devoted to the analysis of the fractal 

traffic properties and their impact on the functioning and quality 

of service of the telecommunications network [7, 21–24]. 

Typical examples of fractal stochastic structures are 

the modern financial markets. The hypothesis of fractality 

of financial series assumes that the market is a self-regulating 

macroeconomic system with feedback, using information about 

past events that affect decisions in the present, and containing 

long-term correlations and trends. The market remains stable 

as long as remains its fractal structure. Analyzing the occurrence 

of time intervals with the different fractal structure, it is possible 

to diagnose and predict unstable market conditions (crises) 

[6, 18, 20]. 

Numerous studies have shown that many bioelectrical signals 

have a fractal structure. Distinct changes of the fractal 

characteristics of cardio- and encephalograms appear in various 

diseases, with changes in mental and physical stress on the body. 

Fractal analysis of bioelectric signals can be the basis for 

conducting statistical studies, what will allow to formulate 

methods that will be significant for clinical practice [3, 4, 10]. 

Obviously, that the evaluation of the Hurst exponent for 

experimental data plays an important role in the study of processes 

having self-similarity properties. There are many methods for 

estimating the self-similarity parameter, each of which bears the 

imprint of that area of scientific applications where it was 

originally developed [5, 13, 21, 23]. In practice, the methods of 

rescaled range, variance-time analysis and the detrended 

fluctuation analysis are most often used to estimate the Hurst 

exponent. Methods based on wavelet transform are particular 

important among the research methods of fractal non-stationary 

processes. The basic ideas of wavelet-fractal methods of analysis 

are formulated in [1, 9]. 

In recent years, fractal time series analysis has become very 

popular. However, at the present time, there is no universal 

approach to estimating fractal characteristics based on a 

preliminary study of the time series structure. The major 

drawbacks in the application of fractal analysis methods 

are absence of a preliminary study of the correlation structure 

of the process, the use of only one method of analysis, a weak 

study of the statistical properties of estimates obtained from time 

series of short length. 

The goal of the work is to present generalized use of fractal 

analysis techniques to study the time series of small length, using 

special methods of preliminary data research. 
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1. The main methods of estimating the Hurst 

exponent 

Moments of the q-th order of the self-similar random process 

(1) can be expressed as follows: 

 M ( )
q qHX t t  

 
. (2) 

In fact, all methods of estimating the self-similarity parameter 

at the time series, are based on relation (2) with the value 2q  . 

The method of rescaled range (R/S-analysis) was proposed by 

H.Hurst [11] and it is still one of the most popular in the study of 

fractal series of different nature [8]. It is based on scaling 

relationship  

 ( ) / ( ) HM R S   , 

where ( )R   is the range of the cumulative deviate series 

( , )cumx t  , ( )S   is standard deviation of the initial series. 

Variance-time analysis is most often used to processes 

researches in telecommunication networks [21, 22, 24]. It is based 

on the fact that the variance of the aggregated time series  

 
( )

1

1
( )

km
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m   

  , 1,..., /k N m  (3) 

satisfies scaling relation 

( ) ( )
( )m Var x

Var x
m

 , 

where 1
2

H


  . 

The method of detrended fluctuation analysis (DFA), 

originally proposed in [19], is currently the main method for 

determining self-similarity by non-stationary time series [12, 13]. 

In the DFA method, the fluctuation function ( )F   is calculated: 

2 2

1

1
( ) ( ( ) ( ))m

t

F y t Y t



 

  , 

where ( )mY t  is the local m-polynomial trend. The averaged on 

the whole of the time series function ( )F   have scaling 

dependence on the length of the segment:  

( ) HF   . 

The wavelet estimation of the Hurst exponent is based on the 

properties of the detailing wavelet coefficients, which at each 

decomposition level j also have self-similarity. The method of 

wavelet estimation [2] is based on the fact that the wavelet energy 

E can be written as the scaling relation. 

(2 1)2 H j
jE  . 

2. Generalized approach to Hurst exponent 

estimation 

In [15, 16] a comparative analysis of the statistical 

characteristics of the Hurst parameter estimates by time series of 

short length was performed. Summarizing the results of the 

research, we can suggest the following scheme for fractal analysis 

of some random process, represented by a time series of length N. 

In the main stages of fractal analysis, the methods of the rescaled 

range, DFA, and wavelet estimation are used. Since the 

application of the wavelet transform requires the appropriate 

software and work experience, the use of wavelet estimation 

methods is desirable, but not an obligatory element. However, the 

use of the DFA method is necessary for two reasons: this method 

has sufficient accuracy and it is designed to non-stationary time 

series. Consider step-by-step implementation of generalized 

approach to estimating the fractal properties of self-similar time 

series. 

2.1. Preliminary study of the time series 

1. Before starting the fractal analysis of time series, it is 

necessary to find out from a priori known information whether the 

series is cumulative 

1

,
k

cum
k i

i

X x


  for example, the currency 

rate in Fig. 1 (top) or it is a series of increments, for example, data 

traffic in Fig. 1 (bottom). If, by its nature, the series is cumulative, 

the following stages of fractal analysis refer to the corresponding 

series of increments 1
cum cum

i k kx X X  .  

2. Determination of intervals of different scaling. 

If the self-similar process has several scales that depend on 

time intervals, then on each such interval the series dynamics is 

determined by the corresponding Hurst exponent. To determine 

such intervals, it is necessary to consider the Hurst exponent as a 

function of time  ( ) [log ]
R

H f
S

  . This approach is possible 

in applying the rescaled range method, when time intervals change 

in small increments [17, 20]. 
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Fig. 1. Cumulative time series: currency rate (top), increments series: data traffic in 

telecommunication network (bottom) 

Fig. 2 shows the dependence ( )H   for hourly data of the 

exchange rate. The time intervals which have presence 

( 0.5 1H  ) and absence ( 0.5H  ) of long-term dependence 

are distinctly different. 

 

Fig. 2. Hourly data of the exchange rate: time intervals, where there are presence 

and absence of long-term dependence 

In addition to the rescaled range method, it is possible to use 

the DFA method to get the fluctuation function ( )F   to 

determine the intervals of different scales. If there are several 

scales, the function changes the angle of slope. However, unlike 

the rescaled range method that investigates the long-term 

dependence along the entire length of the time, the fluctuation 

function can be correctly constructed only on the interval of values 

/ 4N  [12]. 
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3. Identification and removal of short-term autoregressive 

dependence. 

R/S-analysis and DFA allow to discover and eliminate the 

short-term dependence which is characteristic of autoregressive 

processes. The autoregressive dependence increases value of the 

Hurst exponent and demonstrates a false long-term memory [17, 

20]. Therefore, when clarifying the fractal structure of the time 

series, it is first necessary to find out the existence of a short-term 

correlation. To do this, we need to regress the values ( )x t  as the 

dependent variable against ( 1)x t   and find linear dependence 

between them: ( ) ( ) ( ( 1))S t x t a b x t     . The significance 

of the coefficient b  indicates the presence of short-term 

dependence. To resolve it, the residual series is determined: 

( ) ( ) ( ( 1))S t x t a b x t     .  

After this, fractal analysis of the residual series ( )S t  is 

carried out. If the initial series ( )x t  has a long-term dependence, 

then it remains, while the short-term dependence is eliminated. If 

the autoregressive correlation is significant, then all of the above 

fractal analysis steps relate to the residual time series. 

The fluctuation functions ( )F   of the EEG realization 

obtained before and after the removal of the autoregressive 

dependence are shown in Fig. 3. In this case 

1 20.78, 0.63H H  . 
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Fig. 3. Fluctuation functions before the removal of the autoregressive dependence 

(on top) and after the removal (bottom) 

 

Fig. 4. Aggregated time series of telecommunication traffic 

4. Testing the hypothesis about the presence of self-similarity. 

If the Hurst parameter H is close to 0.5, it is necessary to test 

the self-similarity hypothesis. As a null hypothesis, it is usually 

postulate that random increments are independent. In [20], the 

criteria and areas for accepting this hypothesis are presented. 

A qualitative test of the existence of the properties of 

statistical self-similarity is the construction of aggregated time 

series (3), for which sample distribution functions are calculated. 

In the case of the self-similarity of the time series ( )x t  the 

aggregated series have the same distribution, confirmed by 

statistical criteria. Fig. 4 demonstrates the aggregated time series 

of telecommunication traffic. It is obvious that at all levels of 

aggregation the distribution functions of time series have heavy 

tails. 

2.2. Estimation of the Hurst exponent 

of a stationary series 

To estimate the Hurst exponent it is necessary to determine 

whether the series ( )x t is stationary by known statistical methods. 

If the series is stationary, then the Hurst exponent and confidence 

interval estimation of the H can be determined by the above or 

others methods. 

The results of the researches [2, 12, 15] showed that the 

estimates of the Hurst parameter are biased. For each method, the 

bias and the mean square deviations of estimates depend on the 

time series length and decrease with increasing series length. Fig. 

5 shows the values of the mean estimate bias for each method, 

depending on the length of the time series. Estimates calculated by 

the DFA and wavelet transform methods have the minimum bias. 

The estimates obtained by the wavelet method have a much 

smaller deviations than others. Wavelet estimates significantly 

depend on the mother wavelet [2, 14]. 
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Fig. 5. Mean estimate bias for each method 

The sample distribution laws of estimates of the Hurst 

parameter were investigated and it was shown that they have a 

normal distribution [2, 12, 15, 16, 20]. In this way, estimate of the 

Hurst exponent can be represented by confidence interval within 

which the true value H is found: 

 H t S H H t S    
) )

,  (4) 

where ( , )H H N method
) )

 is obtained evaluate of H; N is the 

time series length; method is the chosen method of estimation; 

( , )N method    is the calculated mean bias of the estimate, 

( , )N mS S ethod  is the calculated standard deviation;   is 

required significance level; t  is the quantile of the simple 

normal distribution [15]. 

2.3. Estimation of the Hurst exponent 

of a nonstationary series 

If the series ( )x t  is non-stationary, then the correct estimate 

of the Hurst parameter can be determined by the DFA method or 

by wavelet estimation. 

1) First it is necessary to study the structure of the series using 

the correlation function, spectral density or spectrum of 

wavelet energy, which allow to identify the trend and cyclic 

components of the initial series. 

2) When evaluating the Hurst exponent by method of DFA, it is 

necessary at first to make rough estimate using local 

polynomial trends of increasing degree and determine the 

smallest polynomial degree from which the Hurst parameter 
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estimate stops to change [12]. After this, to evaluate the self-

similarity of the time series it is necessary to delete the local 

polynomial trend of the found degree. Fig. 6 presents the 

fluctuation functions ( )F   for a model fractal series with 

quadratic trend. After removing the local polynomial trend of 

the order of the larger two, the values of the Hurst index 

estimates cease to change. 

3) The wavelet estimation of a non-stationary time series can be 

carried out according to the methods presented in [1, 2]. In this 

case, the evaluation of the exponent H depends essentially on 

the chosen mother wavelet. 

2.4. Refinement of the evaluate of Hurst 

parameter 

The analysis of the correlation dependence between the Hurst 

parameter estimates obtained by different methods showed that the 

sample correlation coefficients have absolute values less than 0.5. 

The correlation of wavelet estimates with ones calculated by other 

methods is insignificant. Therefore, the arithmetic mean of 

unbiased estimates obtained by several estimation methods can be 

used to increase the accuracy of the estimation. 

 

Fig. 6. Fluctuation functions with different local polynomial trends 

To improve the accuracy of wavelet estimation, the 

comparative analysis of the statistical characteristics of the 

estimates calculated using different wavelet functions was carried 

out [2, 14]. The correlation analysis of the wavelet estimates of the 

Hurst exponent, obtained using different wavelets, showed that the 

more accurate estimation of the Hurst parameter is the arithmetic 

average of the estimates calculated through several different 

wavelet functions. 

3. Conclusion 

The paper offers the generalized approach to the analysis of 

fractal properties of time series. The proposed method involves a 

preliminary study of the structure of the time series, unbiased 

interval estimation of the self-similarity parameter and the joint 

use of several methods of fractal analysis. This makes it possible 

to increase the reliability of the Hurst exponent estimates. This 

approach is applicable to the study of self-similar time series of 

different nature: telecommunication traffic, financial indicators, 

biomedical signals, etc. 
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