ИСПОЛЬЗОВАНИЕ РАЦИОНАЛЬНЫХ КОЭФФИЦИЕНТОВ ВЕЙВЛЕТ-ПРЕОБРАЗОВАНИЯ ДОБЕШИ ДЛЯ ОПТИМИЗАЦИИ РАЗРЯДНОСТИ ДАННЫХ

ПОБЕЖЕНКО И.А., ХАХАНОВА И.В.

Выполняется сравнительный анализ зависимости сохранения качества изображения от разрядности рациональных, иррациональных, перевернутых рациональных коэффициентов и данных для двумерного DWT преобразования Добеши 9/7. Анализ полученных результатов позволяет показать оптимальные коээфициенты для VHDLмодели арифметического блока.

1. Введение

В настоящее время высокое качество, передача изображения от мобильных беспроводных датчиков требует дешевого, быстродействующего выполнения аппаратных средств с низким энергопотреблением современного кодер-декодера как кодер с потерями JPEG2000 [1]. Этот кодер использует биортогональное 9/7 дискретное вейвлет-преобразование (DWT).

В данной работе проектируется выполнение с фиксированной точкой 9/7 DWT на программируемой вентильной матрице (FPGA) использование лифтингструктуры. Рассматривается традиционная лифтингструктура (рациональные и иррациональные коэффициенты) и "зеркально отраженная" (Flipping) структура(перевернутые рациональные коэффициенты).

В теоретических работах по вейвлет-преобразованию [1-5] приведены алгоритмы сжатия данных с использованием коэффициентов Добеши 9/7. Программная реализация преобразования рассмотрена в работах [4-5]. В [6] был проведен анализ вейвлет-преобразования Добеши 9/7 для иррациональных коэффициентов. Актуальность работы связана с необходимостью поиска оптимальных коэффициентов, позволяющих уменьшить количество разрядов для хранения данных после вейвлет-преобразования. Полученные результаты позволят оптимизировать аппаратную часть устройства с сохранением необходимого и достаточного качества изображения.

2. Лифтинговые схемы реализации DWT преобразований

Каждое вейвлет-преобразование, формируемое с помощью КИХ (конечная импульсная характеристика)фильтров, может быть получено за конечное число шагов лифтинговой схемы [1-6]. Ее использование имеет ряд преимуществ перед классической структурой вейвлет-преобразования [1,2].

Лифтинговая схема вычисления вейвлет-преобразования снижает вычислительную сложность в два раза,

позволяет экономить память и конструировать вейвлеты, которые нельзя построить другим способом. Она представляет собой вейвлет второго поколения, где отсутствует растяжение и сдвиг функции, но имеется ряд дополнительных свойств. Каждый вейвлет, построенный на конечных фильтрах, может быть получен за определенное число шагов преобразований на основе лифтинговой схемы. Кроме того, она позволяет конструировать биортогональные вейвлеты и имеет ряд следующих преимуществ перед классической схемой вейвлет-преобразования [4, 8, 9]:

1) Высокую скорость обработки вейвлета, подобную быстрому преобразованию Фурье.

2) Технологичность построения нелинейных вейвлетпреобразованиий – перевод целых чисел в целые, что существенно для аппаратной реализации и кодирования изображений без потерь.

3) Обратное преобразование имеет такую же вычислительную сложность, как и прямое.

4) Возможность реализации адаптивного вейвлет-преобразования, улучшающего детализацию на каждом его шаге – от грубого представления до необходимой степени подробности.

5) Описание преобразования Фурье с помощью аргументов пространственной области.

Преимуществом использования лифтинговой схемы трансформирования изображения является одинаковая вычислительная архитектура прямого (DWT)[6] и обратного (IDWT) преобразования, представленого в [6]. Соответствующие формулы вычисления этапов предсказания и обновления для обратного вейвлетпреобразования имеют следующий вид:

$$\begin{split} & d_{i}^{(n-1)} = d_{i}^{(n)} + \sum_{k} P_{n}(k) s_{k}^{(n)}, n \in [1, 2, ..., N]; \\ & s_{i}^{(n-1)} = s_{i}^{(n)} + \sum_{k} U_{n}(k) d_{k}^{(n)}, n \in [1, 2, ..., N]. \end{split}$$

где P_n и U_n совпадают с коэффициентами прямого преобразования (4)-(8).

Перед началом IDWT преобразования выполняется процедура обратного масштабирования. Для упрощения аппаратной реализации предложенные стандартом коэффициенты для банка фильтров 9/7 Добеши модифицируются [2] (табл. 1).

Перевернутая структура (Flipping схема), предложенная в [9], является альтернативной для осуществления лифтинг-метода. Эта структура имеет преимущество из-за уменьшенного критического пути по сравнению с традиционной лифтинг-структурой [6]. Третья стадия (с коэффициентом Р₂) при использованиии рациональных лифтинг-коэффициентов может быть зеркально отражена так, что ее фильтрация может быть достигнута точно без потребности в апроксимации. Рис. 1 и 2 показывают стадии анализа и синтеза для выполнения перевернутой структуры.

Рис.1. Схема Flipping вейвлет-анализа: разбиение, предсказание и обновление

Лифтинг структуры получают быструю реализацию аппаратных средств, используя рациональные коэффициенты, при этом P_2 , K_0 и $1/K_0$ будут квантованы (т.е., представлены с фиксированной точкой). Перевернутая структура с рациональными коэффициентами требует только квантования K_0 . Схема вейвлетпреобразования перевернутой структуры с рациональными коэффициентами для операции анализа представлена на рис. 3, которая отличается от схемы, представленной в [6], третьим и четвертым шагами вейвлет-преобразования.

Таблица 1. Лифтинговые коэффициенты для банка фильтров 9/7 Добеши.

	Иррациональные	Рациональные		Перевернутые рациональные
P ₁	-1,5859375	-1,5	P ₁	-1,5
U ₁	-0,052734375	-0,0625	U ₁	-0,0625
P_2	0.8828125	0,799804688	1/P ₂	1,25
U ₂	0.44140625	0,46875	P2*U ₂	0.375
Κ	1.1484375	0,7998046875	К	0.80078125
-1/K	-0,87109375	-1,25030517578	- P2/K	-0.9990234375
LS	NA	$\sqrt{2}$	LS	$\sqrt{2}$

Здесь представлены три набора коэффициентов. Первые соответствуют стандарту; вторые – версия из [10, 11], использующая рациональные коэффицинты и общий масштабирующий множитель – LS (Lumped Scaling). Хотя последний набор содержит рациональные коэффициенты, они не имеют простого способа реализации в аппаратуре, в частности, число 0.8 не может быть представлено конечной дробью. Поэтому числа в дробях коэффициентов переворачиваются (flipped), например, вместо 0.8 используется 125.

2. Вычисление погрешности преобразования данных

Для объективного измерения качества сигналов широко используются: среднеквадратическая ошибка (RMSE – root mean square или MSE – Mean Squared Error); соотношение сигнал-шум (SNR – Signal To Noise Ratio) или пиковое соотношение сигнал-шум (PSNR – Peak Signal To Noise Ratio) [4,12,13]. Единицей измерения SNR и PSNR является dB.

Для анализа алгоритмов сжатия изображений параметр MSE наиболее часто задается с помощью эквивалентной величины – пикового соотношения сигналшум PSNR (Peak Signal To Noise Ratio), вычисляемого по формуле

PSNR (dB) =
$$10 \lg \left(\frac{(2^{B} - 1)^{2}}{MSE} \right) = 20 \lg \left(\frac{2^{B} - 1}{RMSE} \right), (1)$$

где В – разрядность исходных данных.

Учитывая, что наиболее распространненым числом разрядов для представления цветовых характеристик является B=8, формула для определения PSNR принимает вид:

$$PSNR(dB) = 10 \lg \left(\frac{255^2}{MSE}\right) = 20 \lg \left(\frac{255}{RMSE}\right), \quad (2)$$

где 255 – максимально возможное значение для 8 битов.

Рис.2. Структура Flipping преобразования для операции синтеза

Рис. 3. Схема вейвлет-преобразования перевернутой структуры с рациональными коэффициентами для

Качественно восстановленное изображение обычно имеет значение PSNR, равное 30 dB и более.

Следует отметить, меньшее значение PSRN не обязательно свидетельствует об уменьшении качества для конкретного изображения. Метрики определения объективных ошибок (MSE, SNR, PSNR) не всегда точно устанавливают соотношение с субъективным измерением качества. Существуют ситуации, когда PSNR-значение для восстанавливаемого изображения явялется достаточно высоким, но субъективное качество, определяемое визуально, оказывается неудовлетворительным. Поэтому выбор объективного и субъективного качества при разработке алгоритма компрессии и декомпрессии видеоданных часто зависит от области его применения.

4. Зависимость потери качества изображения от разрядности данных

При аппаратной реализации модели процесса вейвлетпреобразования качество восстановленного изображения зависит от числа разрядов, которые используются для представления коэффициентов лифтинговой схемы. Меньшая разрядность данных позволяет сократить аппаратурные затраты за счет снижения качества изображения, к которому применяется вейвлетпреобразование. Чтобы получить оптимальное устройство для отношения "размер-качество" изображение необходимо промоделировать в целях определения влияния округления значений коэффициентов и результатов вычислений на внесение погрешности в обрабатываемые данные. При этом мерой изменения качества выбрано пиковое соотношение сигнал-шум PSNR (10).

Для определения качества изображения при заданных характеристиках разрядности данных разработано программное средство[6] в среде Matalab[14], которое выполняет прямое и обратное вейвлет-преобразование Добеши, позволяет округлять значения коэффициентов, промежуточных и выходных результатов преобразований до заданного числа разрядов с последующим вычислением характеристики качества изображения PSNR. Тестовыми примерами являются два изображения. Первое (рис. 4) представляет собой картинку с плавными переходами тонов, второе (рис. 5) – сильнонасыщенное, с мелкими деталями. В данной работе сравниваются полученные значения качества и других характеристик. Значения качества PSNR для преобразования без внесения искажений представлены в табл 2.

Рис. 4. Цветок

Таблица 2. PSNR max для трех типов коэффициетов Добеши

	Иррац.	Рац.	П. рац.
Изображение	PSNR	PSN R	PSNR
Цветок (PSNR1	292,38	314,03	60,285
Franlfurt (PSNR	297,11	318,56	66,1995

Рис. 5. Фрагмент аэропорта города Frankfurt

В табл. 2 в первой колонке отображены показатели PSNRmax для иррациональных коээфициетов Добеши, во второй- для рациональных, а в третьей-для перевернутых рациональных.

Целая часть коэффициентов лифтинговой схемы вейвлета Добеши 9/7 [2] находится в диапазоне [-1,0], поэтому для ее представления достаточно двух разрядов. Значения масштабирующих коэффициентов – положительны и меньше 1. Они могут быть представлены только дробной частью.

Двоичное представление рациональных и перевернутых рациональных коэффициентов лифтинг-архитектуры приведены в табл. 3, 4. Для иррациональных коэффициентов значения представлены в [6]. Числа записаны в прямом коде с фиксированной точкой. Старший бит соответствует знаку, следующий за ним бит – целой части, остальные биты – дробной части коэффициента.

Таблица 3. Двоичный код рациональных коэффициентов лифтинговой схемы Добеши

Кi	Д	во	ИV	H H	ая	¢	op	D M	а,	П	ря	М	DЙ	К	ΣД									
P 1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
U1	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
P 2	0	0	1	1	0	0	1	1	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0
U 2	0	0	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
K 0	0	0	1	1	0	0	1	1	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0
K1	0	1	0	1	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0
LS	0	1	0	1	1	0	1	0	1	0	0	0	0	0	1	0	0	1	1	1	1	0	0	1

Таблица 4. Двоичный код перевернутых рациональных коэффициентов лифтинговой схемы Добеши

Кi	Д	во	ИЧ	н	ая	¢	op	DМ	а,	П	ря	м	ŊЙ	К	οд									
P 1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
U1	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
P 2	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
U2	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
K 0	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
K 1	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
LS	0	1	0	1	1	0	1	0	1	0	0	0	0	0	1	0	0	1	1	1	1	0	0	1

Формула (2) была использована при вычислении среднего PSNR для трех видов коэффициентов Добеши, в зависимости от разрядности коэффициентов лифтинговой схемы (табл. 5).

Таблица 5. Сравнительный анализ коэффициентов Добеши для трех видов коэффициентов: иррациональных, рациональных, перевернутых рациональных

Nkoef	6	8	10	12	14	16	24	32
n	4	6	8	10	12	14	22	30
PSNR ир.	23,8	30	40,1	55,3	78,7	94,3	132	187
PSNR рац.	34,9	47,4	59,5	71,5	83,6	95,6	144	192
PSNR п. рац	48	48,1	75,1	69,3	64,5	64,5	64,7	64,7

Здесь параметр Nkoef соответствует общему числу битов для представления коэффициентов, п-размеру дробной части. Из полученных данных видно, что коэффициенты, имеющие дробную часть<6 для рациональных и перевернутых рациональных коэффициентов Добеши, а для иррациональных -<=6 [6], не позволяют сохранить хорошее качество изображе-

ния, поскольку для них значение PSNR меньше 30 dB. Для выполнения анализа выбираются коэффициенты с разрядностью 4, 6, 8, 10, 14, 16, 24 и 32 битов, с числом битов после запятой 6, 8, 10, 12, 14, 22 и 30 соответственно для рациональных и перевернутых рациональных коэффициентов Добеши. Анализ этих коэффициентов приведен в обобщенных табл. 6 (для рациональных коэффициентов) и табл. 7 (для перевернутых коэффициентов), где n- размер дробной части.

Таблица 6. Средняя граничная обобщенная зависимость PSNR (dB) от разрядности промежуточных (Ntemp) и конечных результатов (m) для рациональных коэффициентов лифтинга

	HH/LL/	HH/LL/
	HH/LL	HH/LL
	0/9/	31/40/
n	0/9	31/40
4	31,7193	34,941
6	44,194	47,422
8	45,618	59,47
10	46,186	71,509
12	46,171	83,551
14	46,171	95,592
22	46,171	143,176
30	46,136	193,91

Таблица 7. Средняя граничная обобщенная зависимость PSNR (dB) от разрядности промежуточных (Ntemp) и конечных результатов (m) для перевернутых рациональных коэффициентов лифтинга

	HH/LL/	HH/LL/
	HH/LL	HH/LL
		31/40/
n	0/9/0/9	31/40
4	45,846	47,636
6	46,068	47,666
8	47,883	74,656
10	48,204	68,921
12	48,31	64,05
14	48,31	64,05
22	48,301	64,227
30	48,301	64,228

Средние значения PSNR для различных возможных форматов [8] для рациональных коэффициентов Добеши представления данных приведены в табл. 8,9, где столбцы соответствуют разрядности низкочастотных результатов, а строки – низкочастотных. Средние значения PSNR для различных возможных форматов для перевернутых рациональных коэффициентов Добеши представления данных приведены в табл. 10,11, где столбцы соответствуют разрадности назкочастотных результатов, а строки – низкочастотных. Разрядность промежуточных данных принималась равной разрядности низкочастотного результата.

Weight_i =
$$(HH_i + LL_i + n_coef_i)/3$$

Параметр Weight позволяет одним значением определить сложность предлагаемой конфигурации. На рис. 6 представлена сравнительная зависимость веса Weight от PSNR при различных коэффициентах Добеши (иррациональных, рациональных и перевернутых рациональных). Значения оптимальных решений конфигураций арифметического устройства для выбранного качества PSNR представлены в табл. 14 и 15. Сранительная зависимость PSNR для трех коэффициентов представлена на рис. 6.

Рис. 6. Сравнительная зависимость разрядности арифметического блока от PSNR (перевернутые коэффициенты -k1, рациональные коэффициенты-k2 и иррациональные коэффициенты-k3)

Таблица	12.	Фрагмент	представления	обобщенных
ланны	х за	висимости	конфигурации	от качества

N⁰	PSNR	PSNR	HH	LL	n_coef	Weight
1	33,72	34	0	0	4	1,3333
2	33,69	34	2	0	4	2
3	33,694	34	7	0	4	3,6667
4	33,694	34	23	0	4	9
5	33,694	34	31	0	4	11,667
6	34,779	35	0	2	4	2
7	34,847	35	2	2	4	2,6667
8	34,837	35	7	2	4	4,3333
9	34,839	35	23	2	4	9,6667
10	34,839	35	31	2	4	12,333

Таблица 13. Фрагмент представления обобщенных данных зависимости конфигурации от качества

3.0	DOM	DOM	TITT	тт	C	W7 14
JN⊇	PSNR	P2NK	HН	LL	n_coef	weight
1	45,8456	46	0	0	4	1,333333
2	45,7465	46	2	0	4	2
3	45,845	46	7	0	4	3,666667
4	45,845	46	23	0	4	9
5	45,845	46	31	0	4	11,66667
6	47,43803	47	0	2	4	2
7	47,54237	48	2	2	4	2,666667
8	47,54707	48	7	2	4	4,333333
9	47,54707	48	23	2	4	9,666667
10	47,54707	48	31	2	4	12,33333

Таблица 8. Зависимость PSNR (dB) от разрядности промежуточных (Ntemp) и конечных результатов (m) для рациональных коэффициентов лифтинга с 4 битами после запятой

4	m/Ntemp											
HH/LL	0/9	2/11	7/16	23/32	31/40							
0/9	33,71973	34,77897	34,8463	34,8744	34,8744							
2/11	33,69003	34,84677	34,9071	34,937	34,937							
7/16	33,69407	34,8369	34,9113	34,941	34,941							
23/32	33,69437	34,8391	34,912	34,941	34,941							
31/40	33,69437	34,8391	34,912	34,941	34,941							

Таблица 9. Зависимость PSNR (dB) от разрядности промежуточных (Ntemp) и конечных результатов (m) для рациональных коэффициентов лифтинга с 30 битами после запятой

30	m/Ntemp											
HH/LL	0/9	2/11	7/16	23/32	31/40							
0/9	46,136	53,044	53,873	53,884	53,884							
2/11	46,083	59,227	65,677	65,772	65,772							
7/16	46,348	59,205	81,239	95,864	95,864							
23/32	46,351	59,235	81,807	186,17	189,89							
31/40	46,351	59,235	81,807	186,07	193,91							

Таблица 10. Зависимость PSNR (dB) от разрядности промежуточных (Ntemp) и конечных результатов (m) для превернутых рациональных коэффициентов лифтинга с 4 битами после запятой

Среднее значение								
4	m/Ntemp							
HH/LL	0/9	0/9 2/11 7/16 23/32 31/40						
0/9	45,846	47,438	47,638	47,528	47,528			
2/11	45,747	47,542	47,742	47,629	47,629			
7/16	45,845	47,547	47,749	47,636	47,636			
23/32	45,845	47,547	47,75	47,636	47,636			
31/40	45,845	47,547	47,75	47,636	47,636			

Таблица 11. Зависимость PSNR (dB) от разрядности промежуточных (Ntemp) и конечных результатов (m), для рациональных коэффициентов лифтинга с 30 битами после запятой

30	m/Ntemp						
HH/LL	0/9	2/11	7/16	23/32	31/40		
0/9	48,301	58,47	61,443	61,122	61,122		
2/11	48,136	59,625	64,588	63,931	63,931		
7/16	48,254	60,046	64,945	64,227	64,227		
23/32	48,254	59,6	64,938	64,228	64,228		
31/40	48,254	59,6	64,938	64,228	64,228		

Для получения оптимального решения полученные данные были занесены в таблицу, фрагменты которой представлены в табл. 12,13. В шапке таблицы: PSNR – значение пикового соотношения сигнал-шум из табл. 8,9; PSNR' – округленное до целой величины значение PSNR; НН и LL – число двоичных знаков после запятой для высокочастотного и низкочастотного результатов; n_coef – число двоичных знаков для коэффициентов лифтинга; Weight-вес, представляющий собой среднее значение битов для каждой конфигурации: Таблица 14. Оптимальная конфигурация арифметического блока для различных значений качества при перевернутых рациональных коэффициентах

PSNR'	HH	LL	n_coef	Weight
46	2	0	4	2
47	0	2	4	2
48	0	23	4	9
58	0	2	12	4,6667
59	0	2	10	4
60	23	2	12	12,333
61	23	2	10	11,667
62	2	2	8	4
63	0	23	10	11
64	2	23	12	12,333
65	2	7	22	10,333
68	2	23	10	11,667
69	7	23	10	13,333
70	23	7	10	13,333
71	2	7	8	5,6667
72	7	7	8	7,3333
75	7	23	8	12,667

Таблица 15. Оптимальная конфигурация арифметического блока для различных значений качества при рациональных коэффициентах

PSNR'	HH	LL	n_coef	Weight
34	0	0	4	1,333333
35	0	2	4	2
44	0	0	6	2
46	0	0	8	2,666667
47	2	2	6	3,333333
48	23	7	6	12
52	0	2	8	3,333333
53	0	2	12	4,666667
54	0	7	10	5,666667
56	2	2	8	4
58	2	7	8	5,666667
59	2	2	10	4,666667
65	2	7	10	6,333333
66	2	7	14	7,666667
71	7	23	10	13,33333
72	7	7	10	8
77	7	7	12	8,666667
78	23	7	12	14
81	7	7	22	12
82	7	7	14	9,333333
83	7	23	12	14
84	23	23	12	19,33333
92	7	23	14	14,66667
96	7	23	22	17,33333
144	23	23	22	22,66667
186	23	23	30	25,33333
190	23	31	30	28
194	31	31	30	30,66667

5. HDL-модель арифметического блока для DWT преобразования

Для аппаратной реализации арифметического блока DWT преобразования используется выполняемая структурная модель, реализованная в редакторе Simulink, входящем в пакет Matlab [14], схема которой представлена в работе [6]. Схема с рациональными коэффициентами и с перевернутыми рациональными имеет точно такой же вид, как и с рациональными имеет точно такой же вид, как и с рациональными. Отличается она внутренним содержанием блоков, где участвуют коэффициенты Добеши. Все блоки, составляющие схему, легко кодируются с помощью языков описания аппаратуры VHDL [16-19] и Verilog [16].

В качестве результатов практической реализации следует считать синтез цифрового устройства и его имплементацию в кристалл микросхемы FPGA Xilinx Virtex II[20 для различных конфигураций арифметического блока. Параметры проекта – размер полученного устройства в эквивалентных вентилях и максимальная рабочая частота – представлены в табл. 16 и 17. Как видно из этих таблиц, увеличение разрядности представления данных введет к увеличению размера и снижению максимальной рабочей частоты устройства.

Таблица 16. Зависимость размера арифметического блока и его максимальной рабочей частоты от разрядности операндов (рациональные коэффициенты)

PSNR'	LL	Nkoef	Size	ns	MHz
34	9	6	22186	7,455	134,138
35	11	6	22735	7,833	127,665
44	9	8	22186	7,649	130,736
46	9	10	22186	7,843	127,502
47	11	8	22741	8,027	124,58
48	16	8	23911	8,929	111,995
52	11	10	22741	8,221	121,64
53	11	14	26831	8,637	115,781
54	16	12	28037	9,317	107,331
56	11	10	22741	8,221	121,64
58	16	10	23911	9,123	109,613
59	11	12	26807	8,415	118,835
65	16	12	28037	23,589	42,3926
66	16	16	28175	9,705	103,04
71	32	12	57915	12,245	81,666
72	16	12	28037	24,723	40,4482
77	16	14	28061	9,511	105,141
78	16	14	28061	30,48	32,8084
81	16	24	41408	11,915	83,9278
82	16	16	28175	30,297	33,0066
83	32	14	58095	12,439	80,3923
84	32	14	58095	35,481	28,1841
92	32	16	58287	12,633	79,1578
96	32	24	85054	14,913	67,0556
144	32	24	85054	14,913	67,0556
186	32	32	76377	13,582	73,6269
190	40	32	94518	14,506	68,937
194	40	32	94518	14,506	68,937

Таблица 17. Зависимость размера арифметического блока и его максимальной рабочей частоты от разрядности операндов (перевернутые рациональные)

PSNR'	LL	Nkoef	Size	ns	MHz
46	9	6	30188	10,082	99,18667
47	11	6	30737	9,905	100,9591
48	32	6	73569	17,198	58,1463
58	11	14	38923	12,577	79,51022
59	11	12	38875	12,21	81,90008
60	11	14	38923	12,577	79,51022
61	11	12	38875	12,21	81,90008
62	11	10	38827	11,786	84,84643
63	32	12	74478	18,928	52,83178
64	32	14	74766	18,986	52,67039
65	16	24	88276	22,238	44,96807
68	32	12	74478	18,928	52,83178
69	32	12	74478	18,928	52,83178
70	16	12	40165	13,118	76,23113
71	16	10	40117	12,651	79,04513
72	16	10	40117	12,651	79,04513
75	32	10	74187	17,487	57,18534

Максимальную частоту (134 МГц) и минимальный размер схемы (22186 эквивалентных вентилей) при достаточном качестве изображения после преобразования PSNR=34 dB дает конфигурация с рациональным коэффициентами при N_{LL} = 9 (0 знаков после запятой) и Nkoef = 6 (4 знака после запятой).

Максимальную скорость (100,95 МГц) и минимальный размер схемы (30737 эквивалентных вентилей) при достаточном качестве изображения после преобразования (PSNR=47 dB) дает конфигурация с перевернутыми рациональными коэффициентами при N_{LL} = 11 (2 знака после запятой) и Nkoef = 6 (4 знака после запятой).

Частота устройства уменьшается при увеличении PSNR, а после PSNR=96 dB наблюдается значительное увеличение размера устройства, а к PSNR=194 dB частота уменьшается почти в 2 раза.

Дальнейший рост требований к качеству преобразования с рациональными коэффициентами приведет почти к пятиктратному увеличению размера устройства и к двоекратному увеличению скорости и частоты. С перевернутыми рациональными коэффициентами заметно,что при увеличении PSNR с 46 dB до 65 dB размер устройства увеличивается в 2,5 раза, а потом при увеличении PSNR до 75 dB размер опять увеличивается в 2,5 раза, при этом минимальная частота равняется 45 МГц при PSNR=65. После анализа табл. 16 и табл. 17 можно сделать таблицу, сравнивающую почти похожие значения PSNR (табл. 18). При анализе табл. 18 можно сделать вывод, что для этого метода реализации фильтра Добеши лучше подходят рациональные коэффициенты. Таблица 18. Зависимость размера арифметического блока и его максимальной рабочей частоты от разрядности операндов (иррациональные, рациональные, перевернутые рациональные)

	PSNR'	LL	Nkoef	Size	ns	MHz
Иррац	78	16	14	27695	21,374	46,7858
Рац	77	16	14	28061	9,511	105,141
Пер	74	16	10	40117	12,651	79,04

Таким образом, оптимальной конфигурацией аппаратной реализации двумерного DWT-преобразования Добеши 9/7 для стандарта сжатия изображений JPEG2000 является 6-битовое представление коэффициентов лифтинга и 9-битовое представление результатов вычисления.

6. Заключение

Научная новизна работы заключается в построении функциональной сравнительной зависимости (рациональных и рациональных коэффициентов) сохранения качества изображения от разрядности представления данных и результатов вычислении при выполнении двумерного DWT преобразования Добеши 9/7 для стандарта сжатия JPEG 2000.

Практическая значимость: 1) На основе проведенных вычислительных экспериментов предложена оптимальная конфигурация архитектуры с точки зрения <качество изображения – размер аппаратуры – максимальная частота устройства>. 2) При сравнении трёх типов коэффициентов Добеши вычислено, что самые лучшие показатели PSNR были выявлены у рациональных коэффициентов, которые при дробной части 6 позволяют сохранить хорошее качество изображения. Для тестирования и верификации DWT-модуля использовалась модель системного уровня, реализованная в программе Simulink.

Направления дальнейших исследований связаны с аппаратной реализацией устройства DWT преобразования в кристалле программируемой логики, полной верификацией HDL-модели, автоматическим генерированием управляющего блока для конвейерных архитектур DWT преобразователя. Также заметно увеличение частоты устройства. Для PSNR=34 dB частота 59 МГц при иррациональных коэффициентах, PSNR=30 dB частота 134 МГц при рациональных коэффициентах Добеши, PSNR=46 dB частота 99,18 МГц при перевернутых рациональных коэффициентах Добеши. При этом размер устройства уменьшается с 26141 эквивалентных вентилей (иррациональные) до 22186 эквивалентных вентилей (рациональные), а для перевернутых рациональных размер устройства увеличивается до 301888 эквивалентных вентилей.

Следует также отметить, что в будущем необходимо акцентировать усилия на определение функциональных отношений между триадой компонентов: <качество преобразования, быстродействие, аппаратурная сложность>. Нахождение функциональной экспериментальной зависимости может существенно упростить процесс создания новых преобразователей путем априорного отсечения неоптимальных решений с позиции критериев, упомянутых выше.

Литература: 1. I. Daubechies and W. Sweldens. Factoring wavelet transforms into lifting steps. Technical report. Bell Laboratories. Lucent Technologies. 1996. 368p. 2. DaubechiesI. and Sweldens W. Factoring wavelet transforms into lifting schemes. J. Fourier Anal. Appl. Vol. 4. 1998. P. 247-269. 3. Sweldens W. The lifting scheme: a new philosophy in biorthogonal wavelet construction. Proc. SPIE 2569 .1995. P. 68-79. 4. David S. Taubman, Michael W.Marcellin. JPEG2000: image compression fundamentals, standards and practice. Kluwer Academic Pulishers. 2002. 774 p. 5. Majid Rabbani, Rajan Joshi. An overview of the JPEG2000 still image compression standard. Signal Processing. Image Communication .2002. Р. 3-48. 6. Хаханова И.В.Оптимизация разрядности данных для заданного качества вейвлетпреобразования Добеши // АСУ и приборы автоматики. 7. ISO/IEC 15444-1. Information Technology-JPEG2000 Image Coding System-Part 1: Core Coding System. 2000. 211p. 8. ISO/ IEC 15444-2, Final Committee Draft, "Information Technology-JPEG2000 Image Coding System-Part 2: Extensions. 2000. 198p. 9. Huang C., Tseng P., and Chen L. Flipping structure: An effcient VLSI architecture for lifting-based discrete wavelet transform, in Proc. IEEE Asia-Pacifc Conf. Circuits and Systems. 2002. Vol. 1. P. 383–388. 10. Andra K., Chakrabarti C., Acharya T. A VLSI architecture for lifting-based forward and inverse wavelet transform - Signal Processing, IEEE Transactions on . Vol. 50 . Issue 4. 2002 . P. 966 - 977. 11. Barua S., Carletta J.E., Kotteri K.A., Bell A.E. An efficient architecture for lifting-based two-dimensional discrete wavelet transforms. INTEGRATION. The VLSI journal 38 (2005). P. 341-352. 12. Anagnostopoulos G.P., Spiliotopoulos V., Zervas N.D.,

УДК004.415.2

ИССЛЕДОВАНИЕ АРХИТЕКТУРЫ СЕРВИСНО-ОРИЕНТИРОВАННЫХ СИСТЕМ

ГОРБАЧЕВ В.А., ЕФАНОВ А.Ю.

Разрабатывается принцип оптимального функционального взаимодействия между компонентами сервисноориентированной системы, а также обеспечения эффективной и надежной работы всей компьютерной системы, построенной на базе технологий виртуализации и кластеризации. Оценивается эффективность использования технологий виртуализации, ее преимущества и недостатки.

Актуальность, новизна и цель работы

За последнее время развития компьютерных систем было разработано и испытано несколько перспективных технологий, которые могут быть использованы как для улучшения характеристик существующих систем, так и для устранения некоторых их недостатков. Среди недостатков существующих компьютерных систем можно отметить:

 Невысокие показатели стабильности работы, длительное время, требуемое для восстановления после сбоя, а также нерациональное и неэффективное использование оборудования. Andreopoulos Y., Goutis C.E. Evaluation of design alternatives for the 2-D discrete wavelet transform. IEEE Trans. Circuits Systems Video Technol. 11 (12). 2001. P. 1246-1262. 13. Tinku Acharya, Ping-Sing Tsai. JPEG2000 Standard for Image Compression. Concepts, Algorithms and VLSI Architectures . Wiley-Interscience publication. 2005. 292 p. 14. Kotteri K. A., Barua S., Bell A. E., and Carletta J. E. A comparision of hardware Implementations of the biorthogonal 9/7 DWT: Convolution Versus Lifting. IEEE Transactions 2002. Р. 756 - 767. 15. www.mathworks.com 16. Хаханов *В.И., Хаханова И.В.* VHDL + Verilog = Синтез за минуты. Харьков: СМИТ. 2007. 264 с. 17. Семенец В.В, Хаханова И.В., Хаханов В.И. Проектирование цифровых систем с использованием языка VHDL. Харьков: ХНУРЭ. 2003. 492 c. 18. Charles H. Roth, Jr. Digital Systems Design Using VHDL. Boston. PWS Publishing Company. 1998. 470 p. 19. Ashenden, Peter J. The designer's guide to VHDL. San Francisco. Calis. California. Morgan Kaufmann Publishers, Inc. 1996. 688 p. 20. Xilinx.com.

Поступила в редколлегию 30.11.2007

Рецензент: д-р техн. наук, проф. Кривуля Г.Ф.

Побеженко Ирина Александровна, ассистент Государственной академии культуры. Научные интересы: проектирование цифровых систем на кристаллах. Увлечения: английский язык, музыка. Адрес: Украина, 61166, Харьков, ул. Плехановская, 73-85 тел. 7374287. E-mail: irina_pob@ukr.net

Хаханова Ирина Витальевна, докторантка кафедры АПВТ ХНУРЭ. Научные интересы: проектирование цифровых систем на кристаллах. Увлечения: английский язык, музыка. Адрес: Украина, 61166, Харьков, пр. Ленина, 14, тел. 70-21-326. E-mail: hahanova@mail.ru

– Большие сложности в интеграции нескольких компьютерных систем между собой.

– Ограниченные возможности доступа к ресурсам системы с мобильных устройств.

- Низкая гибкость существующих систем.

Приведенные выше недостатки могут быть устранены при проектировании компьютерной системы на базе следующих технологий.

Виртуализация. В данном контексте виртуализация – это возможность запуска нескольких операционных систем (виртуальных машин) на одном физическом компьютере. Применение технологий виртуализации предоставляет возможность более эффективно использовать существующее оборудование, а также повысить общую гибкость компьютерной системы [1].

Кластеризация. Компьютерный кластер – это группа компьютеров, объединенных между собой и работающих вместе так, что представляют собой единый и унифицированный компьютерный ресурс. Технологии кластеризации позволяют повысить характеристики стабильности работы, а также снизить время, необходимое для восстановления после сбоя.

Сервисно-ориентированная архитектура (СОА). СОА – метод разработки программного обеспечения, базирующийся на использовании сервисов (служб). Приложения, разработанные с применением данной