u] =,

Poszenanymo zadauy edockonanenns 0a3068020 memooy
cuenapnozo ananizy QynxyionarvHux eumoz 0o ingopma-
uitinoi cucmemu (IC). Ilpoananizosamno pesyavmamu 00caio-
JceHb Memooié CUeHapHo20 ananizy QPYHKUIOHATbHUX SUMO2
0o IC. Tonosnum ix nedonixom 6u3nano HeooOXionicmo GuUKO-
HAHHS YUX Memooié aHANIMUKamu GUKAOUHO epyuny. /s
YCYHEHHST Ub020 HeO0JiKYy 3anponoHoeano 600CKOHANUMU
6a3zoeuii Memod cuenapnozo amanizy 3a pPaxymHox GuKopu-
cmanns modenei i mMemodis, 0CHOGAHUX HA PopmanvHOMY
npedcmasnenni 3HaHb.

Hns popmansnozo onucy npedcmagienns cuenapiro 6uKo-
HAHHA PYHKYIOHANLHOT 6UMOU HA PIBHI 3HAHb 3ANPONOHOBAHO
8UKOPUCMOBYE8AMU MOOET> CMPYKMYPHUX NAMMEPHIE NPOEK-
myeanns pynuxuionanvrux eumoz. Iloxazano, wo popmanvruil
onuc 3namnv, aKi eunyuaromocs 3 diazpam Use Case, € uacmxo-
eum eunaodxom 0anoi mooeui. 3anpononosano moodenv nioxkaa-
CY CMPYKMYypHUX nammepHie npoexmyeanns CyeHapiie euxo-
HAHHA QYHKUIOHATIGHUX BUMO?.

Po3poéreno edockonanenuil memoo cueHapHozo ananizy
Pynxuyionanvnux eumoe do IC. Cymv 60ockonanenns nonseae
Y eudinenni 3 nyoixauiii cuenapiie 6UKOHANHA PYHKUIOHAN-
HUX 6UMO2 3HAHL MA HACMYNHOMY AHANI3] 3HAHHS-OPIEHMO-
8aHUX ONUCIG UUX CUCHAPII6 3 MEMOI0 6UABIIEHHA 0YOII0IOUUX
00un THWUH CueHapiie 6UKOHAHHA PI3HUX QYHKUIOHATTLHUX
eumoe 0o IC. /Ina eusenenns ma ycynenns eunaoxie nodiomo-
20 OyON10BAHNA 3ANPONOHOBAHO BUKOPUCMOBYBEAMU B0OCKOHA-
JleHull Memoo cunme3sy 6apianmis OnuUcCie apximexmypu cmeo-
prosanoi IC.

Haegeodeno npuxnad anpobauii 600ckonanenozo memooy
cyeHapmnozo ananizy QYHKUIOHATbHUX 6UMOZ Ni0 4AC aHaTi3y
dynxuyionanvhux eumoez 00 npoexmy QynrxyionarbHozo mooy-
s Gesnexu npayi. Pesyaomamu anpooauyii niomeepdicyromo
docmogipHicmv 3anponoHo8an0z0 memooy.

3anpononoeanuii 800CKOHANEHUl MemO0 CUEHAPHOZ20
ananizy Qynxyionanrshux eumoz do IC dozsonse ompumamu
onucu apximexmypu cmeoptrosanoi IC na ocnosi 3nauno men-
woz0 o6csey inpopmauii npo Pynxuionanvui eumozu do uiei IC

Knouoei cnosa: pynxuionanvii 6umozu, memoo cueHapHo-
20 ananizy, odiazpama Use Case, 3nanns-opienmosana mooev,
onuc apximexmypu

u] =,

UDC 044.03; 658.11.05.06
DOI:10.15587,/1729-4061.2019.170351

IMPROVEMENT OF
THE METHOD OF
SCENARIO ANALYSIS
OF FUNCTIONAL
REQUIREMENTS TO
AN INFORMATION
SYSTEM

Mohammed Q. Mohammed
PhD, Senior Lecturer*

E-mail: mgmhf82@gmail.com

Saif Q. Muhamed

PhD, Senior Lecturer*

E-mail: saifkassimm@gmail.com

M. levlanov

Doctor of Technical Science,

Associate Professor**

E-mail: maksym.ievlanov@nure.ua

Z. Gazetdinova**

E-mail: zarinagazetdinova@gmail.com
*Department of

Information Technology and Business
University of Information Technology

and Communications

Al-Nidhal str., Baghdad, Irag, 00964
**Department of Information Control Systems
Kharkiv National University of Radio Electronics
Nauky ave., 14, Kharkiv, Ukraine, 61166

1. Introduction

Modern trends in the development of IT sector pay
special attention to reducing unproductive expenses of IT
projects. One way to reduce these costs is to maximally
accurately identify the content of an IT project during its
initiation and planning [1]. Solving this task is typically
considered as part of the work to build and analyze the re-
quirements of rightsholders to the created system [2].

A modern paradigm for describing and modeling system
requirements is based on the publication of the requirements
in the form of scripts to perform certain activities. An exam-
ple of the implementation of a given paradigm using visual
models of the Unified Modeling Language (UML) is a model
of the requirement provided by Microsoft Corporation [3].

However, the application of a given paradigm is com-
plicated when solving the tasks on a system requirements
analysis. Using a scenario approach to the description and
publication of requirements is seriously complicated while
defining the boundaries for a created or upgraded system. In
addition, the use of UML, and, in particular, the Use Case

diagrams for the description of scenarios for meeting the
requirements by rightsholders requires the development of
special models, methods, and information technologies to
formalize and automate the work on a requirements analysis.
Running an analysis of scenarios for meeting the require-
ments by rightsholders manually inevitably causes a high
risk of error going undetected. These errors can be caused
by an incorrect definition of the scenarios for implementing
individual requirements of rightsholders, as well as synthesis
of the descriptions of the system architecture without align-
ing the descriptions of scenarios for implementing individual
requirements to the functions of a given system.

The base method for scenario analysis of the rightshold-
ers’ requirements to a system was considered in [4] as a
sequence of the following stages.

Stage 1. Selection of a base scenario for a functional
requirement, which describes activities of the system that
occur most frequently regardless of the type of a request by
an actor and the conditions for implementing these queries.

Stage 2. Description of relationships among require-
ments based on the Use Case diagrams.

Stage 3. Identification of mutually exclusive require-
ments and decomposition of individual scenarios.

Stage 4. The formation of the resulting Use Case dia-
gram that describes the stated functional requirements to
a system and the transformation of a given diagram into a
numbered list of the functional requirements to the system.

This method’s implementation is based on the assump-
tion about a possibility to represent a rightsholder’s require-
ment in the form of a single basic scenario and a set of many
additional scenarios that extend the possibilities of the base
scenario for different situations in a subject area [4].

The base method for scenario analysis in IT projects
aimed at creating information systems (IS) is, at present,
implemented by analysts mostly manually. In this case,
Stages 1 and 2 are performed by analysts based on general
recommendations on the collection and publication of the
rightsholders’ requirements. Stages 3 and 4 are performed
by analysts with the use of methods for a visual analysis of
the Use Case diagrams, which describe the stated functional
requirements to the system. Such an organization of work
stems from the fact that existing CASE-tools for visual
modeling, as well as information technology to control re-
quirements, have no special functions to analyze the Use
Case diagrams. In addition, limited size of display screens
leads to inevitable exclusion of a large group of elements from
the resulting Use Case diagram from the analysts’ consider-
ation, particularly for cases that describe the architecture of
medium and large IS.

Therefore, it is a relevant task to automate the method
for analyzing the scenarios of fulfilling the rightsholders’ re-
quirements, which would make it possible to reduce the time
required to perform this analysis and to eliminate errors
caused by the analysts’ lack of attention.

2. Literature review and problem statement

An analysis reported in [5] shows that there is a growing
interest in scientific and applied research into the aspects of
application of models and methods for requirements engi-
neering. In this case, the field of requirements engineering
that addresses models and methods of requirements analysis,
as well as features of their practical application, is one of the
most important areas of such studies.

Modern research in the field of analysis of functional
requirements, and in particular scenario analysis, can be di-
vided into three main areas. One of these areas implies con-
sidering a scenario analysis as a special case of the general
methods for analysis of requirements based on formal models
and methods. In this area, one can note, as an example, re-
ported in [6], the representation of the process of establish-
ing requirements to data as a feedback control system with
a continuous optimization of the models of user behavior.
In [7], the behavior of users of the created system is proposed
to simulate using an apparatus of category theory, based on
which, by using graphics methods, a specialized declarative
language was constructed. Paper [8] proposes an algebraic
approach to the analysis of probabilistic models of software
performance.

However, the construction of tools based on the results
obtained in this field is difficult because of the high com-
plexity of formal models and methods for analysis of require-
ments to IS. Therefore, one should consider the two other

areas of research into the methods of requirements analysis
more promising.

The first of these areas implies the creation and modi-
fication of requirements analysis methods by using maxi-
mally easy-to-implement tools. Thus, paper [9] proposed to
reduce the number of errors in requirements by establishing
a special method of requirements analysis that helps bridge
the gap in communication between a customer and a de-
veloper. Article [10] suggests a method for identifying and
analyzing requirements to software development, based on
the joint participation of representatives of all stakeholders
in the IT project.

However, the results obtained in the framework of a giv-
en direction do not make it possible to solve the task on the
automated execution of a scenario analysis. In the best case,
the tools that are created based on such results enable the
automated execution of Stages 1 and 2 from the base method
of scenario analysis. In this case, the most complex Stages 3
and 4 from a given method, which are the main source of
errors, are excluded from researchers’ consideration.

The second area of research implies the development and
improvement of models and methods of requirements analy-
sis based on the identification and the formal description of
knowledge from unstructured and weakly-structured texts.
However, studying the application of such models and meth-
ods in requirements engineering makes it possible to draw
the following conclusions [11, 12]:

a) there is empirical evidence of the benefits of using
ontologies, knowledge-oriented models and methods in re-
quirements engineering specifically to reduce ambiguities,
inconsistencies. and incompleteness in requirements;

b) the process of requirements engineering in most stud-
ies is considered only partially;

c) at present, there is no any uniform style for modeling
the processes of requirements engineering based on ontolo-
gies, knowledge-oriented models and methods;

d) most research in this field relate only to functional
requirements;

e) there are no ontologies, knowledge-oriented models
and methods for requirements engineering, which would be
commonly used in the community of specialists in this field.

Currently, most studies in this direction focus on inves-
tigating particular improvements for base models and me-
thods [5]. Thus, paper [13] discusses the issues on compar-
ing and merging the elements of a system whose description
are published in the form of Use Case diagrams, Activity
diagrams, and data flow diagrams. Article [14] addresses
the issue of converting the publications on requirements by
rightsholders in an executable system model using behav-
ior models by applying the Activity and State diagrams of
UML. Solving the tasks on analyzing the requirements to
IS, the description of which employed the UML class dia-
grams, was considered by one of the authors of the current
article in [15]. However, the issues on the improvement of
models and methods for the analysis of scenarios for meeting
requirements in the form of the Use Case diagrams without
reference to the particular characteristics of subject areas,
have remained almost unexplored. Therefore, one can draw
a conclusion about the need to undertake specialized stud-
ies in the field of development of models and methods for
a scenario analysis of system requirements, based on the
knowledge-oriented models of requirements publications in
the form of the Use Case diagrams.

3. The aim and objectives of the study

The aim of this work is to improve the base method for
analyzing functional requirements to a created or modified
IS based on the knowledge-oriented models of scenarios for
meeting the rightsholders’ requirements. Results of such an
improvement should reduce the amount of time required to
run a scenario analysis of functional requirements to IS by
automating the implementation of a given method within the
framework of tools to manage requirements.

To accomplish the aim, the following tasks have been set:

—to adapt the models for representing functional re-
quirements to IS at the level of knowledge to patterns in
scenario description of functional requirements;

— to improve a method of scenario analysis of functional
requirements to IS based on the customized models.

4. Results of adaptation of models representing the
functional requirements to an information system

The models for representing the functional requirements
to IS at the knowledge level were considered in [16] as a
subclass of structural patterns in the design of functional
requirements. In a general case, this subclass takes the fol-
lowing form:

Pt
KIS = {Ptfristr’Ptif’Ptfrirel’Ptnetifr} =
={< Atn,Ateli f,,Ateli »oo<at,at, ..at, . >>,
< Atg,AtL,,J/,AL'e,J]J,< atg,at, at, ., >

e
< At_/rirelin ’ Ateli_/rirel ’ Atelf/rirelit ’

< atfrirelin ’ atelifrirel ’ atelﬁfrirelit >>,

< ati,ati,atv,atﬂﬂu >})

Here Ptf g is the model of a structural pattern for a
frame design; At, is the tuple of attributes that describe the
name of a frame; At,; - is the tuple of attributes that describe
an element of a frame (slot, interface, method); At,; s ;s the
tuple of attributes describing the type of a frame element; at,
is the attribute that identifies the name of the frame; at.; f-is
the attribute that identifies the frame’s element; at.; f (is the
attribute that identifies the type of an element in a frame; Pt
is the model of a structural pattern in the design of a frame’s
interface; At is the tuple of attributes describing the globally
unique identifier of the interface of the frame; At, i is the
tuple of attributes that describe an element in the interface of
a frame (slot, method); At.; iy is the tuple of attributes that
describes the type of an element in the frame’s interface; at, is
the attribute that identifies the globally unique identifier of a
frame’s interface; at,; jis the attribute that identifies an ele-
ment in the interface of a frame; at,; ;s (is the attribute that
identifies the type of an element in a frame’s interface; Pty o
is the model of a structural pattern in the design of relation-
ships between nodes in a network of frames; At/ o/ , is the
tuple of attributes describing the name of the relationship;
Ate fr reris the tuple of attributes describing the description
element of relation; Ate; fr s ¢ is the tuple of attributes de-
scribing the type of an element in the description of relation;
atfr rel nis the attribute that identifies the name of a relation-
ship; ates fr rer ¢ is the attribute that identifies the type of an
element in the description of relation; ate; f e ¢ is the attri-
bute that identifies the type of an element in the description

of relation; Ptnet fr is the model of a structural pattern in
the design of a network of frames; at! is the attribute that
identifies the name of the first frame that can participate
in forming a relationship (maybe not defined); at’ is the
attribute that identifies the name of the second frame,
which can participate in forming a relationship (maybe not
defined) [16].

It should be noted that some authors propose a different
set of elements to create the use case diagrams. However, in
most cases, a basic set of such elements includes [4]:

— elements that relate to the class “Actor”, which reflect
the roles of staff in relation to the system (or a business pro-
cess (BP));

— elements that relate to the class “Use Case” that reflect
BP in general, individual operations within BP or individual
functions of the developed IS;

— elements that relate to the class of “Interface” that
reflect the existing relations between the elements of type
Actor and elements of type Use Case;

— elements that relate to the class “Extends” that reflect
relationships between individual elements of the type Actor
or Use Case in cases when one of the elements is similar to
another, but carries a somewhat larger load;

— elements that relate to the class “Uses” that reflect
relations between individual elements of the type Use Case
in cases when one element is repeated more than once and
copying its description is undesirable for certain reasons.

It should also be noted that the Use Case diagrams are
purely of declarative character. Each element in a diagram,
regardless of its belonging to one of the above classes, de-
clares its existence, but does not make it possible to concret-
ize its implementation in the diagram. Thus, for example, the
existence in a diagram of an element from the class Extends,
relating two elements from the class Use Case, means that
the child element of Use Case is similar to the parent, but it
has some features missing in the parent element. It does not
follow, however, that a given element Extends will be abso-
lutely identical to a relationship of the type “Generalization”
in the UML class diagram.

This feature makes it possible to represent a Use Case
diagram elements as special cases of frames, whose de-
scription is defined by the pattern Pt/ . In this case, in
order to describe the relationships between the elements
of the diagram, it is inappropriate to use the descriptions
that are generated based on the pattern Pt ;. Then
any Use Case diagram can be represented as a separate
network of frames, the relations between which are ex-
clusively of a service nature and do not have their own
semantics. Such a network can be represented by the fol-
lowing expression

PtUseCase =< Pt

1 2
net _fr /risrr’< atn’atn 7atfr7reliid >>, (2)

where aty, 1 iq is the attribute that identifies the relation-
ship between two frames of the Use Case diagram.

The proposed formal description of the Use Case diagram
at the level of knowledge makes it possible to consider a
subclass of structural patterns for the design of scenarios to
implement functional requirements as a special case of the
subclass of structural patterns in the design of functional
requirements (1), K., < Kj. Then, in a general case, the
model of a subclass of structural patterns for the design of
scenarios for implementing functional requirements takes the
following form:

Pt - UseCase
KUSLCH\L - {Pt/ri.m Pt }

net _ fr

= {< Atn’Atelifr’Atelifr7L’< atn’ateli/r ’atelifrit >>,

< atrlnatfvat/rﬂud >} 3

The use of model (3) makes it possible to implement a
scenario analysis of a rightsholder’s requirements as a special
case of analysis of the stated functional requirements. In this
case, the implementation of a scenario analysis does not re-
quire a fundamental change in the elements of an appropriate
information technology, described in [17].

5. Results of improving the method for a scenario analysis
of functional requirements to an information system

Among the above discussed stages in a base method of
scenario analysis, the most time-consuming is Stage 4. A
given stage implies the formation of the resulting Use Case
diagram that describes the stated functional requirements
to a system. In this case, it is necessary to eliminate the
following cases of elements overlap in the resulting Use Case
diagram:

— overlapping individual Use Case diagrams that de-
scribe different requirements by rightsholders;

— overlapping individual frames of the resulting Use
Case diagram describing various elements in a given di-
agram.

In the description of a base scenario analysis, Stage 4
is recommended to run entirely by hand. In this case, the
search and elimination of overlapping fragments in as the
resulting Use Case diagram are recommended to carry out
based on the results from a visual analysis of this diagram.

The use of the proposed model of the subclass of struc-
tural patterns for designing the scenarios for implementing
functional requirements (3) can improve the method for
a scenario analysis by automating the implementation of
its individual stages. The improved method of scenario
analysis is proposed to be represented as a sequence of the
following stages.

Stage 1. Selection of a base scenario for a rightsholder’s
requirement, which describes activities of IS, repeated most
often, regardless of a query type from the actor and condi-
tions for fulfilling these queries.

Stage 2. Construction of a set {P,c.}i=1,...,n of publi-
cations of scenarios for meeting the requirements by right-
sholders based on the Use Case diagrams, where n is the
number of individual requirements by rightsholders.

Stage 3. Construction of a set {K],zu}ri=1,-..7n of rep-
resentations of scenarios for meeting the requirements by
rightsholders at the knowledge level based on model (3).

Stage 4. Identification of contradictory requirements by
fulfilling the method, described in [15], for analysis of indi-
vidual frames of representations of requirements for consis-
tency.

Stage 5. Automatic generation of variations for the re-
sulting Use Case diagram that describes the architecture of
IS as a set of the stated functional requirements to IS.

Stage 6. Selection of the rational description of IS archi-
tecture based on the results from comparative analysis of the
resulting Use Case diagrams, formed at Stage 5.

Stage 7. Convert the selected rational description of the
IS architecture into a numbered list of functional require-
ments to the system.

The methods for generating representations of scenarios
for meeting the rightsholders’ requirements at the level of
knowledge in a general case are similar to the methods de-
scribed in [18].

The greatest attention should be given to methods for
constructing the variants to the resulting Use Case dia-
gram. The application of these methods should lead to the
construction of descriptions of such an Use Case diagram
that would eliminate the identified cases of duplications and
describe the maximum number of scenarios for meeting the
rightsholders’ requirements. Thus, Stage 5 in the improved
method for scenario analysis is to considered as a sequence
of the following steps.

Step 5. 1. Implementation of the improved method for
synthesis of variants for descriptions of the architecture of a
created IS for the set of representations of scenarios for meet-
ing the rightsholders’ requirements at the level of knowledge.

Step 5. 2. Implementation of the modified method for syn-
thesis of variants of descriptions of the architecture of a creat-
ed IS for the variants of resulting representation of scenarios
for meeting the functional requirements to IS at the level of
knowledge, formed as a result of implementing Step 5. 1.

To perform these steps, it is proposed to use the improved
method for synthesis of the descriptions of architecture of a
created IS, proposed in [19]. In this case, the use of a given
method at Step 5. 1 will be slightly different from the use of
this same method at Step 5. 2. Let us consider these differ-
ences in more detail.

Application of the improved method for the synthesis
of variants of descriptions of architecture of a created IS
at Step 5. 1 is proposed to represent as a sequence of the
following stages.

Stage 1. Generate the initial variant for the description
of architecture of a created IS Arch,,,.

Step 1. 1. Determine the number of representations of
scenarios for meeting the rightsholders’ requirements at the
level of knowledge n.

Step 1. 2. Generate a set of descriptions of I'T-services

{IT,,,} by performing operation
Incm = Kll/seCase’ i: 1""’"'

Step 1.3. For the set {IT,,, }, formed at Step 1.2, con-
struct a matrix of architecture description Arch,, of the
following form:

Arch =
11([atm) 1 (1 acmy):1 (I acmy):1
= 0 f(fam,) 1 (Im) [AN CY)
0 0 (o (1T,)=t

Stage 2. Set the value for coefficient of repulsion 7 and

calculate a win function
/Z|I acm

Here S(IT,,) is the number of elements in a scenario
for meeting the j-th requirement by User to an IT-service;

; S(I
Profzt(m,) 2

(IT) aLm

W(T,) isthe number of unique elements in a given scenario;
|IT em 1 is the number of IT services in the examined variant
of an IS architecture description; 7 is the factor of repulsion,
defining the degree of permissible duplication of individual
requirements by an IT service user in a created IS (for IS
with a monolithic architecture, r=1, for IS with a modular
architecture, =2, for IS with a service-oriented architec-
ture, 7> 3).

Stage 3. Conduct synthesis of optimal and /or acceptable
variants of architecture description for a created IS.

Step 3. 1. Accept Profitya=Profit(ITycp,r), i=1, j=i+1.

Step 3. 2.1f t,(IT,,,)=1, exclude Ky, from IT,, and
include K/, in IT, . Otherwise, proceed to Step 3.7.

Step 3. 3. Calculate for the resulting variant of architec-
ture description the value for

s(r,,

“W(T,,)

n

Profit(IT,,,,r)= 2

arm arm °

Step 3. 4. It Profit(IT,em,7)>Profita., accept

t;IT,,)=t,(T,,)+t,T,,),

acm; acm;

t,T,,)=0, t,(IT,,)=0

(le u{m
for j=1,...,n,

J —
KUseCa:e - UaeCaae U KUseCase

and proceed to Step 3. 1.

Step 3. 5. 1f

Profit(IT,,,.r)e[Profit,,. —&Profit,,],
accept ¢;(IT,,,)=1.

Step3 6.1

Profit(IT,,,.r)<[Profit,, —&Profit,,],

accept ¢;(IT,,,)=0.
Step3 7. Acceptj=j+1, If j<n, proceed to Step 3. 2.
Step 3. 8. Accept i=i+1, j=j+1. If i<n, proceed to Step 3. 2.
Otherwise, finalize implementation of the method’s stage.
Stage 4. Exclude from consideration all variants of
architecture description for a created IS Arch,,,, regis-

ase’

tered at Stage 3, for which the following condition does
not hold
[Profit

Profit(IT,,,.r)e —&Profit

max max

Finalize implementation of the method.
Step 4. 1. Generate a variant of architecture description
for a created IS, including those IT, for which

acm;’

t.(IT,

acm;

)= 1.

Step 4.2. For each ¢,(IT,,,)=1 in matrix Arch,,, gen-
erate a variant of archltecture description for a created IS,
accepting during generation

K1

UseCase —

UK} T,, =2 and t,(IT,

acm;

Use Case UseCase ?) 0 .

Finalize implementation of the method.

As shown in [19], the application of the improved method
makes it possible to reduce the number of iterations in the
search for overlapping representations of scenarios for meet-
ing the rightsholders’ requirements.

The main difference in the application of the improved
method of synthesis of variants for architecture descrip-
tions of a created IS at Step 5. 2 is the construction of a set
{Kicuehi=1.,n from the representations of individual
frames of each architecture description for a created IS,
generated as a result of implementing Step 5. 1. For all other
aspects, application of a given method at Step 5. 2 is no dif-
ferent from the use of a given method at Step 5. 1.

6. Verification of elements from the improved method
of scenario analysis of functional requirements to an
information system

As noted above, the implementation of functions that
enable the automated execution of a scenario analysis would
not require radical changes to the elements of the appropriate
information technology aimed at generating and analyzing
the requirements described in [17]. Because model (3) model
is a special case of model (1), the fragment of data scheme
representing the description of data scheme in the technolo-
gy for an automated scenario analysis takes the form shown
in Fig. 1. This scheme omits some minor elements that do not
seriously change the essence of the proposed solution.

APP_DIAGRAMM.diagramm

APP_PROJECT functional_operations id_sc

id_functional_instance

case_red_version
case_red_name
diagramm_name

APP_INSTANCE.instance
id_el

el_name

operation_type_name

APP_DIAGRAMM.described_operations

id_functional_instance (FK)
id_sc (FK)

L

scenario_priority

APP_DIAGRAMM. diagramm_types
id_type

type_name

i—‘ id_req (FK)

full_name — .

| | id_type (FK)
| T ¥

| APP_PROJECT functional_operations_type

!—C id_req

APP_INSTANCE.External_entity

id_el (FK)
APP_INSTANCE.Instance_in_diagramm Lid type_el (FK)
id_sc (FK) T
id_el (FK)

APP_INSTANCE.role_kinds

id_type_el

type_el_name

Fig. 1. Diagram “essence — relationship” for a fragment of data scheme to store the descriptions of representations of
requirements to an information system

Consider the data scheme shown in Fig. 1 in more detail.
The essence APP. DIAGRAMM.diagramm describes the
names of visual models of IT services and CASE-tools em-
ployed for their generation. The essence APP. DIAGRAMM.
diagrammTypes describes the types of visual models of IT
services. The essence APP_PROJECT.functional opera-
tions describes individual functional operations for entering,
storing, processing, and generating the output data for an
IT-service and the IT-service that implements this service.
The essence APP_PROJECT.functional operations_types
describes the types of individual functional operations. The
essence APP_ DIAGRAMM.described_operations describes
evidences of descriptions of individual functional operations
in specific visual models of IT services. The unification of
frame descriptions of elements in the visual models of IT
Services is executed by the essence APP_INSTANCE.in-
stance. This essence describes the elements of both static and
behavioral visual models of IT services. The essence APP_IN-
STANCE.Instance _in_diagramm describes the evidence of
the existence of an element in specific visual models. The
essence APP_INSTANCE.role kinds describes the types of
elements in visual models. The essence APP_INSTANCE.
External essence describes the types of specific elements of
the visual models of IT services. For the essences considered,
Fig. 1 shows the required (denoted by solid line) and optional
(shown dashed) relationships of the type “one-to-many”.

To verify the improved method of scenario analysis, it
was decided to use an example, described in [15, 19], of de-
signing a functional module of safety at work (FM SW). The
User of IT services put forward the following requirements
to a given module:

a) “to implement the function to register information
on the enterprise and the processes (operations) executed
at a given enterprise, which, during their execution, might
negatively affect the employees at the enterprise through
a set of harmful industrial factors (HIF)” (first functional
requirement);

b) “to implement the function to register personnel data
(data on employees at the enterprise), minimally required for
making management decisions to ensure safety at work at
the enterprise” (second functional requirement);

¢) “to implement the function of compiling and keeping
a HIF handbook that act or can act during the execution of
individual processes or operations at the enterprise” (third
functional requirement);

d) “to implement the function of integrating the results of
observations of the effect of each HIF during the execution of
processes or individual operations at the enterprise” (fourth
functional requirement);

e) “to implement a function to forecast the impact exert-
ed by a set of HIF on the body of an employee performing a
separate process or operation at the enterprise” (fifth func-
tional requirement).

Using this example makes it possible to compare the
results of application of the improved method of scenario
analysis to those solutions, obtained earlier, based on more
detailed descriptions of functional requirements to FM SW.

When executing Stage 1 and Stage 2 of the improved
method of scenario analysis, we obtained publications of the
above functional requirements in the form of the Use Case
diagrams, shown in Fig. 2—6.

In Fig. 2-6, the following designations are used:
DCE - department of chief engineer; SWD — safety at work

department; DHR — department of human resources; HIF —
harmful industrial factor.

Reference data on
enterprise

Accounting of data
on processes at
enterprise

Database

Reference data on
operations at
enterprise processes
SWD

Fig. 2. Scenario for fulfilling the first functional requirement

Selection of data on
enterprise

DHR

Accounting of data
on enterprise’s
employees

SWD

Fig. 3. Scenario for fulfilling the second functional
requirement

Selection of
enterprise’s process

Selection of
operation at
enterpise’s process

SWD

Compeeling/keeping
HIF handbook

Fig. 4. Scenario for fulfilling the third functional requirement

When executing Stage 3, the knowledge is derived
from the Use Case diagrams shown in Fig. 2-6, and one
constructs a set {K} i) i=1..,5 of representations of
scenarios for meeting the rightsholders’ requirements at
the level of knowledge. This construction is performed by
entering data to the tables of a database whose scheme is

shown in Fig. 1.

Selection of
enterprise's process

Selection of
operation at
enterprise's process

SWD

Selection of HIF
from HIF handbook

Accounting for
results from
observing the
selected HIF

Fig. 5. Scenario for fulfilling the fourth functional
requirement

Selection of
data on
enterprise

Selection of
enterprise's
process

operation at
enterprise's
process
SWD|

election of employees
executing a process or
operation

Enter
parameters on

employees'
condition

Generation of
shift's
characteristics

Estimation of employees'
predicted condition

Enterprise management team

Fig. 6. Scenario for fulfilling the fifth
functional requirement

When executing Stage 4, one identifies conflicting re-
quirements. An example of a given type of analysis for indi-
vidual frames is discussed in detail in [15].

While executing Stage 5, the first to run is Step 5.1. Con-
sider the features of performing this step in detail.

When executing Stage 1 in the improved method of
synthesis of variants of architecture descriptions for a cre-
ated IS, one performs the following activities. As a result of
performing Step 1.1, one determines from the database table
APP DIAGRAMM.diagramm the number of representa-
tions of scenarios for meeting the rightsholders’ require-
ments at the knowledge level n=>5.

As aresult of performing Step 1.2, based on the complet-
ed database, one generates a set of descriptions of IT-services
{IT, '} by performing operation

acm;

IT, =K,

acm; UseCase? i= 1""’5'

As a result of performing Step 1. 3, one constructs, for
the set {IT,, }, generated at Step 1.2, in accordance with
expression (4), a matrix of architecture description Arch,,,
of FM SW in the following form:

11111
01 111

Arch,,,=|0 0 1 1 1 (5)
00011
00001

Matrix (5) is the initial variant of architecture descrip-
tion for a created IS Arch,, . A given variant implies the
implementation of each considered requirement by the IT
services User using a separate function of FM SW. In this
case, the matrix (5) elements, residing above the main diag-
onal, that are equal to 1, show a possibility, when executing
Stage 3, to merge individual requirements by the customer
of IT services to identify the overlapping requirements to
FM SW. The matrix (5) elements that reside under the main
diagonal elements, which are equal to 0, will be used when
executing Stage 3 to exclude the repeated execution of steps
at Stage 3 to identify the overlapping requirements by the
User of IT services.

The result of implementation of Stage 2 is the established
value for repulsion coefficient 7=2 and the calculated value
for a win function

, s s(1m,,)
Profit(IT,,,2)= Zm ><|ITm]
J= acm;

5
Y|,
j=1

The calculation results are given in Table 1.

Table 1
Result of implementing Stage 2 of the improved method
for synthesizing variants of architecture descriptions for a
created information system

Scenario Scenario reprﬁ- Scenario value | Scenario value
sentation at the
SUT wWJ{T
number knowledge level (Tocn,) L)
1 {Ki'swm } 15 15
2 {Kocuse) 10 10
3 {KlslseCaxe} 11 1 1
4 {K cuse) 14 14
5 {KgsﬂCase} 23 23
Result of calculation of function Profit(IT,,,,r)
\ITW, =5 r=2 Profit(IT,,,,r)=0,0744

Table 1 shows for each scenario of meeting the require-
ment by an [T-services User the number of elements within
a given scenario S(IT,), as well as the number of unique

acm;

elements within a given scenario W(T,,,). In addition,
Table 1 gives the number of IT services “for the examined
variant of architecture description for FM SW |IT and
the value for repulsion coefficient 7. These data were used to
calculate the value for function Profit(IT,,,,r), the result of
which is also given in Table 1. This result characterizes the
level of overlapping requirements by an IT-services User in
the variant of architecture description of FM SW, proposed
as a result of the implementation of Stage 2. When executing
Stage 3, the result of the calculation of value for function
Pr ofzt("ol), shown in the Table 1, is used to quantify the
overlapping requirements by an IT-services User.

When executing Stage 3 of the improved method for
synthesizing the variants of architecture descriptions for a
created IS, we conducted an iterative search for overlapping
scenarios. Let us consider the features in performing these
iterations using an example of the first iteration of Stage 3
implementation.

When executing Step 3.1 at the first iteration, the value
for function Profzt(v)=0,0744, computed when exe-
cuting Stage 2, is accepted as the maximum. In addition, we
set the values for variables i=1, j=2.

When implementing Step 3. 2 at the first iteration, as
a result of checking the value for an element in the matrix
description of the base architecture for i=1, j=2, it was estab-
lished that ¢,,(IT,,,,)=1.

When executing Step 3.3 at the first iteration one calcu-
lates the value for function Profit(IT,,,,2) in order to verify
the assumption on the duplication of the first and second
scenarios:

25 11 14 23
0+ g7 2+ g2 T g2
Profzt(-): =

5
_ 0.094+0.091J5rO.071+0.043 —0.0598. (6)

When implementing Step 3. 4 at the first iteration the
condition that is checked, 0.0598>0.0744, does not hold.
When implementing Step 3. 5 at the first stage one forms

the upper and lower values for range Profit,, =0.0744 and
e=0,1xProfit,, —0,1x0,0744=0,00744, 7N
Profit,, —€=0.0744-0.00744 = 0.06696, ®)

respectively. The checked condition for the inclusion of ex-
pression (6) into the predefined range does not hold.

When implementing Step 3.6 at the first iteration the
checked condition 0.0598<0.06696 holds. This means that
the proposed variant of architecture description for FM SW
is worse than the initial one. To exclude it from further con-
sideration we adopt ¢,,(IT,,,) =0, and matrix (5) is reduced
to the following form:

101 11
01 1 1 1
Arch ,,,=[0 0 1 1 1)
000 11
00001

When implementing Step 3.7 at the first iteration one ac-
cepts the value for variable j=2+1=3. Since 3<5, we finalize
implementation of the iteration and return to Step 3.2.

All subsequent iterations of Stage 3 in the improved
method for synthesizing the variants of architecture descrip-
tions for a created IS are performed similarly.

When implementing the eighth iteration of Stage 3 we
found the new maximum value for function Profit(IT,,,2).
Results from this iteration are given in Table 2.

Table 2

Result of executing the eighth iteration of Stage 3 in the
method of scenario analysis of functional requirements

Scenario Scenayio TEPre- | Scenario value | Scenario value
e P A N
1 {Kwcuse) 15 15
2 {K) 10 10
3 {2} - _
4 {K ecuser Kiracuse) 25 17
5 {K e} 23 23
Result of calculation of function Profit(IT,,,,r)
[T, |=5 r=2 Profit(IT,,,,r)=0,0766

The matrix description of the architecture, taking into
consideration the found duplication of the third and fourth
scenarios, took the following form:

10000
01000

Arch=|0 0 0 0 0 (10)
000 21
0000 1

The found variant of the architecture description is the
only and final result of implementing Stage 3 of the improved
method for synthesizing the variants of architecture descrip-
tions for a created IS.

When implementing Step 4.1 of the improved method for
synthesizing the variants of architecture descriptions for a
created IS one generates a variant of the description of the
architecture for a created FM SW. In this scenario, the first,
second and fourth functions of FM SW fulfill, respectively,
the first, second and fifth requirement by a rightsholder.
The third function of FM SW meets the third and fourth
requirements by a rightsholder. The Use Case diagram for
the scenario of meeting the third function of FM SW is
shown in Fig. 7.

When implementing Step 4.2 it was revealed that none

;(T,,,)=1 was found in the resulting matrix Arch,,
Therefore, the set of publications of scenarios for fulfilling
the functions of FM SW, shown in Fig. 2, 3, 6, 7, is adopted
as the resulting variant of the architecture description for
a created FM SW. Application of the improved method for
synthesizing the variants of architecture descriptions for a
created IS is over at Step 5.1.

Selection of
enterprise's process

Selection of
operation at
enterprise's process

SWD
Compiling/Keeping a
HIF handbook

Selection of HIF
from HIF handbook

Accounting the
results from
observing the
selected HIF

Fig. 7. The Use Case diagram for the scenario of fulfilling the
third function in the functional module of safety at work

When implementing Step 5.2 one forms the resulting Use
Case diagram of FM SW and applies the improved method
for synthesizing the variants of architecture descriptions for
a created IS for the following case

ITatm = {K 1’seCase} U {Kl‘z/seCase} U {KsseCase ’ Kf’seCase} U {KlslseCase }

Based on the results of application of the method we re-
vealed and eliminated the duplication of frames, describing
actors “CBT” and “Database”, cases “Selection of data on an
enterprise”, “Selection of enterprise’s process”, “Selection of op-
eration at enterprise’s process”, as well as respective interfaces.

When implementing Stage 6 we confirmed the choice
of the constructed resulting Use Case diagram as the only
variant for architecture description of FM SW.

When implementing Stage 7 we confirmed the selection
of four main functions for a created FM SW in accordance
with the results obtained during the execution of Step 5.1
(see the description of executing Step 4.1 of the improved
method for synthesizing the variants of architecture descrip-
tions for a created 1S).

To validate a possibility to apply the results that have
been described in the current study we compared the fol-
lowing:

a) the proposed improved method for scenario analysis of
functional requirements;

b) the improved method for synthesizing the variants of
architecture descriptions for a created IS reported in [19].

In this case, it was considered that the description of
scenarios for fulfilling functional requirements is less de-
tailed than the one used in [19] that describes functional
requirements as sets of business classes and relationships
between them.

When validating the improved method of scenario analy-
sis, we revealed the duplication of scenarios for fulfilling the
third and fourth functional requirements.

The description of the architecture for FM SW, based on
the results of validation of the improved method for scenario
analysis, corresponds to one of the two descriptions of archi-
tecture, formed as a result of the application of the improved
method for synthesizing the variants of architecture descrip-
tions for a created IS. It should be noted that application of
the improved method for scenario analysis has not produced
the descriptions of architecture for FM SW that would differ
from those proposed in [19].

Consequently, the application of the improved method
of scenario analysis makes it possible to find acceptable de-
scriptions of IS architecture based on the significantly less
detailed descriptions of the stated functional requirements.
This will reduce the amount of time spent on the construc-
tion and analysis of functional requirements to IS, through
the identification of overlapping requirements by rightshold-
ers at the early stages of IS creation.

7. Discussion of the results of improving the model
and the method of scenario analysis of functional
requirements to an information system

In the course of the study, the following results were
obtained for solving the stated tasks:

a) we have constructed a model of the subclass of struc-
tural patterns for designing the scenarios for the implemen-
tation of, functional requirements (3);

b) we have improved a method of scenario analysis of
functional requirements to IS.

The model of the subclass of structural patterns for the
design of scenarios for implementing functional require-
ments (3) was obtained by adapting the previously devel-
oped model of structural patterns for designing functional
requirements (1) to features in the publication of scenarios
for fulfilling functional requirements to IS in the form of the
Use Case diagrams. Therefore, model (3) is a set of tuples
that describe a Use Case diagram as a network of frames the
relations between which in a given particular case bear no se-
mantic load. Such a representation of patterns for designing
scenarios for the implementation of functional requirements
makes it possible to maximally separate the description of
knowledge acquired from publications of functional require-
ments from the specific features of IS subject domains.

A given model is the base for the construction of a data-
base (Fig. 1) for storing the knowledge, acquired from the
Use Case diagrams, about scenarios for fulfilling individual
functional requirements to IS. This should be considered the
main advantage of model (3), since it makes it possible to im-
plement this model and any methods based on it as a separate
service in a scenario analysis of functional requirements to
IS that would extend the possibilities of existing information
technologies for the creation, analysis, and management of
requirements to IS. An example of integrating a similar mod-
ule by converting XML documents that describe the visual
models of requirements to IS into a set of records in the da-
tabase, storing the knowledge acquired from the functional
requirements, can be found in [17].

It should also be noted that the proposed model of the
subclass of structural patterns for designing the scenarios
for fulfilling functional requirements (3), in contrast to the
alternative techniques for solving the task of research, con-
sidered in chapter 2, was developed by using the maximally
simple mathematical apparatus and does not require con-

ducting a scenario analysis to expand the Use Case diagrams
with additional visual models.

Model (3) underlies the improved method of scenario
analysis of functional requirements to IS. The essence of a
given method is the automatic identification of overlapping
scenarios for fulfilling functional requirements to IS and
their individual frames (actors, cases, interfaces), as well as
the automated synthesis of the resulting Use Case diagram
describing the architecture for a created IS. These improve-
ments have become possible due to the adaptation of the im-
proved method for synthesizing the variants of architecture
descriptions for a created IS to the peculiarities of the formal
representation of about scenarios for fulfilling functional
requirements. The result of these improvements is the signif-
icant decrease in the proportion of manual labor by analysts
in the analysis of a set of the Use Case diagrams describing
individual functional requirements, as well as in the syn-
thesis of the resulting Use Case diagram. Owing to the use
of model (3), the specificity of subject areas for created IS
have almost no effect on the implementation of the improved
method of scenario analysis of functional requirements.

A given method can be implemented as a set of SQL
queries to the database constructed based on model (3). The
result of such an implementation of a given method would be
the materialized representation that stores data about the
variants of description of the architecture for a created IS
considering the remote overlapping functional requirements
to this system.

However, the model and method proposed in the cur-
rent study have certain flaws. The main drawback, limiting
the application of the results obtained is the focus of the
improved method of scenario analysis of functional require-
ments mainly on the analysis of symbol-based descriptions
of individual elements in the Use Case diagrams. A given
feature of model (3) and the improved method of scenario
analysis of functional requirements requires that analysts
should pay special attention to correct spelling of the
names of elements that are repeated in different Use Case
diagrams.

The results obtained define the need for the further
research in this field. The purpose of the current study is
to develop the models, methods, and technologies for the
automated refinement of descriptions for the constructed
functional requirements. One of the most promising ways
of achieving a given goal, in our opinion, is the automated
generation and subsequent refinement of descriptions of
business classes for a functional requirement, based on the
names for individual cases in the scenario for fulfilling a
given requirement.

The further research in this field will inevitably require
solving such tasks as the issues of homonymy and synonymy

of terms in the descriptions of a subject area, requirements
to IS, and IS functions. One of the simplest ways to address
these issues is that an IT company should compile and
update specialized dictionaries of terms using which could
specify the publication of requirements to IS. However, the
effectiveness of a given technique is low, which necessitates
further research in this field.

8. Conclusions

1. We have adapted the formal representation of patterns
for designing requirements to IS at the level of knowledge
in terms of the features in the description of scenarios for
fulfilling functional requirements by rightsholders in the
form of the Use Case diagrams. It is shown that the Use Case
diagram elements can be formally described as special cases
of frames, the relationships between which have no their
own semantics. Based on this feature, we have constructed
a model of the subclass of structural patterns for designing
scenarios for the implementation of functional requirements.
A given model establishes the rules and semantics for the
Use Case diagrams and their elements and enables the auto-
mated execution of a scenario analysis of the rightsholders’
requirements using the previously developed elements of
information technology.

2. We have suggested an improvement to the method of
scenario analysis of functional requirements, which makes
it possible to automate its most labor-intensive stages. In
contrast to the base method, the improved method of sce-
nario analysis makes it possible to automatically detect the
overlapping scenarios and their individual frames (actors,
cases, interfaces). In this case, the identification of overlaps
is carried out both for individual scenarios and for the re-
sulting Use Case diagram. A given advantage was achieved
by selecting and subsequent processing of knowledge about
scenarios for the fulfillment of requirements. We have veri-
fied the improved method of scenario analysis of functional
requirements to IS based on the analysis of functional
requirements to FM SW. In the course of verification, the
duplication of scenarios for fulfilling the third and fourth
functional requirements was revealed. In addition, we sub-
sequently found the duplication of individual elements in the
resulting Use Case diagram, which is a description of the ar-
chitecture of FM. The results from comparing the proposed
method to the previously constructed improved method for
synthesizing the variants of architecture description for a
created IS show that the proposed method makes it possible
to find the acceptable descriptions of IS architecture based
on the considerably less detailed descriptions of the statedd
functional requirements.

References

1. Rukovodstvo k svodu znaniy po upravleniyu proektami (Rukovodstvo PMBOK). 5-oe izd. Newton Square: Project Management

Institute, Inc., 2013. 586 p.

2. GOST R 57193-2016. Systems and software engineering. System life cycle processes (ISO/IEC/IEEE 15288:2015, NEQ). Moscow:

Standartinform, 2016. 98 p.

3. Modelirovanie trebovaniy pol'zovateley. URL: https://docs.microsoft.com/ru-ru/visualstudio/modeling/model-user-require-

ments?view=vs-2015

4. Kobern A. Sovremennye metody opisaniya funktsional'nyh trebovaniy k sistemam. Moscow: Lori, 2002. 288 p.

5. Empirical research in requirements engineering: trends and opportunities / Ambreen T., Ikram N., Usman M., Niazi M. // Require-
ments Engineering. 2018. Vol. 23, Issue 1. P. 63-95. doi: https://doi.org/10.1007 /s00766-016-0258-2

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Requirements cybernetics: Elicitation based on user behavioral data / Liu L., Zhou Q., Liu J., Cao Z. // Journal of Systems and
Software. 2017. Vol. 124. P. 187-194. doi: https://doi.org/10.1016/j.jss.2015.12.030

Asteasuain E, Braberman V. Declaratively building behavior by means of scenario clauses // Requirements Engineering. 2017.
Vol. 22, Tssue 2. P. 239-274. doi: https://doi.org/10.1007 /s00766-015-0242-2

Yu Y.-J., Liu C. Little Model in Big Data: An Algebraic Approach to Analysing Abstract Software Behaviours // Ruan Jian Xue Bao/
Journal of Software. 2017. Vol. 28, Tssue 6. P. 1488—1497. doi: http://doi.org/10.13328 /j.cnki.jos.005229

Stowell E, Cooray S. The Appreciative System, Learning And Its Impact Upon Is Design // Communications of the Association for
Information Systems. 2017. Vol. 40. P. 93—119. doi: https://doi.org/10.17705/1cais.04006

AliN,, Lai R. A method of requirements elicitation and analysis for Global Software Development // Journal of Software: Evolution
and Process. 2017. Vol. 29, Tssue 4. P. ¢1830. doi: https://doi.org/10.1002/smr.1830

Applications of ontologies in requirements engineering: a systematic review of the literature / Dermeval D., Vilela J., Bittencourt I. T,
Castro J., Isotani S., Brito P, Silva A. // Requirements Engineering. 2016. Vol. 21, Issue 4. P. 405—437. doi: https://doi.org/10.1007 /
s00766-015-0222-6

Serna M. E., Bachiller S. O., Serna A. A. Knowledge meaning and management in requirements engineering // International Journal
of Information Management. 2017. Vol. 37, Tssue 3. P. 115—161. doi: https://doi.org/10.1016/j.ijinfomgt.2017.01.005

Kaiya H., Adachi K., Chubachi Y. Requirements Exploration by Comparing and Combining Models of Different Information Sys-
tems // Knowledge-Based Software Engineering: 2018. 2019. P. 64—74. doi: https://doi.org/10.1007 /978-3-319-97679-2_7
Execution of natural language requirements using State Machines synthesised from Behavior Trees / Kim S.-K., Myers T., Wend-
land M.-F, Lindsay P. A. // Journal of Systems and Software. 2012. Vol. 85, Issue 11. P. 2652-2664. doi: https://doi.org/10.1016/j.
j$s.2012.06.013

Tevlanov M., Vasiltcova N., Panforova I. Development of methods for the analysis of functional requirements to an information
system for consistency and illogicality // Eastern-European Journal of Enterprise Technologies. 2018. Vol. 1, Issue 2 (91). P. 4—11.
doi: https://doi.org/10.15587/1729-4061.2018.121849

Levykin V., Ievlanov M., Neumyvakina O. Developing the models of patterns in the design of requirements to an information system
at the knowledge level // Eastern-European Journal of Enterprise Technologies. 2017. Vol. 5, Issue 2 (89). P. 19-26. doi: https://
doi.org/10.15587,/1729-4061.2017.110586

Levykin V. M., Evlanov M. V,, Kernosov M. A. Patterny proektirovaniya trebovaniy k informatsionnym sistemam: modelirovanie i
primenenie: monografiya. Kharkiv: OO0 «Kompaniya «Smit», 2014. 320 p.

Tevlanov M. Methods of presenting formulated requirements to the information system at the level of knowledge // Eastern-Euro-
pean Journal of Enterprise Technologies. 2015. Vol. 4, Issue 3 (76). P. 4—11. doi: https://doi.org/10.15587 /1729-4061.2015.47535
Yevlanov M. V. Improved method for synthesizing variants of description of the architecture of the created information system //
Management Information System and Devices. 2018. Issue 175. P. 32-41.

