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Abstract  
Wave propagation is a fundamental phenomenon occurring in several physical systems. The spectra have been 

used by others to develop optical frequency standards. The process can potentially be used for frequency conversion 
in fiber optic network. In this system the dispersive properties can be controlled by the optical lattice making it pos-
sible to achieve phase-matched four wave mixing, like look the process taking place in the photonic crystal fibers 
(PCFs). In this paper will focus on two such systems the propagation nonlinear wave in photonic crystal fibers and 
the propagation of matter waves in optical lattices.  
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1. Introduction 
Photonic crystals (PhCs) These materials have highly periodic structures that can be de-

signed to control and manipulate the propagation of light. Electromagnetic wave propagation in 
periodic media was first studied by Lord Rayleigh in 1888 [1]. These structures were one-
dimensional (PhCs) which have a narrow band gap prohibiting light propagation through the 
planes. About 100 years later, in 1987, Yablonovitch and John - by using the tools of classical 
electromagnetism and solid-state physics - introduced the concepts of omnidirectional photonic 
bandgaps in two and three dimensions [2, 3]. From then, the name "photonic crystal" was created 
and led to many subsequent developments in their fabrication, theory, and application. A few years 
later in 1991, Yablonovitch and co-workers produced the first (PhCs) by mechanically drilling 
holes a millimeter in diameter into a block of material with a refractive index of 3.6 [4]. Other 
structures, which have band gaps at microwave and radio frequencies, are being used to make e.g 
antennas that direct radiation away from the heads of mobile phone users. There are typically three 
types of computational methods: time-domain "numerical experiments" [5–10] that model the 
time-evolution of the fields with arbitrary starting conditions in a discredited system (e.g. using 
finite differences); definite-frequency transfer matrices [11–14] wherein the scattering matrices are 
computed to extract transmission/reflection through the structure; and frequency-domain methods 
[15] to directly extract the Bloch fields and frequencies by diagonalizing the eigenoperator. The 
first two categories intuitively correspond to directly measurable quantities such as transmission, 
whereas the third is more abstract, yielding the band diagrams that provides a guide to interpreta-
tion of measurements as well as a starting-point for device design and semi-analytical methods. 
Maxwell’s equations can be solved numerically either in the time domain or in the frequency do-
main. Each method has its strong points and its disadvantages. The frequency domain method, 
which assumes that the time dependence is harmonic, plays an important role in calculating the 
eigenstates and band structures. On the other hand, the time domain method, which solves the time 
dependent Maxwell equations directly on spatial grids, is well suited for computing problems that 
involve the evolution of electromagnetic fields and for systems containing complex materials. The 
computational method we used to simulate (PhCs) structures is the time domain method. The 
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simulation is based on the well known finite-difference time domain (FDTD) technique. The 
FDTD method is a rigorous solution to Maxwell’s equation and does not have any approximations 
or theoretical restrictions. This method is widely used as a propagation solution technique in inte-
grated optics. FDTD is a direct solution of Maxwell’s curl equations and therefore includes many 
more effects than a solution of the monochromatic wave equation. About a decade later on, one 
has successfully fabricated (PhCs) that work in the near-infrared (780-3000 nm) and in the visible 
(450-750 nm) regions of the spectrum. 

 
2. The objective of the paper  

- These fibers are based on a new and very promising technology and could provide solu-
tions to many optical problems in telecommunications, light source manufacturing and has already 
revolutionized the field of frequency metrology. The light itself can also provide periodic structur-
ing through an optical lattice and in this system matter wave propagation will be investigated. 

- In telecommunication the fibers could provide many new solutions. The PBG fibers offer 
the possibility of low losses and dispersion, a possible competitor to conventional fibers. 

- The theoretical modelling of light propagation in the PCFs is needed, to get a good under-
standing of the processes taking place in supercontinuum generation, and to give input to the de-
sign and development of new fiber structures and applications. 

 
3. Photonic crystal (PhCs) 

Photonic crystals (PhCs) are inhomogeneous dielectric media with periodic variation of the 
refractive index. In general, (PhCs) have a photonic band gap. That is the range of frequencies in 
which light cannot propagate through the structure. (PhCs) are optical media with spatially peri-
odic properties. This definition is too general to be useful in all contexts, and there has been some 
debate about the conditions under which it is legitimate to use the term [16]. (PhCs) are periodic 
structures of dielectric materials and can today be produced with almost any imaginable structure. 
It is only a decade ago that Bose-Einstein condensation was first achieved in alkali gases [17, 18] 
and it has certainly turned into a very rich field since the condensates are very flexible model sys-
tems for solid state physics and statistical physics in general. The dynamics of the wave propaga-
tion in both systems is mainly determined by the interplay between dispersive and nonlinear ef-
fects. In the Bose-Einstein condensates (BECs) the nonlinear response originates in the s-wave 
scattering between atom pairs, whereas the nonlinearity in the PCFs stems from saturation and 
optical pumping accounted for through a nonlinear susceptibility. The micro-structuring of the 
PCFs leads to unique and tailorable dispersive properties. In the Bose-Einstein condensed system 
the optical lattice does the job of tuning the dispersion.  

 
4. Photonic crystal fibres (PCFs) 

Photonic-crystal fibres (PCFs) [19, 20], also referred to as microstructure, or holey, fibres, 
are optical waveguides of a new type. In PCFs, radiation can be transmitted through either a solid 
(Fig. 1, a–d) or hollow (Fig. 2, b) core, surrounded with a microstructured cladding, consisting of 
an array of cylindrical air holes running along the fibre axis. Such a microstructure is usually fab-
ricated by drawing a perform composed of capillary tubes and solid silica rods.  

Along with conventional waveguide regimes, provided by total internal reflection, PCFs 
under certain conditions can support guided modes of electromagnetic radiation due to the high 
reflectivity of their cladding within photonic band-gaps (PBGs) or regions of low densities of 
photonic states [21, 22], as well as by the antiresonance mechanism of waveguiding [20, 23]. Such 
regimes can be supported by fibres with a hollow [22, 24, 25] or solid [26] core and a two-
dimensionally periodic (photonic crystal) cladding. A high reflectivity provided by the PBGs in 
the transmission of such a cladding confines radiation in a hollow core, substantially reducing the 
loss, which is typical of hollow-core-guided modes in conventional, capillary-type hollow 
waveguides and which rapidly grow with a decrease in the diameter of the hollow core [27, 28]. 
Unique properties of PCFs open up new routes for a long-distance transmission of electromagnetic 
radiation [19, 20], as well as for nonlinear-optical transformation of laser pulses [29]. As shown by 
Knight et al. [30], PCFs can support single-mode waveguiding within a remarkably broad fre-
quency range. Photonic-crystal fibres offer new solutions for laser physics, nonlinear optics, and 
optical technologies, as they combine dispersion tuneability and a high degree of light-field con-
finement in the fibre core. Dispersion of such fibres is tailored by changing their core–cladding 
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geometry [31, 32], while a strong light-field confinement is achieved due to the high refractive-
index step between the core and the microstructure cladding [33]. Controlled dispersion of PCFs is 
the key to new solutions in optical telecommunications and ultrafast photonics. The high degree of 
light-field confinement, on the other hand, radically enhances the whole catalogue of nonlinear-
optical processes and allows observation of new nonlinear-optical phenomena. Fig. 1, a, b display 
the cross-section views of PCFs with a high refractive-index step from the fibre core to the fibre 
cladding, controlled by the air-filling fraction of the microstructure cladding. 

 

 
 

Fig. 1. Cross-section images of photonic-crystal fibres: (a–c) fibres with a high optical 
nonlinearity provided by a small fibre core and a high refractive-index contrast between the core 

and the cladding, (d) dual-cladding PCF 
 
 

 
Fig. 2 Cross-section of photonic-crystal fibres : (a) large-mode-area PCF, and (b) hollow-

core PCFs 
 

The fibres of this type can strongly confine the electromagnetic field in the fibre core, providing 
high optical nonlinearities, thus radically enhancing nonlinearoptical interactions of light fields. 
Highly efficient fibre-format frequency converters of ultrashort light pulses [29] and PCF super-
continuum sources [34, 35] based on highly nonlinear PCFs (Fig. 1, a, b) are at the heart of ad-
vanced systems used in optical metrology [36, 37], ultrafast optical science [38, 39], laser bio-
medicine [40], nonlinear spectroscopy [41, 42], and nonlinear microscopy [43, 44]. The possibility 
of dispersion tailoring makes PCFs valuable components for dispersion balance and dispersion 
compensation in fibre-optic laser oscillators intended to generate ultrashort light pulses with a high 
quality of temporal envelope. Lim et al. [45] have demonstrated an ytterbium-fibre laser source of 
100-fs pulses with an energy of about 1 nJ with dispersion compensation based on a PCF instead 
of free-space diffraction gratings. A highly birefringent hollow-core PCF [46] provides a robust 
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polarization-maintaining generation of 70-fs laser pulses with an energy of about 1 nJ in a fibre 
laser system [47]. Isomäki and Okhotnikov [48] have achieved dispersion balance in an ytterbium 
femtosecond fibre laser using an all-solid PBG fibre [26]. In contrast to silica–air index-guiding 
microstructure fibres, including silica and air holes, an all-solid PBG fibre guides light along a 
silica core surrounded with a two-dimensional periodic lattice of high-index glass inclusions. Dis-
persion tailoring and a high nonlinearity of small-core PCFs, on the other hand, allow efficient 
optical parametric oscillation and amplification due to the third-order optical nonlinearity of the 
fibre material [49, 50]. Optical parametric oscillators based on PCFs can serve as efficient sources 
of correlated photon pairs [51, 52]. The maximum laser fluence in an optical system is limited by 
the laser damage of material of optical components. An increase in a fibre cross section is a stan-
dard strategy for increasing the energy of laser pulses delivered by fibre lasers. Standard large-
core-area fibres are, however, multimode, making it difficult to achieve a high quality of the trans-
verse beam profile. This difficulty can be resolved by using PCFs with small-diameter air holes in 
the cladding, which filter out high-order waveguide modes [30, 53]. This strategy can provide sin-
gle-mode waveguiding even for largecore- area fibres [54, 55] (Fig. 1, c). A dual-clad PCF design 
helps to confine the pump field in the microstructured cladding and to optimize a spatial overlap 
between the pump field and laser radiation. In this type of PCFs, the microstructured part of the 
fibre is isolated from the cladding by an array of large-diameter air holes (Fig. 1, c). Large-mode-
area ytterbium-doped PCFs [56, 57] are employed for the creation of high-power lasers [55, 58, 
59]. Large-mode-area silica PCFs are also used for the compression of high-power subpicosecond 
laser pulses [60] and the generation of supercontinuum with an energy in excess of 1 μJ [61, 62]. 
Photonic-crystal fibre design presented in (Fig. 1, d) is of special interest also for the development 
of novel fibre-optic sensors [63, 64]. In sensors of this type, excitation radiation is delivered to an 
object along the fibre core. The inner part of the microstructured cladding features micrometer-
diameter air holes and serves for a high-numerical-aperture collection of the scattered or fluores-
cent signal from the object, as well as for the fibre delivery of this signal to a detector. With such a 
scheme of sensing, a detector can be placed next to a radiation source [65, 64]. This fibre design is 
advantageous for sensing chemical and biological samples by means of one- and two-photon lu-
minescence. A microstructured cladding of PCF can be also conveniently filled with a liquid-phase 
analyte. Radiation propagating along the fibre core will then induce luminescence of the analyte, 
allowing the detection of specific types of molecules from the minimal amount of analyte [64]. 
Such fibre sensors can be integrated into chemical and biological data libraries and data analyzers, 
including biochips, suggesting an attractive format for the readout and processing of the data 
stored in such devices. The energy of laser pulses in fibre-optic devices can be radically increased 
through the use of hollow-core fibres. For standard, capillary-type fibres, however, the loss rapidly 
grows (as  a−3) with a decrease in the core radius a [27, 28]. Because of this problem, such fi-
bres cannot provide single-mode guiding or help to achieve high intensities for pulses with moder-
ate peak powers. The loss of coreguided modes in hollow fibres can be radically reduced if the 
fibre has a two dimensionally periodic (photonic crystal) cladding [24, 22, 25] (Fig. 2, a, b). A 
strong coupling of incident and reflected waves, occurring within a limited frequency range, called 
a photonic band-gap, leads to a high reflectivity of a periodically structured cladding, allowing 
low-loss guiding of light in a hollow fibre core. Hollow PCF compressors in fibre-laser systems 
[66, 67] allow the generation of output light pulses with a pulse width on the order of 100 fs in the 
megawatt range of peak powers. Thus, PCFs play the key role in the development of novel fibre-
laser sources of ultrashort light pulses and creation of fibre-format components for the control of 
such pulses. In what follows, we examine the physical mechanisms behind supercontinuum gen-
eration in such fibres, analyze various scenarios of spectral broadening and wavelength conver-
sion, and discuss applications of PCF white-light sources and frequency converters in nonlinear 
spectroscopy and microscopy, as well as in optical metrology. 

 
5. Dispersion properties of (PCFs)  

In a homogeneous medium the dispersion relation between wave vector k and frequency ω 
of the propagating light is given through the refractive index of the material ω=c|k|/n. In a PCF it 
is the combined effect of the material dispersion and the band structure arising from the 2D 
photonic crystal that determines the dispersion characteristics of the fiber. For propagation in fi-
bers it is the dispersion for the wave vector component along the z-direction kz that is the interest-



 
Progress Reports  (2015), «EUREKA: Physical Sciences  

and Engineering» Number 1  

 

 
7 

 
 

 
 

 

ing parameter. In the fiber optics literature kz is referred to as the propagation constant β. It is then 
reasonable to define an effective refractive index as 

 

,eff
fund

c
n




                                                               (1) 

 
where ωfund. denotes the frequencies of the lowest lying mode in the fiber. The higher derivatives 
of the propagation constant are given as 
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                                                            (2) 

 

and the second order dispersion 22

2
 

c
D

 


 is just another way of expressing β2. The zero-

dispersion wavelength (λZD) is defined as the free space wavelength 
2


c


 where β2 = 0.  

A cross-section of an index guiding PCF is shown in Fig. 3, a calculation of the dispersion 
properties and effective area of this fiber will be sketched. The dispersion given by β2(λ) is shown 
in Fig. 3 and the fiber has λZD = 721 nm, whereas the zero dispersion wavelength for bulk silica is 
found around 1300 nm.  

 

 
 
Fig. 3. Dispersion characteristics for the fundamental frequency mode of the 1.7μm core di-

ameter PCF shown in Fig. 5  
 
The zero dispersion wavelength for this fiber has consequently been shifted into the visible 

regime due to the micro-structuring. This widely tunable group velocity dispersion is an extremely 
valuable property of the PCFs. The dispersion can be tuned by a proper choice of the size of the air 
holes, the distance between the holes (pitch) and the size of the central defect. A general tendency 
is that the zero dispersion wavelength is found at a shorter wavelength when the fraction of air 
filling is increased and the central defect is decreased [68]. It is possible to manufacture fibers with 
zero dispersion wavelengths between 500 and 1500 nm. Another general trend is that decreasing 
either the pitch or the hole-size leads to a higher curvature of the dispersion profile, eventually 
leading to two closely lying zero dispersion wavelengths. The fibers can be made with cores down 
to 1μm in diameter. Due to the small core areas huge intensities can be obtained in the cores of the 
fibers. Consequently, such fibers will exhibit a highly nonlinear response. Another very useful 
property of the fibers is that they can be made endlessly single mode. Only one mode should have 
a propagation constant between the effective propagation constants for the cladding and the core 
i.e. ncorek > β > ncladk, where k is the free space propagation constant. The restriction corresponds 
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to only one solution to Maxwell’s equations propagating in the core and evanescent in the clad-
ding. The effective frequency parameter is given by [69] 

 

2 22   
 

eff core cladV n n



,                                                 (3) 

 
where ρ is the core radius. For the fiber to be single mode Veff should be below 2.405. As λ de-
creases, the effective index of the cladding nclad increases, because more intensity of the light will 
be confined to the silica part of the cladding. Consequently, Veff can be kept below 2.405 for a 
wide range of wavelengths and the fiber is said to be endlessly single mode. In this way fibers, 
even with a very large core, can be made endlessly single mode [70]. As the mode area of the fiber 
increases the relative intensity in the core will decrease. Hence the fibers can be used for linear 
propagation, where a lot of power can be delivered without going into a nonlinear propagation 
regime. 

 
6. Attenuation properties of (PCFs)  

If the transverse scale of a (PCFs) changes without otherwise changing the fibre's structure, 
the wavelength λc of minimum attenuation must scale in proportion [71]. Without recourse to the 
approximations of the previous section, the mean square amplitude of the roughness component 
that couples light into modes with effective indices between n and n+δn is: 

 

2 0

0
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coth ,
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
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                                          (4) 

 
where γ – the surface tension; kB – Boltzmann's constant; T – the temperature. 

The attenuation to these modes is proportional to u2 [72] but the only other independent 
length scale it can vary with is λc. As attenuation has units of inverse length, it must therefore by 
dimensional analysis be inversely proportional to the cube of λc. If this is true for every set of des-
tination modes, it must be true for the net attenuation α to all destination modes, so: 

 

3

1
( ) .c

c

 


                                                                (5) 

 
This equation [71], predicts the attenuation of a given fibre drawn to operate at different 

wavelengths. The result differs from the familiar 1/ λ4 dependence of Rayleigh scattering in bulk 
media [73], and importantly applies to inhomogeneities at all length scales not just those small 
compared to λ. The fibres had 7-cell cores but were drawn to different scales, giving them differ-
ent λc but otherwise comparable properties [71]. The minimum attenuation is plotted in  
Fig. 4  against λc on a log-log scale. A straight-line fit is shown and has a slope of 3.07, supporting 
the predicted inverse cubic dependence in Eq. (5). 

 
Fig. 4. Attenuation spectrum of a (PCF) 
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The minimum optical attenuation of ~0.15 dB/km in conventional fibres is determined by 
fundamental scattering and absorption processes in the high-purity glass [73], leaving little pros-
pect of much improvement. Over 99% of the light in (PCFs) can propagate in air [71] and avoid 
these loss mechanisms, making (PCFs) promising candidates as future ultra-low loss telecommu-
nication fibres. The lowest loss reported in photonic crystal fibres is 1.7 dB/km [71], though we 
have since reduced this to 1.2dB/km. Since only a small fraction of the light propagates in silica, 
the effect ofmaterial nonlinearities is insignificant and the fibers do not suffer from the same limi-
tations on loss as conventional fibers made from solid material alone. 

 
7. Maxwells equations 

To get the dispersion characteristics (ω versus β) of the fiber structure Maxwell’s equations 
have to be solved: Decoupling Maxwells equations with no free charges and currents, assuming 
linear response of the medium and no losses leads to a wave equation for the Hω(r) field 

 
2

1
( ) ( )
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        
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H r H r
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


,                                       (6) 

 
where ε is the dielectric function. Here the fields have been expanded into a set of harmonic modes 
Hω(r, t) = Re (Hω(r)e−iωt) with frequency ω. This can be done without further loss of generality 
since Maxwell’s equations have already been assumed linear [74, 75]. Because of translational 
symmetry along the z-axis the dielectric function only depends on (x, y), consequently the har-
monic modes can be expressed on the following form: 

 
( ) ( )( ) ( , ) , 
mi z

m m
m

H r h x y e  
                                             (7) 

 
where m denotes the m th eigenmode with transverse part hm(x, y) and propagation constant 
β(m)(ω). After expanding in a plane wave basis the matrix eigenvalue problem is solved leading to 
the (fully vectorial) eigenmodes. The method is described in [74, 76]. Johnson and Joannopoulos 
have developed a freely available code, to solve Maxwell’s equations [77]. With this code and a 
dielectric function based on the image of Fig. 5.   

Niels Asger Mortensen and  Jes Broeng from Crystal Fibre have calculated the transverse 
part hm (x,y) of the eigen modes and propagation constants β(m)(ω) [78] see Fig. 6. 

 
 

 
 

Fig. 5. Image of the end face of a PCF with a 
core diameter of 1.7μm. Picture provided by 

Crystal Fibre A/S 

 
Fig. 6. Effective area of the same fiber. Calcula-
tions carried out by Niels Asger Mortensen / Jes 

Broeng from Crystal Fibre A/S 
 

Both the material dispersion of silica and the dispersion due to the micro-structuring of the 
fibers contribute to the effective refractive index of the fundamental mode  

 

material eff ,bandstructure constant ,  effn n n n                                         (8) 
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The effective propagation constant β of the fundamental mode can subsequently be found 

from Eq. (1) by inserting neff. The refractive index of silica nmaterial has been calculated from the 
Sellmeier formula 
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where λj is an atomic resonance in the fused silica. For the calculations the parameters given in 
[79] have been used: B1=0.6961663, B2=0.4079426, B3=0.8974794, λ1=0.0684043μm, 
λ2=0.1162414μm, λ3=9.896161μm. The contribution to the effective refractive index from the mi-
cro-structuring neff,bandstructure, has been calculated by assuming a frequency independent refractive 
index of silica (nconstant=1.45) in the dielectric function ε(x, y) in Eq. (6). By solving the equation 
the propagation constant of the fundamental mode β(1) is found, giving neff,bandstructure = cβ(1)/ω. To 
include the contribution to neff from silica only once, the constant offset n constant in Eq. (8) is intro-
duced. In fact this constant term will have no impact on the simulations in the following chapters, 
since a frame of reference moving with the group velocity of the propagating pulse is chosen. 
Based on a SEM-picture of the fiber end face shown in Fig. 5   the propagation constant of the 
shown 1.7μm core diameter PCF has been calculated using the method sketched above. The group 
velocity dispersion β2, calculated from the propagation constant, is shown on Fig. 3. A mode cor-
responding to the other polarization state exists, but in the calculations presented in the following 
chapters only propagation in one polarization mode will be considered, even though for example 
the fiber on Fig.(5)  is not polarization maintaining. The frequency dependency of the refractive 
index of silica can also be taken into account initially through a frequency dependent dielectric 
function ε(x,y,ω). Eq. (6) then has to be solved self consistently. When comparing the two methods 
no major differences appear. An effective area of a mode in a fiber can be defined as [78, 79]  
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n

eff n
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dxdy h x y
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dxdy h x y
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where |hn(x, y)|2 is proportional to the intensity distribution in the fiber. Fig. 6 shows the effective 
area of the fundamental mode for the 1.7 μm core diameter PCF. It is the high index contrast be-
tween silica and air that makes the relatively low effective areas in PCFs possible [78]. 

 
8. The nonlinear Schrödinger equation  

The simplest form of the nonlinear Schrödinger  equation is given by 
 

   
2

22
2

,
2


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
d

A i A i A A
dz t


                                                    (11)  

 
On the way to the equation above a more general version of the nonlinear Schrödinger  

equation will be found. The first term describes the second order dispersion determined by the 
material and the geometrical structure of the fiber as described in the previous chapter. The second 
term is the nonlinearity, which depends upon the polarizability of the material through χ(3) and 
scales with the third power of the electric field. The nonlinear Schrödinger  equation has been ap-
plied in fiber optics since the beginning of the eighties, where it was used to describe Mollenauer’s 
first experimental observations of solitons in optical fibers [80]. Solitons emerge as fundamental 
solutions to the nonlinear Schrödinger equation because the dispersion term can balance the 
nonlinear term. In quantum optics the Gross-Pitaevskii equation is used to describe the evolution 
of the Bose-Einstein condensate ground state wave function.  

The propagation constant can be achieved either from calculations or experimental investi-
gations of the fiber and is often expressed in terms of a Taylor expansion 
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Any dispersion profile can be fitted with a Taylor polynomial, the question is only how 

many terms are needed to make a good fit over the width of the spectrum. 
 

9. Calculation of the propagation 
The linear part is  
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and Eq. (6) both originate from Maxwell’s linear equations. By considering the magnetic field 
Hω(r) as given by Eq. (7) and taking the second derivative with respect to z the following equa-
tion arises 
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The magnetic and electric fields are related by 
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where with translational symmetry ε(x, y) is independent of z. Consequently, Eω(r) also fulfills 
Eq.(14)  and β(ω) in this and the previous chapter is the same. 

Nonlinear effects 
As mentioned, Eq. (17) 
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can be implemented directly as it is including both full frequency dependency of the propagation 
constant and the effective area as well as self-steepening and Raman effects. 

Raman response 
For the Raman response function the expression g(t) = (1− fR)δ(t) + fRgR(t) has been used, 

where the delta function term originates from the electronic response i.e. the Kerr interaction and 
the last term takes the Raman scattering into account. The function gR(t) can be chosen on the form 

 

2

2 2
1 2

2
11 2

( ) sin ; 0,
  

  
 

t

R

t
g t e t 

 
                                          (18) 

 
( ) 0; 0, Rg t t                                                           (19) 

 
as given by [81]. Raman scattering can be explained as scattering of light on the optical phonons 
and 1/τ1 gives the optical phonon frequency. 1/τ2 gives the bandwidth of the Lorentzian line (see 
Fig.7) . The same values as in [79] have been applied for the constants: τ1 = 12.2fs,  
τ2 = 32fs, fR = 0.18. 
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Fig. 7. Inverse Raman scattering are corollary processes arising in Raman scattering. 
 
Kerr nonlinearity 
The Kerr effect is the effect of an instantaneously occurring nonlinear response, which can 

be described as modifying the refractive index. In particular, the refractive index for the high in-
tensity light beam itself is modified according to 

 

2 n n                                                                (20) 

 
with the nonlinear index n2 and the optical intensity I. The n2 value of a medium can be 

measured e.g. with the z-scan technique. Note that in addition to the Kerr ef-
fect, electrostriction can significantly contribute to the value of the nonlinear index [82, 83]. A 
Kerr nonlinearity can be assumed by ignoring the Raman response in the fibers corresponding to 
setting g(t) = δ(t). If the nonlinearity factor is assumed constant γ = γ0 the following equation 
arises 

 

1
2

1 1 1 0( ) ( ( ) ) ( ) ( ) ( )




     i td
A i A i dte A t A t

dz
      .                          (21) 

 
If all terms are transformed to the time domain and only up to second order dispersion is 

taken into account the following equation appears 
 

2
22

2
( ) ( ) ( )

2


  


d

A t i A t i A A t
dz t


 .                                           (22) 

 
This is exactly the simple form of the nonlinear Schrödinger  equation (11) . 
 
Nonlinearity factor γ 
For the nonlinearity factor the convention suggested in [79] has been followed 
 

2( )
( )


eff

n

cA


 


 .                                                          (23) 

 
The frequency dependent nonlinearity factor γ(ω) in Eq. (23) . Since the effective area 

Aeff(ω) often does not vary too drastically with frequency as seen on Fig. 6 a valuable approxima-
tion is to assume the effective area to be constant Aeff,0. With this approximation the nonlinearity 
factor can be written as 
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where ω0 = ω − ω1 is the frequency of the input pulse and 2 0
0

,0


eff

n

cA


 . With this nonlinearity 

factor the nonlinear Schrödinger  equation is given by 
 

1
1 1 1 0

0

( ) ( ( ) ) ( ) 1
 

    
 

 d
A i A i

dz


      


1

2

1 1 1( ) ( ) ( )
 

 

 i tdte A t dt g t t A t .            (25) 

 

In the time domain the nonlinearity factor above is given by 0
0

1
1
 
  

i
t




, where the 

time derivative takes self-steepening and shock formation into account. Consequently, for very 
long pulses this time derivative can be omitted corresponding to assuming a constant nonlinearity 
factor 

 

0( )    .                                                               (26) 

 
If the computational grid is centered at a frequency ωc different from the central frequency 

of the pulse ω0 the nonlinearity factor has to be changed accordingly 2
0

,0

 c

eff

n

cA


 . 

 
10. Conclusion 

The transverse micro-structuring makes the dispersion of the fibers highly tunable and to-
gether with the high index contrast it leads to the small effective area, cade of nonlinear effects can 
take place in the fibers. The interplay between the special dispersion of the fibers and these 
nonlinear effects makes the  phenomenon of supercontinuum generation possible. The linear 
Maxwell’s equations have been solved for the transverse structure of the fibers. Starting with 
Maxwell’s equations it has been sketched how a nonlinear Schrödinger equation for wave propa-
gation in the PCFs can be achieved. The full frequency dependency of the propagation constant as 
well as the effective transverse area serve as input for the model and these parameters can either be  
calculated as measured. The model includes the instantaneous nonlinear response of silica. Addi-
tionally, the effects of Raman scattering, self steepening and shock formation can be included. In 
the following chapter most of the simulations shown will be based on Eq. (25) and the influence of 
the nonlinear effects will be investigated by comparison with the simpler version Eq. (21). 
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