
 IN CONCURRENCE WITH
TEST TECHNOLOGY TECHNICAL COUNCIL (TTTC) OF THE IEEE COMPUTER SOCIETY

MINISTRY OF EDUCATION AND SCIENCE OF UKRAINE

KHARKOV NATIONAL UNIVERSITY

OF RADIOELECTRONICS

ISSN 1563-0064

RADIOELECTRONICS
&

 INFORMATICS

Scientific and Technical Journal Founded in 1997

№ 1 (40), January – March 2008 Published 4 times a year

 © Kharkov National University of Radioelectronics, 2008

Sertificate оf the State Registration КВ № 12097-968 ПР 14.12.2006

R&I, 2008, No 1 1

International Editorial Board:

Y. Zorian – USA
M. Karavay – Russia
R. Ubar – Estonia
S. Shoukourian – Armenia
D. Speranskiy – Russia
M. Renovell – France
A. Zakrevskiy – Byelorussia
R. Seinauskas – Lithuania
Z. Navabi – Iran
E. J. Aas – Norway
J. Abraham – USA
A. Ivanov – Canada
V. Kharchenko – Ukraine
O. Novak - Czech Republic
Z. Peng - Sweden
B. Bennetts - UK
P. Prinetto - Italy
V. Tarassenko - Ukraine
V. Yarmolik - Byelorussia
W. Kusmicz - Poland
E. Gramatova - Slovakia
H-J. Wunderlich – Germany
S. Demidenko – New Zealand
F. Vargas – Brazil
J-L. Huertas Diaz – Spain
M. Hristov – Bulgaria
W. Grabinsky – Switzerland
A. Barkalov – Poland, Ukraine

Local Editorial Board:

Bondarenko M.F. – Ukraine
Bykh A.I. – Ukraine
Volotshuk Yu.N – Ukraine
Gorbenko I.D. – Ukraine
Gordienko Yu.E. – Ukraine
Dikarev V.A. – Ukraine
Krivoulya G.F. – Ukraine
Nerukh A.G. – Ukraine
Petrov E.G. – Ukraine
Presnyakov I.N. – Ukraine
Rutkas A.G. – Ukraine
Rudenko O.G. – Ukraine
Svir I.B. – Ukraine
Svich V.A. – Ukraine
Semenets V.V. – Ukraine
Slipchenko N.I. – Ukraine
Terzijan V.Ya. – Ukraine
Chumachenko S.V. – Ukraine
Hahanov V.I. – Ukraine
Yakovenko V.M. – Ukraine
Yakovlev S.V. – Ukraine

Address of journal edition: Ukraine, 61166, Kharkiv, Lenin avenu, 14, KNURE, Design Automation Department,
room 321, ph. (0572) 70-21-326, d-r Hahanov V.I.
E-mail: ri@kture.kharkov.ua; hahanov@kture.kharkov.ua

2 R&I, 2008, No 1

CONTENTS

Raimund Ubar, Gert Jervan, Artur Jutman, Jaan Raik, Peeter Ellervee, Margus Kruus.
Research in Digital Design and Test at Tallinn University of Technology…………………………… 4

Øystein Gjermundnes, Einar J. Aas. Enhancing Path Delay Fault Coverage by Weighted
Pseudorandom Test Generation……………………………………………………………………… .13

Arkadij Zakrevskij. Programming Calculations in Many-Dimensional Boolean Space……………19

Ondřej Novák, Jiří Jeníček. Test Pattern Overlapping - a Promising Compression Method for
Narrow Test Access Mechanism SOC Circuits ……………………………………………………… 26

Ivan E. Villalon-Turrubiates and Yuriy V. Shkvarko Comparative Study of the Descriptive
Experiment Design and Robust Fused Bayesian Regularization Techniques For High-Resolution
Radar Imaging………………………………………………………………………………………….34

Oleksiy V. Klymenko. Theoretical Study of Diffusion and Adsorption Inside Nano- and
Mesoporous Active Particles………………………………………………………………………….. 49

Natalia Shabaldina, Nina Yevtushenko. Solving Parallel Multi Component Automata Equations....55

Dmitry Speranskiy. Experiments with the Linear Automata and Synthesis Test to Them…………..58

Dmitrienko V.D., Leonov S.Yu., Gladkikh T.V. Research digital devices by means of modelling
system on the basis of K-Value differential calculus………………………………………………..…63

Igor N. Presnjakov, Leonid I. Nefedov, Stanislaw A. Krivenko, and Alexander P. Stativka.
Theory and Applications of Constrained LinearPredictive (LP) models………………………………70

А. Filipenko, О. Sychova. Monitoring of Photonic-Crystal Fibers Positioning in the Connection
Process………………………………………………………………………………………………….78

Ryabtsev V.G, Almadi M.K. Features of Decision Support’s Program at Choice of Tests
Optimized Sequence for Semiconductors Memory Diagnosing ……………………………………….84

Vladimir Hahanov, Eugenia Litvinova, W. Gharibi. General Testing Models of SOC Hardware-
Software Components……………………………………………………………………… 88

Preparation of Papers for IEEE TRANSACTIONS and JOURNALS....................……………………96

R&I, 2008, No 1 3

Abstract — Innovative testable design technologies of

hardware and software, which oriented on making graph
models of SoC components for effective test development and
SoC component verification, are considered. A novel approach
to evaluation of hardware and software testability, represented
in the form of register transfer graph, is proposed. Instances of
making of software graph models for their subsequent testing
and diagnosis are shown.

Index Terms — Infrastructure Intellectual Property,
Register Transfer Graph, System-on-a-Chip, Testing.

I. HARDWARE-SOFTWARE TESTABILITY
DAPTATION of testing and verification methods of
digital systems can bring in big financial and time

dividends, when using for testable design and diagnosis of
software. Consideration of the following questions can be
interesting: 1. Classification of key uses of SoC testable
design technologies in software testing and verification
problems. 2. Universal model of hardware and software
component in the form of directed register transfer and
control graph, on which the testable design, test synthesis
and analysis problems can be solved. 3. Metrics of
testability (controllability and observability) evaluation for
hardware and software by the graph register transfer and
control model.

The silicon chip that is basis of computers and
communicators development has to be considered as the
initiate kernel of new testing and verification technologies
appearance in software and computer engineering. A chip is
used as test area for new facilities and methods creation and
testing for component routing, placement, synthesis and
analysis. Technological solutions, tested by time in
microelectronics, then are captured and implemented into
macroelectronics (computer systems and networks). Here

Manuscript received June 23, 2008.
Vladimir Hahanov is with the Kharkov National University of Radio

Electronics, Lenin Ave, 14, Kharkov, 61166, Ukraine, phone/fax: 70-21-
326; e-mail: hahanov@kture.kharkov.ua

Eugenia Litvinova is with the Kharkov National University of Radio
Electronics, Lenin Ave, 14, Kharkov, 61166, Ukraine, phone/fax: 70-21-
421; e-mail: KIU@kture.kharkov.ua

W. Gharibi is with the Kharkov National University of Radio
Electronics, Lenin Ave, 14, Kharkov, 61166, Ukraine, phone/fax: 70-21-
326.

are some of artifacts, relating to the continuity of
technological innovations development:

1. The Boundary Scan Standards [1] for board and chip
levels result in the assertion technique appearance for
software testing and verification. 2. The testability analysis
facilities [2] (controllability and observability) of digital
structures can be adapted to the evaluation of software code
to detect critical statements and then to improve software
relative to the testability criteria. 3. The covering analysis
technologies [3] for given faults by test patterns have to be
used for making of the fault covering table of software to
estimate the test validity and to diagnose. 4. The Thatte-
Abraham [4] and Sharshunov [5] graph register transfer
models have to be used for software testing that is reduced
to more technological form by structural-logical analysis. 5.
Partition of an automaton on control [2] and operating parts
is used for reduction of software verification on basis of
preliminary synthesis of control and data transfer graphs. 6.
Lifecycle curve for hardware [6] represents time stages of
yield change at creation, replication and maintenance of
software. 7. Platform-based electronic system-level design
[7] by using of existent chip sets and GUI-based is
isomorphic to the object-oriented programming technology
on basis of created libraries. Application of the Electronic
System Level Technology in the programming enables to
use finished software functional components from basic
libraries to create new software. In this case the main design
procedure is mapping, oriented on covering of specification
functions by existent components, at that new code is
nothing more than 10% of a project. 8. The testbench notion
[8] that is used for hardware testing and verification by
means of HDL-compilers appears in software, realized on
C++ language level and higher. 9. Platform-based testbench
synthesis [7] by using the existent test libraries (ALINT) for
components – standardized GUI-based F-IP SoC
functionalities. It has to be used for software test generation
on basis of developed libraries of the leading companies.
10. Standard solutions of F-IP in the framework of I-IP [9]
can be used for embedded software component testing
including faulty software module repair. 11. Two-
dimensionality assurance in a structure of interconnected
functional components (IP-cores) of developed software is
based on use of multicore architectures for technological
paralleling of computational processes [10] that is quite
urgent in the conditions of technological revolution,
proposed Intel. 12. Creation of address space for SoC
functionalities, which are realized as hardware or software,

General Testing Models of SOC Hardware-
Software Components

Vladimir Hahanov, IEEE Computer Society Golden Core Member, Eugenia Litvinova, IEEE Society member,
W. Gharibi

A

88 R&I, 2008, No 1

gives a digital system the marvelous self-repair feature by
means of I-IP for hardware and software components. An
instance of it is robust multicore version of hardware. At
that a faulty addressable component can be replaced by
other one (faultless) in the process of operation.
Addressability has to be used when creation of critical
software, in which availability of addressable diversion
(multiversion) components gives a software system an
opportunity to replace components at fault appearance. 13.
The technological problem of offline on-chip self-testing,
self-diagnosis and self-repair by using external facilities (or
without them), which are solved by all leading companies,
is quite interesting. To solve the problem the modern
wireless and Internet technologies of distant service are
applied. Disadvantage of these technologies is opportunity
of remote unauthorized access to a chip that can result in
unwanted destructive consequences and digital system
failure. Though, the specific character of digital system-on-
a-chip is the marvelous ability to remove faults distantly
due to chip connection with outer space by means of
Internet or wi-fi, wi-max, bluetooth technologies, which are
realized on a chip. Distance correction of software errors is
possible due to utilization of SoC memory (which occupies
up to 94% of chip area) for software storage. In a case of
error detection new faultless code can be saved to this
memory. Distance correction of hardware errors is possible
due to utilization of Erasable Programmable Logic Device
(EPLD), where new faultless bit stream can be saved in a
case of fault detection; actually thereby new hardware is
created by means of chip reprogramming.

Approximation and interpenetration of technologies
result in isomorphic design, testing and verification
methods in relation to software and hardware complexes
that in essence are natural process of progressive concept
assimilation. The most important characteristics of product
lifecycle (time-to-market and yield) become
commensurable by time and production volume and this
fact favours the tendency above. The hardware lifecycle
curve, shown in Fig. 1, to within the isomorphism
represents time software stages: design, production ramp-
up, fabrication improvement and maintenance.

Fig. 1. Lifecycle curve of hardware-software complex

In the context of lifecycle there are two urgent problems
relating to a curve lifting ordinate-direction and a curve
compression time-direction that means time-to-market
reduction. Here yield rise takes place on all stages: design –
because of design errors recovery, production ramp up –

correction of code, implemented to SoC memory, volume –
because of service pack release, which correct errors by
means of distribution by Internet or satellites.

The research aim is to show development directions of
effective testable design models and methods for software
to raise yield by adaptation of hardware design technologies
and reduction of software structures to the existent
standards and patterns of testing and verification. The
research problems: 1) Development of a software model for
testable design and verification; 2) Development of
software testing and diagnosis technologies on basis of the
register models of operational and control software parts.

II. SOC SOFTWARE TESTING TECHNOLOGIES
The standard IEEE 1500 SECT [1] has to be considered

as effective component of SoC Infrastructure Intellectual
Property. The main its destination is testing of all F-IP
functionalities and galvanic connections between them.
Next step in evolution of the standard for the purpose of
repairable chip creation is development of I-IP components
with SoC diagnosis and repair service functions; last ones in
the aggregate with a testing module are market attractive:

}R,D,T{I = . The diagnosis and repair procedures are not
regulated by the testable design standards because of the
complexity and ambiguity of a universal solution of this
problem for various types of computers. For irregular or
unique structures solutions of all three problems are based
on a priori redundancy – diversification of component
functionalities, which make up SoC. At that rate only it can
to say about on-chip repair of a fail element. Concerning
regular structures, which have underlying redundancy, such
as multi- and matrix processors, one of solution variants can
be a controller structure that combines realization of all
functions above by means of the Boundary Scan Standard:

).FFF(&)FF()F,D(gR

;FF)S,F,T(fD};S,...,S,...,S,S{S

};F,...,F,...,F,F{F

};T,...,T,...,T,T{T},R,D,S,F,T{I

DRR

Dni21

ni21

ni21

=∪⊆==

∈===

=

==

Here the first three identifiers of a model are tests for
functionalities; components, which represent functions; and
boundary scan register cells for identification of
functionalities’ technical state. Other two ones are
represented by functions for SoC diagnosis and repair
realization. The first function (D) defines a faulty
components set that is computed on basis of the output
response vector S and a test, covered all functional faults; it
is entered in the form of fault detection table (FDT). Second
function (R) formulates the rules of component power
reduction by removal of fault elements from addressing and
forming of new faultless subset F-IP SoC to use according
to its intended purpose.

A question about location of a test and functionality
verification analyzer is not problematical. If the matter is
unique components they should be connected with service
I-IP components no dispersal on a chip area. In a case of the

R&I, 2008, No 1 89

regular matrix structure tests for all cells are the same, so it
has to be used for all components; also a single test,
diagnosis and repair analyzer has to be in a structure.

A question about computer resource relocation after a
faulty cell detection is interesting. If there are additional
spares for repair, the problem comes to the optimal
replacement of faulty memory cells by spare rows and
columns. In other case there are other system repair models,
which depends on a multiprocessor representation form.
The linear or one-dimensional addressing form defines
consistency of input variables n of a decoder and
addressable components, which are connected among
themselves by relation: n2A = . The matrix representation
of a multiprocessor specifies two-dimensional component
addressing that is oriented on pipelining technologically. In
both cases decoding of a cell number by its address is
carried out. So, for the purpose of a faulty component
address change on a faultless one it is necessary to modify a
decoder structure. This problem is strictly technical and its
solution comes to the masking of faulty component
addresses. Other solution is related to availability of spares
in a processor structure. In given case the problem can be
reduced to the replacement of one or several faulty
processors by faultless elements from the spare. The
optimal solution of the problem has considered for a case,
when there are several faulty cells in a memory matrix. The
problem becomes more complex if digital system
functionality has parallelized yet on existent processor
matrix nmP,PP ij ×== , which has faulty elements, and it

is necessary to reallocate a set of faultless cells P*P ≤ to
obtain the quasioptimal covering of functional subproblems
by a subset of faultless processors.

Development of software formal model, to which CAD
and EDA technologies can be applied, to use the formal
methods of test synthesis, evaluation of fault covering,
determination of testability (controllability and
observability) for subsequent modernization of software
structure is quite urgent. To solve this problem the
automaton model cab be used:

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

==

==

=

==

).Y,X(gY);Y,X(f

Z);Y,X(gY);Y,X(fZ

};Z,Y,Y,X{M

};Z,Y,Y,X{M),M,M(M

OCCCOCCC

COOOCOOO

CCOCCA

OOCOOACAOA

Where
OO

Z,X are vectors or register input and output

variables; COC Z,Y,Y are signals of operation control
(initialization), announcing signals, and monitoring signals
of a control automaton respectively;)g,f(g,f CCOO are
functions, which determine relations between interface
signals in an operational and control automata.

But the automaton model above)M,M(M CAOA= is
not technological for a developer at solution of practical

problems of testable design. Processor (software)-based
modification of one is proposed; it consists of two graphs
with directed ribs:

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

=

==

==

==
==

).ES(fS

};E,...,E,...,E,E{E},S,...,S,...,S,S{S

};E,S{M);IR(fR

};I,...,I,...,I,I{I},R,...,R,...,R,R{R
};I,R{M),M,M(M

j,ki

qj21pi21

CG
j,ki

mj21ni21

ORCGOR

Here ORM is Sharshunov register transfer graph [5]
with a set of points R, which describes all memory
components (registers, flip-flops, counters, memory, input
and output buses) used in a program, and a set of ribs,
which are marked by instructions I and activate information
transfer between points. Expression)IR(fR j,ki = defines

functional dependence between adjacent points ,ki RR →

which are connected by means of operation II j ∈ .

Component CGM is conceptual graph of a control
automaton that is defined on a point set S, which are
connected by directed ribs E, marked by transition
conditions. Expression)ES(fS j,ki = defines functional

dependence between adjacent points ki SS → of a control
graph, which are connected to realize jump EE j ∈ .

Instances of register transfer and control graphs are
shown in Fig. 2 and 3 respectively.

X YR2

R4

R1

R3

R5

I = {1,2}1

I = {5,6}2

I = {7,8}3

I = {2,3}4

I = { 7}5 3,

I = { 8}6 4,

I = { 3}7 1,

I = { }9 1,7

I = { 8}8 2,

Fig. 2. Register transfer graph

Fig. 3. Control automaton graph

Advantages of graph models are not only in structure
representation of functionals interaction, but applicability of
testability analysis methods, because directed graph models
have explicit information flow directions, input and output
points. On the basis of the testability evaluation experience
for digital systems the following metrics of controllability

21 xx ∨ 31 xx ∨

421 xxx ∨∨
42 xx ∨

1x 2x

4x

41 xx ∨
3x

S0 S1 S2

S3 S4

S5

90 R&I, 2008, No 1

and observability analysis for the graph structures above
can be proposed:

.1)R(O;1)R(C

;)R(O)RR(I
m
1

k
1)R(O

;)R(C)RR(I
m
1

k
1)R(C

);RR(II
};I,...,I,I{I},R,...,R,R{R};I,R{G

yx

k

1i
q

j
qpijp

k

1i
p

j
qpijq

qpiij

m21n21

==

∑
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
×∈××=

∑
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
×∈××=

≈∈
===

=

=

U

U

Here a software (hardware) module model is represented
by the graph }I,R{G = that consists of points (registers)
and ribs (instructions). Every graph rib is marked not less
one operation)RR(II qpiij ≈∈ that forms a command

subset, attached to the rib)RR(qp . The controllability

criterion for the point)R(C q depends on the controllability

of previous point)R(C p and reduced additive power of a
command set

,
m
d

k
1d

m
1

k
1)RR(I

m
1

k
1 k

1i

k

1i

k

1i j
qpij ∑∑∑

===
⎥⎦
⎤

⎢⎣
⎡×=⎥⎦

⎤
⎢⎣
⎡ ××=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
∈×× U

which activate k ribs, attached to the given point)R(C q .
Here every rib contains d operations (m – the total
command quantity), which initiate information transfer to

)RR(qp . On the analogy the observability evaluation

criterion)R(C p based on analysis of points-successors and

ribs, outgoing from)R(C p , is formed. The advantage of
the proposed models and criteria of controllability and
observability evaluation is their universality, based on
realization of direct and inverse implication on a graph, as
well as their invariance concerning the testable analysis and
test synthesis for software and hardware components.
Controllability 1)R(C x = of input and observability

1)R(O y = of output graph points is initiated by “1” values.
As advancement of point analysis to internal lines the
values of evaluations above can decrease only.

Thus, the graph points are represented by the following
components: input variables, output variables, register
variables, ALU block, memory arrays, which are
represented in a format of their presentation in a software
(hardware) module. Ribs determine an operand (command)
set, which transfer (transformation) of information between
points. The complete model of a device, represented by the
register transfer and control graphs, covers all statements of
data transfer and control in a software (hardware) module
that is necessary to the synthesis of testable device. At that
test synthesis is based on solving of the covering problem of
all paths and points in register transfer and control graphs
by testbench statements.

The integral evaluation of the point testability in a graph
is calculated by formula:)iO(R)iC(R)iT(R ×= .

The total graph testability for software (hardware) is

computed by expression ∑
=

=
n

1i
)iT(R

n
1

totalT .

For instance, represented by a register transfer graph
(Fig. 2), computation of testability is given below. The
controllability factors are:

1; C(X) =

0,25;
8
2

8
211

m
d1С(X))С(R1 ==××=××=

0,25;
8
2

8
211

m
d1С(X))С(R2 ==××=××=

0,25;
8
2

8
211

m
d1С(X))С(R3 ==××=××=

0,0625;
16
1

2
1

m
d)C(R

m
d)C(R)C(R 214 ==×⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎥⎦
⎤

⎢⎣
⎡ ×+⎥⎦

⎤
⎢⎣
⎡ ×=

0,0625;
16
1

2
1

m
d)C(R

m
d)C(R)C(R 325 ==×⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎥⎦
⎤

⎢⎣
⎡ ×+⎥⎦

⎤
⎢⎣
⎡ ×=

0,015625;
64
1

2
1

m
d)C(R

m
d)C(R C(Y) 54 ==×⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎥⎦
⎤

⎢⎣
⎡ ×+⎥⎦

⎤
⎢⎣
⎡ ×=

The point Y has minimal controllability. Observability
computation:

1; O(Y) = 0,25;
8
21

8
2O(Y))O(R4 =×=×=

0,25;
8
21

8
2O(Y))O(R5 =×=×=

0,0625;
8
2

4
1

8
2)O(R)O(R 53 =×=×=

0,0625;
8
2

4
1

8
2)O(R)O(R 41 =×=×=

0,0625;
16
1 2/

8
2)O(R

8
2)O(R)O(R 542 ==⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ ×+⎟

⎠
⎞

⎜
⎝
⎛ ×=

0,015625.
64
1

 3/
8
2)O(R

8
2)O(R

8
2)O(R O(X) 321

==

=⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ ×+⎟

⎠
⎞

⎜
⎝
⎛ ×+⎟

⎠
⎞

⎜
⎝
⎛ ×=

The point X has minimal observability. Testability
computation:

. 015625,01 0,015625T(Y)
0,015625; 0,25 0,0625)T(R
0,015625; 0,25 0,0625)T(R
0,015625; 0,0625 0,25)T(R
0,015625; 0,0625 0,25)T(R
0,015625; 0,0625 0,25)T(R

; 015625,0 0,0156251T(X)

5

4

3

2

1

=×=
=×=
=×=
=×=
=×=
=×=

=×=

The total circuit testability 0,015625.totalT =
Calculation of the testability characteristics for the control
automaton graph (Fig. 3) is realized similarly.
Determination of the graph controllability:

R&I, 2008, No 1 91

1;)C(S0 =

0,34375;
32
11

2
1

m
d)C(S

m
d)C(S)C(S 301 ==×⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎥⎦
⎤

⎢⎣
⎡ ×+⎥⎦

⎤
⎢⎣
⎡ ×=

0,75;
4
3

4
311

m
d1)С(S)С(S 03 ==××=××=

0,375;
16
6

4
21

4
3

m
d1)С(S)С(S 35 ==××=××=

0,1224;
384
47

3
1

m
d)C(S

m
d)C(S

m
d)C(S)C(S 5314

==

=×⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥⎦
⎤

⎢⎣
⎡ ×+⎥⎦

⎤
⎢⎣
⎡ ×+⎥⎦

⎤
⎢⎣
⎡ ×=

0,11654.
1536
179

2
1

m
d)C(S

m
d)C(S)C(S 412

==

=×⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥⎦
⎤

⎢⎣
⎡ ×+⎥⎦

⎤
⎢⎣
⎡ ×=

The point S2 has minimal controllability. Observability
computation:

1;)O(S2 = 0,5;
4
211

4
21)O(S)O(S 24 =××=××=

0,125;
8
1

4
11

2
1

4
11)O(S)O(S 45 ==××=××=

0,07292;
96
7

3/
4
2)O(S

4
1)O(S

4
1)O(S)O(S 5413

==

=⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ ×+⎟

⎠
⎞

⎜
⎝
⎛ ×+⎟

⎠
⎞

⎜
⎝
⎛ ×=

0,125;
8
1 2/

4
1)O(S

4
2)O(S)O(S 421 ==⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ ×+⎟

⎠
⎞

⎜
⎝
⎛ ×=

.0,05859375
256
15 2/

4
3)O(S

4
2)O(S)O(S 310 ==⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ ×+⎟

⎠
⎞

⎜
⎝
⎛ ×=

The point S0 has minimal observability. Testability
computation:

0,046875. 0,125 0,375)T(S
0,0612; 0,5 12240,)T(S

0,05469; 0,07292 0,75)T(S
0,11654; 1 0,11654)T(S

;0,04296875 0,125 0,34375)T(S
;0,05859375 0,058593751)T(S

5

4

3

2

1

0

=×=
=×=

=×=
=×=

=×=
=×=

The point S1 has the worst testability. The total circuit
testability is .063478,0totalT =

Thus, the proposed testability evaluation method has the
followings advantages: 1) high effectiveness and
universality relative to its use for evaluation of register
transfer and control graph testability; 2) possibility to detect
bottlenecks in software or hardware to modify a project
structure; 3) choice of the best project by comparison of
alternative variants testability.

III. SOFTWARE DIAGNOSIS TECHNOLOGY

At development of large size software verification of
development project on the correctness of statements is
urgent problem. Complex software includes great many
branches and verification of software on every logical path

is rather complex problem. A method of faulty statements
(errors or faults) searching for software that is based on
representation of software algorithm in the form of graph
structure for subsequent test generation and fault diagnosis
is considered below on an example. Lets it is necessary to
verify the software that realizes computation of the
following sum of functions:

12;x
12;x2

2;x

7;3x
3;2x
3;x

x

ω(x),(x)S

≥
<≤

<

⎪
⎩

⎪
⎨

⎧

+−
−
+

=

+=

3.2πx
3;2πx

,
,

2sin(πin
3)πsin(x

ω(x)
≥
<

⎩
⎨
⎧

+
+

=

One of the possible problem solution variants on C++
language is represented by the following listing:

Listing 3.1.
#include <iostream>
#include <math.h>
using namespace std;
int main()
{
 const double Pi=3.14159;
 double F, w, f, x;
 cin>>x;
if (x<2) f=x+3;
else if ((x>=2) && (x<12)) f=2*x-3;
else f=-3*x+7;
if (x<2./3.*Pi)
w=sin(x+Pi/3);
else w=sin(Pi*x)+2;
F=f+w;
cout<<F<<endl;
 return 0;
}
Lets an error takes place in a statement of computational

part of software. Instead of the correct statement
else w=sin(Pi*x)+2;
the following one is written:
else w=sin(Pi*x) - 2;
It is necessary to detect faulty statement in program code

by using the testing technology, based on the graph code
model. Software diagnosis stages include 4 procedures
below.

1. Making of register transfer graph.
Graph ribs are a set of code fragments or separate

operations (Fig. 4); graph points are points of information
monitoring (registers, variables, memory), which are used
for forming of assertions too.

Fig. 4. Register transfer graph

X

R1

R2

R4

R3

R5 Y I5={1,2,5}

I1={1}

I2={2,3}

I3={1,2}

I4={1,4,5} I6A={1}

I6B={1}

I6C={1}
I6D={1}

92 R&I, 2008, No 1

A number of test points in the graph (registers, variables,

memory) should be adequate to diagnose of given
resolution. Otherwise it is necessary to carry out the
analysis of register transfer graph testability for software
and to determine the minimal additional quantity of
observation lines for forming of assertions, which enable to
detect faulty modules with given diagnosis resolution.
Every rib (see Fig. 4) is marked by an arithmetic operation
set: {1} – summation; {2} – multiplication; {3} –
subtraction; {4} – division; {5} – obtainment of
trigonometric sine. In a case when there is a branch in a
program a number of outgoing ribs from a point is equal to
quantity of adjacent sinks that is formed by branch
statements in respective part of a program.

Thus, for the code fragment of the instance:
if (x<2) f=x+3;
else if ((x>=2) && (x<12)) f=2*x-3;
else f=-3*x+7;
there are three ribs, outgoing from the point X.

Computational results 321 I,I,I , which depend on the
variable X, are checked in the points 321 R,R,R
respectively. In a case of execution of the operation 1I the
following branch is realized:

if (x<2./3.*Pi) w=sin(x+Pi/3);
else w=sin(Pi*x)+2;
Then the general summation operation for all transactions

is carried out regardless of which branch statements had
been executed.

F=f+w;
The summation operation is executed on various ribs (the

objects D6C6B6A6 I,I,I,I), but all of them correspond to
the same part of the program code. So, faultless execution
an operation on a rib eliminates a fault on other three ones.
On next stages of software diagnosis these objects are
merged to 6I . The result are checked in the final point Y.

The method of software algorithm representation by
graph structure enables to show all possible variants of
software execution, as well as to simplify realization of next
diagnosis stage of software and forming of minimal test.

2. Test synthesis and analysis. A set of ribs are written in
the form of disjunctive normal form (DNF), where every
term is one-dimensional path from input port to output,
which covers a subset of internal lines:

Y3XY2XY15XY14XP ∨∨∨= . In the aggregate one-
dimensional paths, represented in DNF, cover all possible
transactions – graph points and ribs. An aggregate of code
fragments or statements (activation instructions), written by
disjunction, is brought to conformity with every rib. For
instance, the path X14Y activates execution of operations
on ribs A641 I,I,I . At that the ribs 1I and A6I have only
one statement, and consecutive execution of three
statements corresponds to the identifier 4I . The test

)]1)(541)(1[(P1 ∨∨= that activates the path X14Y ensures
the correctness check of all statements. Thus, the test of
minimal covering of all graph points and ribs by commands,

which activate graph ribs and therefore data movement to
observation points, can be written:

)].1)(21[()]1)(32[(
)]1)(521)(1[()]1)(541)(1[(P

∨∨∨∨
∨∨∨∨∨∨=

Subsequent DNF transformation consists of removal of
brackets to obtain complete test that enables to check
transactions in a graph, which cover all points and ribs in
various combinations:

)1211()3121(
)151121111()151141111(P

∨∨∨∨
∨∨∨∨∨∨= .

The obtained test is redundant; it is not always acceptable
for large size software, because of there is large quantity of
test patterns. So, the ability to create minimal length test of
given resolution is very important. Such test is formed by
solving of the covering problem of all graph points and ribs
and activation of code fragments sets. When testing it is
supposed that hardware components, used in the software
are faultless.

3. Fault detection table making. Fault detection table is
oriented on verification of code fragments sets on ribs,
which form data activation paths to the observation points
(graph points). In compliance with comparison of
experimental data of tested software and expected responses
the output response vector V is formed. In a case of result
failure on an observed line the respective coordinate of the
vector V takes on a value “1” for the test pattern under
consideration. The fault detection table of code fragments
on complete test Y3XY2XY15XY14XP ∨∨∨= , where
test patterns are written in general form (a set of one-
dimensional paths), is shown below:

111Faults
0111Y3X
0111Y2X
111111Y15X
011111Y14X

VIIIIIIIIIIIII
T

615552514544413231232211j
i

The symbolic notation I jk means execution of a

statement that is on the rib I j and has index k. For instance,

22I means execution of statement sequence of the rib 2I at
activation of the path X2Y and production operation that
corresponds to the fragment of source program code:

else if ((x>=2) && (x<12)) f=2*x-3;
The diagnosis resolution for the test at the value of vector

V = (0100) is determined by three possible faults:
555251 IIIF = . Value “1” of the vector V for a test-vector

under consideration means that when issuing second pattern
the activation of respective commands execution is took
place. The minimal set of DNF terms, which make out all
single faults of program fragments of a register transfer
graph, is minimal diagnosis test. Next term set (here it
coincide with complete test) makes out faults of all
instructions, determined in DNF:

)1211()3121()151121111()151141111(P ∨∨∨∨∨∨∨∨∨= .
Reduction impossibility is conditional on that removal

any term does not provide activation of one or several

R&I, 2008, No 1 93

fragments. Then complete and extended fault detection
table is made that is formed by a term set above. Every
obtained test pattern is divided on parts – terms. First test
pattern)151141111(∨∨ consists of three terms: (111),
(141) and (151). Every of them has own position in a
column. All possible executable operations, which are
designated ikI , where j – rib identifier in a graph, k –
statement that transforms data on j-th rib, is distinguished
across. The graph path to which a term under consideration
is applied is considered. For instance, term (141) is applied
to first test pattern that activates the path X14Y. The
extended fault detection table is:

01121
01111
01131
01121
1111151
1111121
1111111
0111151
0111141
0111111
VIIIIIIIIIIIII\T

2

1
2

2
1

1
615552514544413231232211ii

Every term number means execution of a statement on
respective graph rib. First nimber “1” provides activation of
the statement {1} 1I , so opposite respective column “1” is
put. Column values of the extended fault detection table are
moved from the FDT of code fragments that is defined on
complete generalized test. But coordinate value is written
for every test term. Extended fault detection table enable to
show the results of every test pattern execution and to
simplify the fault detection procedure with given resolution.

4. Diagnosis. In compliance with numbers of “1’ in the
output response vector V quantity of disjunctive CNF terms
is formed. Every term is line-by-line writing of faults by
logical operation “OR”, which influence on distortion of
output functional signals. Then transformation CNF to DNF
by the Boolean algebra is carried out:

.

))()((F

I61I51I61I11I61I61I52I61I55I52I61I52I11

I61I11I61I55I11I61I11I61I51I61I55

I11I61I51I61I52I51I55I52I51I52I51I11

I61I51I11I55I51I11I11I51I61I11I51I61I11

I11I61I61I52I11I55I52I11I52I11I61I11I55I11I11

I61I55I11I61I52I11I61I51I11

∨∨∨∨∨∨
∨∨∨∨∨∨

∨∨∨∨∨∨
∨∨∨∨∨∨

∨∨∨∨∨∨∨
=∨∨∨∨∨∨=

To reduce the obtained set of possible faults the Boolean
algebra laws are used:

;AAA =∧ ;BCACC)BA(;ABBA ∨=∨∨=∨
);CB(AC)BA(∨∨=∨∨ ;AAA =∨

AA)BA(;AA)BA(=∧∨=∨∧ , it enables to obtain the
expression:

.IIIII
IIIIIIIIII

IIIIIIIIIIII
IIIIIIIIIII

IIIIIIIIIII
IIIIIIIIII

IIIIIIIIIIF

6155525111

61516111616152615552

615211611161551161116151

6155116151615251555251

5251116151115551111151

61115161111161615211

55521152116111551111

∨∨=

=∨∨∨∨∨

∨∨∨∨∨∨

∨∨∨∨∨

∨∨∨∨∨

∨∨∨∨∨

∨∨∨∨∨=

Then such elements jkI from F, which are executed in

other test patterns with value 1Vi = , are removed. A set of
objects, contained the operations, which transform data at
program execution uniquely and correctly, is formed:

.IIIIIIII)}21()11(
)31()21()151()141{(}Y3X,Y2X,Y14X{H

61454432312322112

1
∨∨∨∨∨∨∨=∨∨
∨∨∨∨==

After the reduction a single DNF term is obtained:

.III)IIIIII
II(\)IIIII(H\F'F

555251614544323123

22116155525111
=∨∨∨∨∨

∨∨∨∨==

It means that the software functions with error at
execution one of the statements {1,2,5} on the rib 5I .

Really, an error takes place on linear program part that is
applied to a rib of the statement sequence 5I , namely 51I –
execution of subtraction instead of summation.

More exact diagnosis (to within statement) is possible if
to use the greater quantity of test points that complicates
diagnosis because of necessity to make longer tests. The
proposed method enables to analyze software on presence
of errors in the code and helps to detect their location.
Testing and verification of software is the main problem at
programming, and its solving enables to raise software
quality and to obviate unforeseen results of its execution.
The proposed method is based on representation of software
algorithm by the graph structure, where ribs are statement
sequences or code fragments, and points are information
monitoring points for making of assertions. Creation of
minimal quantity of test patterns enables to decrease time of
fault detection. At that tests have to cover all possible
transactions. Test points quantity has to be minimal and
sufficient for diagnosis of given resolution.

IV. CONCLUSION
The innovative technologies of software and hardware

testable design, based on effective test development and
verification of digital system-on-a-chip components, are
considered.

1. The general directions of utilization of the testable
design technologies for digital systems-on-chips in the
problems of software testing and verification are shown.

2. The universal model of software and hardware
component in the form of directed register transfer and
control graph, on which the testable design, test synthesis
and analysis problems can be solved, is represented.

3. The metrics of hardware and software testability
evaluation (controllability and observability), models of
which are represented by directed register transfer and
control graphs, is proposed.

94 R&I, 2008, No 1

4. The technology of software testing and diagnosis on
basis of synthesis the graph register transfer models is
proposed.

5. The practical importance of proposed methods and
models is high interest of the software companies in
innovative solutions of the effective software testing and
verification problems above.

REFERENCES
[1] Francisco DaSilva, Yervant Zorian, Lee Whetsel, Karim Arabi, Rohit
Kapur, “Overview of the IEEE P1500 Standard”, ITC International Test
Conference, 2003, pp. 988–997.
[2] Abramovici M., Breuer M.A. and Friedman A.D, “Digital System
Testing and Testable Design”, Computer Science Press, 1998, 652 р.
[3] V.I.Hahanov, S.V.Chumachrnko, W.Gharibi, E.Litvinova, “Algebra-
logical method for SoC embedded memory repair”, Proceedings of the 15
International Conference «Mixed design of integrated circuits and
systems», Poland, 2008, pp. 481-486.
[4] Thatte S.M., Abraham J.A, “Test generation for microprocessors”,
IEEE Trans. Comput., 1980, C-29, No 6, pp. 429-441.
[5] Sharshunov S.G, “Construction of microprocessor tests. 1. The general
model. Data processing check”, Automation and telemechanics, 1985,
№11, pp. 145-155.
[6] Zorian Yervant, “What is Infrustructure IP?”, IEEE Design & Test of
Computers, 2002, pp. 5-7.
[7] Douglas Densmore, Roberto Passerone, Alberto Sangiovanni-
Vincentelli, “A Platform-Based taxonomy for ESL design”, Design&Test
of computers, September-October, 2006, pp. 359-373.
[8] Bergeron, Janick, “Writing testbenches: functional verification of HDL
models”, Boston: Kluwer Academic Publishers, 2001, 354 p.
[9] Zorian Yervant, “Guest Editor’s Introduction: Advances in
Infrastructure IP”, IEEE Design and Test of Computers, 2003, 49 p.
[10] Shameem Akhter, Jason Roberts, “Multi-Core Programming”, Intel
Press, 2006, 270 p.

Vladimir Hahanov – Dean of the Computer Engineering Faculty, Doctor
of Science, Professor. IEEE Computer Society Golden Core Member.
1985 – Ph.D, “Digital systems models and testing methods for computer-
aided design”, Kharkov National University of Radio Electronics.
1996 – Dr. of Science, “Models and methods of digital microprocessors
system for fault simulation and testing service”, Kharkov National
University of Radio Electronics.
2003 – till now dean of the Computer Engineering Faculty, Kharkov
National University of Radio Electronics.
1997 – till now – professor of Kharkov National University of Radio
Electronics. Kharkov Military University, Kharkov Academy of railway
transport, Kharkov Academy of Culture, Kharkov Aerospace University.
1988 - 1997 - senior lecturer.
V. Hahanov has 510 publications, 7 books, and 2 patents.
Scientific work:
– Creation of the computer-aided system for logic simulation, test
generation, faults diagnosis of digital devices;
– Systems and microprocessor-based structures;

– Two-framed cubic Algebra, cubic form of the graph representation,
Cubic models of digital devices, deductive-parallel method of cubic fault
simulation, topological deductive back traced parallel fault simulation
method, cubic method of test generation;
– Algebra Logic fault localization and memory repair methods of SoC
Functionality;
– Software tools (C++, Assembler, Fortran) for research.

High performance fault simulation and test generation development for
complete digital systems and networks described hierarchical models. The
development is based on Multi-Core architectures;

Design automation for testability with IEEE Boundary Scan standards
and debugging tools for specialized microprocessor systems and digital
systems processing;

Certification and verification of the hardware and software components
of the computer systems and networks;

Design automation for educational applications in the field of computer
engineering;

Digital Signal Processing and MPEG stsndards.
Honors:
1996 – “Best methodologist of University”, Ukraine.
2000, 2001 – honors from “Best scientist of Kharkov region”, Ukraine.
2003 – INTEL award of scientific projects competition.
2005 – The best professor of Ukraine.
2005 – Award from President of Ukraine.
2005 – IEEE Diploma for the IEEE conference organization.
2005 – IEEE Computer Society Golden Core Member.
2007 – IEEE Outstanding contribution Award.
Member of three specialized scientific boards for defense of thesis for a

Doctor's degree: D 64.052.02 – systems of design automation, D 64.807.02
– information technologies in control systems.

Leader of the scientific seminar “Design automation and diagnosis of
computational devices, systems and networks”.

Chairman of the international symposium “IEEE East-West. Design
and Test”.

Member of 10 organization committee for the International
Conferences

Member of IEEE Computer Society from 2000.
Member of High Examination Board of Ministry of Education of

Ukraine.
Scientific supervisor of “Design & Test” R&D Lab.
Chief Scientist of Aldec Inc., cooperation with Cadence, Microsoft,

Intel.
E-mail: hahanov@kture.kharkov.ua
Eugenia Litvinova – Assistent Professor, Doctor of philosophy. IEEE

Society member.
1985 – Kharkov National University of Radioelectronics, speciality

“Radioelectronic Designing and Production”.
1996, Academic degree – candidate of technical science.
2001, Academic status – associate professor.
Senior Lector in Kharkov National University of Radio Electronics,

Ukraine.
Over a period of time from 2000 year more 30 scientific publications

were made.
Computer Engineering Faculty, Kharkov National University of

Radioelectronics, Ukraine, Lenin Ave. 14, Kharkov, Ukraine, 61166,
phone: (057) 70-21-421, (057) 70-21-326. E-mail: kiu@kture.kharkov.ua

W. Gharibi – PhD Student of the Kharkov National University of
Radio Electronics, Computer Engineering Faculty.

R&I, 2008, No 1 95

