ОЦЕНИВАНИЕ НЕОПРЕДЕЛЕННОСТИ ИЗМЕРЕНИЙ МЕТОДОМ ЭКСЦЕССОВ ПРИ КАЛИБРОВКЕ МИКРОМЕТРА ГЛАДКОГО

Захаров И.П., Боцюра О.А., Цыбина И.Ю.

Харьковский национальный университет радиоэлектроники newzip@ukr.net

Рассмотрена процедура оценивания неопределенности измерений при калибровке микрометра гладкого методом эксцессов [1]. Отклонение Δ показаний l_c микрометра от длины l_s эталонной концевой меры длины (КМД) составляет:

$$\Delta = (l_c + \Delta_c + \Delta_{\text{map}} + \Delta_{\text{map}}) - l_s + \alpha l_s \Delta_t$$

где: Δ_c — поправка, учитывающая разрешающую возможность калибруемого микрометра; $\Delta_{\rm пл}$, $\Delta_{\rm пар}$ — поправки на неплоскостность и непараллельность измерительных поверхностей микрометра, соответственно; Δ_t — поправка, учитывающая разность температуры КМД и калибруемого микрометра; α =11,5·10⁻⁶ K⁻¹ — средний коэффициент теплового расширения материалов микрометра и КМД. Значения x_j входных величин X_j , их стандартные неопределенности u_j и эксцессы их распределений η_j приведены в таблице.

Бюджет неопределенности измерений

Таблица

X_{j}	x_j , MM	u_{j}	η_j	c_{j}	$u_j(y)$, mkm
l_c	15,3606	0,302 мкм	1,2	1	0,302372
Δ_c	0	0,289 мкм	-1,2	1	0,288675
$\Delta_{ ext{nap}}$	0	0,866 мкм	-1,2	1	0,866025
$\Delta_{_{\Pi \Pi}}$	0	0,346 мкм	-1,2	1	0,34641
l_s	15,36	0,15 мкм	0	-1	-0,15
Δ_{t}	0	1,115 °C	-1,2	0,00018	0,2007
Y	У	u(y)	η	k	U
Δ	0,6 мкм	1,052 мкм	-0,56	1,88	1,98 мкм

В таблице также представлены коэффициенты чувствительности c_j , вклады неопределенности входных величин в измеряемую $u_j(y)$, значение измеряемой величины y, ее стандартная неопределенность u(y), эксцесс измеряемой величины η , коэффициент охвата k и расширенная неопределенность U.

Проводилось валидация предлагаемой процедуры методом Монте-Карло [2], показавшая полное совпадение результатов, полученных разными методами.

Список литературы

- 1. Zakharov, I.P., Botsyura, O.A. Calculation of Expanded Uncertainty in Measurements Using the Kurtosis Method when Implementing a Bayesian Approach // Measurement Techniques, 2019, Volume: 62, Issue: 4, pp. 327-331.
- 2. Zakharov I.P., Vodotyka S.V. Application of Monte Carlo simulation for the evaluation of measurements uncertainty // Metrology and Measurement Systems, 2008, Vol. XV, № 1. pp. 118-123.