Харьковский национальный университет радиоэлектроники

Кафедра прикладной математики

Колосова С.В., Луханин В.С., Сидоров М.В.

О ПОСТРОЕНИИ ИТЕРАЦИОННЫХ МЕТОДОВ РЕШЕНИЯ КРАЕВЫХ ЗАДАЧ ДЛЯ НЕЛИНЕЙНЫХ ЭЛЛИПТИЧЕСКИХ УРАВНЕНИЙ

Вісник Запорізького національного університету.

Серія: фізико-математичні науки. -2013. -№ 1. - C. 35 - 42.

О ПОСТРОЕНИИ ИТЕРАЦИОННЫХ МЕТОДОВ РЕШЕНИЯ КРАЕВЫХ ЗАДАЧ ДЛЯ НЕЛИНЕЙНЫХ ЭЛЛИПТИЧЕСКИХ УРАВНЕНИЙ

Колосова С.В., к. ф.-м. н., доцент, Луханин В.С., магистрант, Сидоров М.В., к. ф.-м. н., доцент

Харьковский национальный университет радиоэлектроники

Рассматриваются некоторые вопросы построения последовательных приближений для одной нелинейной краевой задачи в областях сложной геометрии. Если известна функция Грина задачи, доказывается возможность построения двусторонних приближений к положительному решению задачи.

Ключевые слова: функция Грина, квазифункция Грина, последовательные приближения.

Колосова С.В., Луханін В.С., Сидоров М.В. ПРО ПОБУДОВУ ІТЕРАЦІЙНИХ МЕТОДІВ РОЗВ'ЯЗАННЯ КРАЙОВИХ ЗАДАЧ ДЛЯ НЕЛІНІЙНИХ ЕЛІПТИЧНИХ РІВНЯНЬ / Харківський національний університет радіоелектроніки, Україна

Розглянуто деякі підходи до побудови послідовних наближень для однієї нелінійної крайової задачі в областях складної геометрії. Якщо знаємо функцію Гріна задачі, доводиться можливість побудови двобічних наближень до додатного розв'язку задачі.

Ключові слова: функція Гріна, квазіфункція Гріна, послідовні наближення.

Kolosova S.V., Lukhanin V.S., Sidorov M.V. ABOUT CONSTRUCTION ITERATIVE METHODS OF BOUNDARY VALUE PROBLEMS FOR NONLINEAR ELLIPTIC EQUATIONS / Kharkov National University of Radioelectronics, Ukraine

In this paper we consider nonlinear boundary value problem $-\Delta u = f(u)$ in $\Omega \subset \mathbb{R}^2$, u = 0 on $\partial \Omega$. The approximations (including two-sides ones) to converge to the positive solution are constructed.

Keywords: Green's function, Green's quasi-function, method of successive approximations.

В современной науке наблюдается большой интерес к процессам, происходящим в нелинейных средах. Математическими моделями таких процессов зачастую являются нелинейные краевые задачи математической физики. В связи с этим первостепенное значение приобретают методы конструктивного решения таких задач.

І. ПОСТАНОВКА ЗАДАЧИ

Целью работы является рассмотрение некоторых методов построения последовательных приближений к положительному решению краевой задачи вида

$$-\Delta u = f(u) \quad \mathbf{B} \quad \Omega \,, \tag{1}$$

$$u\big|_{\partial\Omega} = 0. (2)$$

Задача (1), (2) является математической моделью достаточно большого числа реальных процессов. Например, если $f(u)=u^p$, p>0, имеем математическую модель задачи о распределении плотности газа в звездах (уравнение с такой правой частью носит название уравнения Лане-Эмдена) [2]; если $f(u)=e^{-u}$, то (1), (2) является математической моделью задачи о течении проводящей среды в цилиндре с непроницаемыми стенками [1]; равновесие плазмы в токамаке описывается уравнением Грэда-Шафранова, которое при некоторых допущениях сводится к уравнению (1) относительно потенциала u магнитного поля [3]. Отметим также, что если $f=f(u,\lambda)$, где λ — некоторый параметр, то, изменяя его, мы можем влиять на ход процесса.

II. ПОСТРОЕНИЕ ДВУСТОРОННИХ ПРИБЛИЖЕНИЙ

Известно [4, стр. 283], что задача (1), (2) на классе непрерывных функций эквивалентна интегральному уравнению

$$u(\mathbf{x}) = \int_{\Omega} G(\mathbf{x}, \mathbf{s}) f(u(\mathbf{s})) d\mathbf{s} , \qquad (3)$$

где $G(\mathbf{x},\mathbf{s})$ — функция Грина оператора Лапласа — Δ для первой краевой задачи в области Ω , $\mathbf{x}=(x_1,...,x_n)$, $\mathbf{s}=(s_1,...,s_n)$.

На конусе K неотрицательных в $C(\Omega)$ функций введем в рассмотрение нелинейное операторное уравнение

$$u = Tu$$
.

где

$$Tu = \int_{\Omega} G(\mathbf{x}, \mathbf{s}) f(u(\mathbf{s})) d\mathbf{s} .$$

Известно, что конус неотрицательных в $C(\Omega)$ функций нормален, кроме того, если f(u) непрерывна по u, оператор T, отображая пространство $C(\Omega)$ в себя, вполне непрерывен [4, 6].

Дальнейшие исследования будем проводить на примере задачи [9]:

$$-\Delta u = \lambda + u^{p} \quad \mathbf{B} \quad \Omega \subset \mathbf{R}^{2} ,$$

$$u > 0 \quad \mathbf{B} \quad \Omega ,$$

$$u|_{\partial\Omega} = 0 \quad (p > 1, \quad \lambda > 0).$$
(4)

Для задачи (4) соответствующее операторное уравнение принимает вид

$$u(\mathbf{x}) = \int_{\Omega} G(\mathbf{x}, \mathbf{s}) [\lambda + u^{p}(\mathbf{s})] d\mathbf{s} , \qquad (5)$$

где $\mathbf{x} = (x_1, x_2), \mathbf{s} = (s_1, s_2),$

$$Tu = \int_{\Omega} G(\mathbf{x}, \mathbf{s})[\lambda + u^{p}(\mathbf{s})]d\mathbf{s}.$$
 (6)

В дальнейшем считаем, что $f(u) = \lambda + u^p$ неотрицательна.

Рассмотрим некоторые свойства оператора T вида (6).

Для построения конусного отрезка $\langle v_0, w_0 \rangle$, инвариантного для оператора T, в (6) полагаем $u = v_0 \equiv 0$ и составляем элемент

$$v_1 = \int_{\Omega} \lambda G(\mathbf{x}, \mathbf{s}) d\mathbf{s} \ge v_0$$
.

Далее строим элемент

$$v_2 = \int_{\Omega} [\lambda + v_1^p(\mathbf{s})] G(\mathbf{x}, \mathbf{s}) d\mathbf{s} \ge \int_{\Omega} \lambda G(\mathbf{x}, \mathbf{s}) d\mathbf{s} = v_1$$

и так далее.

Для элемента $u = w_0 = 1 - \varepsilon$, $0 \le \varepsilon < 1$ (значение ε определится в дальнейшем), из (6) имеем

$$w_1 = \int_{\Omega} [\lambda + (1 - \varepsilon)^p] G(\mathbf{x}, \mathbf{s}) d\mathbf{s} .$$

Подбираем параметры $\lambda > 0$, p > 0 , $0 \le \varepsilon < 1$ так, чтобы $w_1 \le w_0$. Это требование приводит нас к условию

$$\max_{\mathbf{x} \in \Omega} \int_{\Omega} G(\mathbf{x}, \mathbf{s}) d\mathbf{s} \le \frac{1 - \varepsilon}{\lambda + (1 - \varepsilon)^p} . \tag{7}$$

Таким образом, имеем $v_0 \le v_1 \le w_1 \le w_0$ и, следовательно, конусный отрезок $\langle v_0, w_0 \rangle$, $v_0 \equiv 0$, $w_0 = 1 - \varepsilon$, является инвариантным для оператора T вида (6).

Монотонность оператора T (т.е. что из $u_1 \le u_2$ следует, что $Tu_1 \le Tu_2$) на $\left< v_0, w_0 \right>$ очевидна.

Исследуем оператор T на вогнутость на $\langle v_0, w_0 \rangle$. Составляем

$$T(tu) - tTu = \int_{\Omega} G(\mathbf{x}, \mathbf{s})[\lambda(1-t) + u^p(t^p - t)]d\mathbf{s}, \quad t \in [0, 1].$$
(8)

Чтобы (8) было неотрицательным, нужно потребовать выполнение условия $\lambda(1-t)+u^p(t^p-t)\geq 0$ $\forall t\in [0,1],\ u>0\ ,\ u\in \left< v_0,\ w_0\right>$, откуда получаем, положив $u=w_0=1-\epsilon$, условие

$$\lambda \ge \begin{cases} \frac{(1-\varepsilon)^p (t_* - t_*^p)}{1 - t_*}, & \text{если } t \in [0, 1), \\ (1-\varepsilon)^p (p-1), & \text{если } t = 1. \end{cases}$$
(9)

Здесь t_* ∈ [0, 1) — корень уравнения

$$1 + t^{p}(p-1) = pt^{p-1}, (10)$$

на котором величина $\frac{(1-\varepsilon)^p(t-t^p)}{1-t}$ принимает наибольшее значение, при это за λ нужно взять наибольшее из чисел $\frac{(1-\varepsilon)^p(t_*-t_*^p)}{1-t}$ и $(1-\varepsilon)^p(p-1)$.

Увязывая (7) и (9), приходим к выводу, что параметры $\lambda > 0$, p > 1, $\epsilon \in [0, 1)$ должны удовлетворять условиям:

$$\max_{\mathbf{x} \in \Omega} \int_{\Omega} G(\mathbf{x}, \mathbf{s}) d\mathbf{s} \leq \frac{1 - \varepsilon}{\lambda + (1 - \varepsilon)^{p}},$$

$$\lambda \geq \max \left\{ (1 - \varepsilon)^{p} (p - 1); \quad \frac{(1 - \varepsilon)^{p} (t_{*} - t_{*}^{p})}{1 - t_{*}} \right\}.$$
(11)

Исследуем оператор T вида (6) на u_0 -вогнутость, где

$$u_0 = \int G(\mathbf{x}, \mathbf{s}) d\mathbf{s} . \tag{12}$$

Напомним, что вогнутый оператор T называется u_0 -вогнутым на $\langle v_0, w_0 \rangle$, если для каждого $t_0 \in (0, 1)$ можно указать такое $\eta = \eta(u, t_0) > 0$, что $T(t_0 u) \ge (1 + \eta) t_0 T u$ на отрезке, соизмеримом с u_0 [4].

Составляем

$$T(t_0 u) - (1 + \eta)t_0 T u = \int_0^\infty G(\mathbf{x}, \mathbf{s}) [\lambda + t_0^p u^p - (1 + \eta)t_0 (\lambda + u^p)] d\mathbf{s} .$$
 (13)

Чтобы (13) было неотрицательным, нужно потребовать выполнение условия $\lambda + t_0^p u^p - (1+\eta)t_0(\lambda + u^p) \ge 0 \quad \forall t_0 \in (0,1) \;,\; \eta > 0 \;,$ откуда имеем

$$\eta \leq \frac{\lambda(1-t_0)-u^p(t_0-t_0^p)}{t_0(\lambda+u^p)},$$

или

$$\lambda(1-t_0) - u^p(t_0 - t_0^p) > 0. {14}$$

Положив в (14) $u = w_0 = 1 - \varepsilon$, приходим к условию

$$\lambda > \frac{(1-\varepsilon)^p (t_0 - t_0^p)}{1-t_0}, \quad t_0 \in (0, 1),$$

которое является составной частью условия (9).

Таким образом, нами доказана следующая теорема.

Теорема. Для задачи (4) итерационный процесс

$$v_{k+1}(\mathbf{x}) = \int_{\Omega} G(\mathbf{x}, \mathbf{s}) [\lambda + v_k^p(\mathbf{s})] d\mathbf{s}, \quad k = 0, 1, ...,$$

$$w_{k+1}(\mathbf{x}) = \int_{\Omega} G(\mathbf{x}, \mathbf{s}) [\lambda + w_k^p(\mathbf{s})] d\mathbf{s}, \quad k = 0, 1, ...,$$
(15)

где $v_0 \equiv 0$, $w_0 = 1 - \varepsilon$, при условии совместного выполнения требований (11) равномерно сходится к единственному неотрицательному решению $u^* \in \langle v_0, w_0 \rangle$. При этом

$$0 = v_0 \le v_1 \le ... \le v_k \le ... \le u^* \le ... \le w_k \le ... \le w_1 \le w_0 = 1 - \varepsilon$$
.

III. МЕТОД ПОСЛЕДОВАТЕЛЬНЫХ ПРИБЛИЖЕНИЙ

Метод последовательных приближений решения нелинейного операторного уравнения в изложении И.В. Свирского [8] состоит в следующем.

Операторное уравнение

$$Bu = p \tag{16}$$

представим в виде Au + (B-A)u = p, Au + Cu = p, где A — некоторый линейный оператор достаточно простого строения, оператор C = B - A. В качестве первого приближения u_1 к решению уравнения (16) берем решение уравнения $Au_1 = p$, причем оператор A выбирается так, что это уравнение решается достаточно просто.

Если это решение u_1 подставить в исходное уравнение, то разность между правой и левой частями уравнения будет $\Delta_2 = p - Au_1 - Cu_1$, т.е. погрешность первого приближения «вызывается» наличием неуравновешенности Δ_2 .

Для устранения неуравновешенности поправку δ_2 к первому приближению определяют из уравнения $A\delta_2 = \Delta_2$ и в качестве второго приближения к истинному решению принимают $u_2 = u_1 + \delta_2$.

Аналогичным образом определяются «неуравновешенность второго приближения», поправка к решению и т.л.

Применение описанной процедуры к задаче (1), (2) приводит к следующей последовательности линейных задач:

$$-\Delta u_{1} = 1 \text{ B } \Omega , \quad u_{1}|_{\partial\Omega} = 0 ,$$

$$-\Delta u_{2} = f(u_{1}) \text{ B } \Omega , \quad u_{2}|_{\partial\Omega} = 0 ,$$

$$\dots \quad \dots \quad \dots \quad \dots$$

$$-\Delta u_{k} = f(u_{k-1}) \text{ B } \Omega , \quad u_{k}|_{\partial\Omega} = 0 , \quad k = 2, 3, \dots$$
(17)

В частности, для задачи (4) последовательность линейных краевых задач вида (17) является следующей:

$$-\Delta u_{1} = \lambda \, \mathbf{B} \, \Omega \,, \quad u_{1} \Big|_{\partial \Omega} = 0 \,,$$

$$-\Delta u_{2} = \lambda + u_{1}^{p} \, \mathbf{B} \, \Omega \,, \quad u_{2} \Big|_{\partial \Omega} = 0 \,,$$

$$\cdots \quad \cdots \quad \cdots \quad \cdots$$

$$-\Delta u_{k} = \lambda + u_{k-1}^{p} \, \mathbf{B} \, \Omega \,, \quad u_{k} \Big|_{\partial \Omega} = 0 \,, \quad k = 2, 3, \dots$$
(18)

Оператор

$$Au = -\Delta u ,$$

$$D(A) = \left\{ u \middle| u \in C^2(\Omega), \ u \in C(\overline{\Omega}), \ u \middle|_{\partial \Omega} = 0 \right\} \subset L_2(\Omega) ,$$

каждой из краевых задач, входящих в (18), является положительно определенным и потому приближенные по методу Ритца решения каждой из задач сходятся к соответствующему точному обобщенному решению как в энергетической норме, так и в норме пространства $L_2(\Omega)$ [5].

Решение каждой из задач (18) ищем в виде

$$u_{k,n} = \sum_{i=1}^{n} c_i^{(k)} \varphi_i(x_1, x_2), \quad k = 1, 2, ...,$$
(19)

здесь $\varphi_i(x_1, x_2)$, i = 1, 2, ..., n, — координатные функции, $c_i^{(k)}$, i = 1, 2, ..., n, — неизвестные коэффициенты, которые находятся из системы линейных алгебраических уравнений

$$\sum_{i=1}^{n} c_i^{(k)} (-\Delta \varphi_i, \varphi_j) = (f, \varphi_j), \quad j = 1, 2, ..., n,$$
(20)

где

$$(-\Delta \varphi_i, \varphi_j) = -\iint_{\Omega} \Delta \varphi_i \cdot \varphi_j dx_1 dx_2 = \iint_{\Omega} \left(\frac{\partial \varphi_i}{\partial x_1} \frac{\partial \varphi_j}{\partial x_1} + \frac{\partial \varphi_i}{\partial x_2} \frac{\partial \varphi_j}{\partial x_2} \right) dx_1 dx_2,$$

$$(f, \varphi_j) = \iint_{\Omega} f \cdot \varphi_j dx_1 dx_2.$$

IV. МЕТОД КВАЗИФУНКЦИЙ ГРИНА

Рассмотрим применение метода квазифункций Грина к нелинейным краевым задачам в областях сложной геометрии. Знание функции Грина позволяет от нелинейной краевой задачи (1), (2) перейти к эквивалентному интегральному уравнению (3). Однако построение функции Грина в замкнутом виде возможно лишь для некоторых конкретных достаточно простых областей. Ниже мы предлагаем приближенный метод решения задачи (1), (2), основанный на использовании квазифункции Грина, которая строится с помощью конструктивного аппарата теории *R*-функций.

Пусть $\omega(\mathbf{x})=0$ — нормализованное до первого порядка уравнение границы $\partial\Omega$ области Ω , т.е. функция $\omega(\mathbf{x})$ удовлетворяет следующим условиям: $\omega(\mathbf{x})>0$ в Ω ; $\omega(\mathbf{x})=0$ на $\partial\Omega$; $\frac{\partial\omega}{\partial\mathbf{n}}=1$ на $\partial\Omega$, где \mathbf{n} —внутренняя к $\partial\Omega$ нормаль.

Если граница $\partial\Omega$ состоит из конечного числа кусочно гладких кривых (без точек возврата), каждая из которых допускает аналитическое задание с помощью элементарной функции, то такая $\omega(\mathbf{x})$ может быть построена практически для любой Ω методом R-функций [7].

Следуя [7], нами доказано, что решение задачи (1), (2) на классе функций из $\stackrel{\circ}{W}_{2}^{1}(\Omega)$ также является решением нелинейного интегрального уравнения

$$u(\mathbf{x}) = \int_{\Omega} G_{\text{\tiny KB.}}(\mathbf{x}, \boldsymbol{\xi}) f(u(\boldsymbol{\xi})) d\boldsymbol{\xi} + \int_{\Omega} u(\boldsymbol{\xi}) K(\mathbf{x}, \boldsymbol{\xi}) d\boldsymbol{\xi} , \qquad (21)$$

где

$$G_{\text{\tiny KB.}}(\mathbf{x}, \boldsymbol{\xi}) = \frac{1}{2\pi} \left[\ln \frac{1}{r} - q(\mathbf{x}, \boldsymbol{\xi}) \right], \quad q(\mathbf{x}, \boldsymbol{\xi}) = -\frac{1}{2} \ln \left[r^2 + 4\omega(\mathbf{x})\omega(\boldsymbol{\xi}) \right],$$

$$r = \sqrt{\sum_{i=1}^{n} \left(x_i - \xi_i \right)^2}, \quad K(\mathbf{x}, \boldsymbol{\xi}) = -\frac{1}{2\pi} \Delta_{\boldsymbol{\xi}} q(\mathbf{x}, \boldsymbol{\xi}),$$

 $\overset{\circ}{W}{}_{2}^{1}(\Omega)$ — пространство функций, равных нулю на $\partial\Omega$ и имеющих квадратично суммируемые в Ω обобщенные производные первого порядка.

К нелинейному интегральному уравнению (21) применяем метод последовательных приближений, изложенный в предыдущем пункте, и сводим его к последовательности линейных интегральных уравнений

$$u_m(\mathbf{x}) - \int_{\Omega} u_m(\xi) K(\mathbf{x}, \xi) d\xi = \int_{\Omega} G_{\text{\tiny KB}}(\mathbf{x}, \xi) f(u_{m-1}(\xi)) d\xi , \qquad (22)$$

m = 2, 3, ...,где положили $u_1(\mathbf{x}) \equiv 0$.

Уравнения (22) решаем методом Бубнова-Галеркина [5], что позволяет получить результат в аналитическом виде. Приближенное решение каждого из уравнений (22) ищем в виде

$$u_{m,k}(\mathbf{x}) = \sum_{i=1}^{k} c_i^{(m)} \varphi_i(\mathbf{x}), \qquad (23)$$

что приводит к следующей системе линейных алгебраических уравнений относительно $c_i^{(m)}$, i=1,2,...,k, m=2,3,...:

$$\begin{split} \sum_{i=1}^k c_i^{(2)} & \left[\int_{\Omega} \varphi_i(\mathbf{x}) \varphi_j(\mathbf{x}) d\mathbf{x} - \int_{\Omega \Omega} K(\mathbf{x}, \boldsymbol{\xi}) \varphi_i(\boldsymbol{\xi}) \varphi_j(\mathbf{x}) d\boldsymbol{\xi} d\mathbf{x} \right] = \\ & = \int_{\Omega \Omega} G_{\text{KB.}}(\mathbf{x}, \boldsymbol{\xi}) f[u_1(\boldsymbol{\xi})] \varphi_j(\mathbf{x}) d\boldsymbol{\xi} d\mathbf{x} , \quad j = 1, 2, ..., k ; \\ & \sum_{i=1}^k c_i^{(m)} \left[\int_{\Omega} \varphi_i(\mathbf{x}) \varphi_j(\mathbf{x}) d\mathbf{x} - \int_{\Omega \Omega} K(\mathbf{x}, \boldsymbol{\xi}) \varphi_i(\boldsymbol{\xi}) \varphi_j(\mathbf{x}) d\boldsymbol{\xi} d\mathbf{x} \right] = \\ & = \int_{\Omega \Omega} G_{\text{KB.}}(\mathbf{x}, \boldsymbol{\xi}) f[u_{m-1, k}(\boldsymbol{\xi})] \varphi_j(\mathbf{x}) d\boldsymbol{\xi} d\mathbf{x} , \quad j = 1, 2, ..., k , m = 3, 4, ..., \end{split}$$

где $\{\phi_i(\mathbf{x})\}$ – координатная последовательность.

V. РЕЗУЛЬТАТЫ ВЫЧИСЛИТЕЛЬНОГО ЭКСПЕРИМЕНТА

Вычислительный эксперимент для задачи (4) проведен в области

$$\Omega = \{(x_1, x_2) | x_1^2 + x_2^2 < 1, x_2 > 0 \}$$

при значениях $\lambda = 2$, p = 3, $\epsilon = 0,1$. Были реализованы все три описанных выше метода.

В таблице 1 приведены значения $w_3(\mathbf{x})$ (в числителе ячейки) и $v_3(\mathbf{x})$ (в знаменателе ячейки) в точках области Ω с полярными координатами (ρ_i, ϕ_j) , где $\rho_i = 0, 2i$, $\phi_j = \frac{\pi j}{10}$, $i = \overline{1, 4}$, $j = \overline{1, 9}$.

Таблица 1	аблица 1
-----------	----------

φρ	$\frac{\pi}{10}$	$\frac{\pi}{5}$	$\frac{3\pi}{10}$	$\frac{2\pi}{5}$	$\frac{\pi}{2}$	$\frac{3\pi}{5}$	$\frac{7\pi}{10}$	$\frac{4\pi}{5}$	$\frac{9\pi}{10}$
0,2	0,046526	0,083641	0,109741	0,125088	0,130139	0,125088	0,109741	0,083641	0,046526
	0,046525	0,083640	0,109740	0,125086	0,130137	0,125086	0,109740	0,083640	0,046525
0,4	0,081233	0,134633	0,167562	0,185362	0,190962	0,185362	0,167562	0,134633	0,081233
	0,081232	0,134631	0,167559	0,185360	0,190959	0,185360	0,167559	0,134631	0,081232
0,6	0,091551	0,140633	0,167155	0,180591	0,184652	0,180591	0,167155	0,140633	0,091551
	0,091550	0,140632	0,167153	0,180588	0,184649	0,180588	0,167153	0,140632	0,091550
0,8	0,067946	0,095975	0,109598	0,116247	0,118198	0,116247	0,109598	0,095975	0,067946
	0,067945	0,095974	0,109597	0,116245	0,118197	0,116245	0,109597	0,095974	0,067945

В таблице 2 приведены значения приближения $u_{4,\,21}(x_1,\,x_2)$, полученного согласно схеме (18), а в таблице 3 приведены значения приближения $u_{5,\,21}(x_1,\,x_2)$, полученного по схеме (22), в тех же точках области Ω , что и в таблице 1.

На рис. 1 приведены линии уровня приближенного решения (они получились практически идентичными для всех трех методов).

Как видно, результаты, полученные тремя методами, совпали с заданной точностью. Преимущество метода двусторонних приближений в том, что искомое решение заключается в «вилку». В том случае, когда краевая задача рассматривается в области, для которой функцию Грина не знаем, рекомендуем применять метод последовательных приближений (по И.В.Свирскому) и метод квазифункций Грина. Использование обоих методов и апостериорный анализ полученных результатов позволит сделать выводы о достоверности полученного решения.

Таблица 2

φρ	$\frac{\pi}{10}$	$\frac{\pi}{5}$	$\frac{3\pi}{10}$	$\frac{2\pi}{5}$	$\frac{\pi}{2}$	$\frac{3\pi}{5}$	$\frac{7\pi}{10}$	$\frac{4\pi}{5}$	$\frac{9\pi}{10}$
0,2	0,047548	0,084795	0,111012	0,126440	0,131517	0,126440	0,111012	0,084795	0,047548
0,4	0,080561	0,134072	0,167187	0,184918	0,190456	0,184918	0,167187	0,134072	0,080561
0,6	0,091265	0,140487	0,167319	0,180493	0,184491	0,180493	0,167319	0,140487	0,091265
0,8	0,069252	0,097140	0,110946	0,117481	0,119705	0,117481	0,110946	0,097140	0,069252

Таблица 3

φρ	$\frac{\pi}{10}$	$\frac{\pi}{5}$	$\frac{3\pi}{10}$	$\frac{2\pi}{5}$	$\frac{\pi}{2}$	$\frac{3\pi}{5}$	$\frac{7\pi}{10}$	$\frac{4\pi}{5}$	$\frac{9\pi}{10}$
0,2	0,048980	0,084301	0,109603	0,124852	0,129925	0,124852	0,109603	0,084301	0,048980
0,4	0,080831	0,134678	0,168132	0,185499	0,190854	0,185499	0,168132	0,134678	0,080831
0,6	0,091290	0,140896	0,166710	0,180247	0,184530	0,180247	0,166710	0,140896	0,091290
0,8	0,068940	0,096670	0,111664	0,117535	0,120205	0,117535	0,111664	0,096670	0,068940

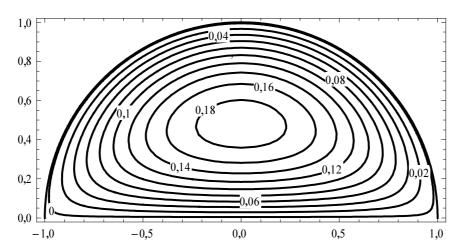


Рис. 1 – Линии уровня приближенного решения задачи (4)

ЛИТЕРАТУРА

- 1. Беллман Р., Калаба Р. Квазилинеаризация и нелинейные краевые задачи. М.: Мир, 1968. 183 с.
- 2. Галахов Е.И. Положительные решения квазилинейных эллиптических уравнений // Матем. заметки. T.78, вып. 2. C.202 211.
- 3. Брушлинский К.В. Математические и вычислительные задачи магнитной газодинамики. М.: БИ-НОМ. Лаборатория знаний, 2009. 200 с.
- 4. Красносельский М.А. Положительные решения операторных уравнений. М.: Физматгиз, 1962. 394 с.
- 5. Михлин С.Г. Вариационные методы в математической физике. М.: Наука, 1970. 512 с.
- 6. Опойцев В.И. Обобщение теории монотонных и вогнутых операторов // Труды Моск. матем. общества. Т. 36, 1978. С. 237 273.
- 7. Рвачев В.Л. Теория R-функций и некоторые её приложения. К.: Наук. думка, 1982. 552 с.
- 8. Свирский И.В. Методы типа Бубнова-Галеркина и последовательных приближений. М.: Наука, 1968. $199 \, \mathrm{c}$.
- 9. Zhao Pei-hao, Zhong Cheng-kui, Zhu Jiang. Positive Solutions for a Nonhomogeneous Semilinear Elliptic Problem with Supercritical Exponent // J. Mathematical Analysis and Application. -254.-2001.-P.335-347.