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Ab stract . The article considers the stationary problem 

of viscous incompressible fluid flow past a cylindrical body. 

For solving the problem it is proposed a numerical method, 

based on the joint use of R-functions method and the Galerkin 

method. The computational experiment has been conducted for 

the task of flow past square cylinder for different Reynolds 

numbers. 
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INTRODUCTION 

Recently, mathematical modeling and 

numerical analysis are increasingly used to study 

the dynamics of a viscous fluid. The necessity to 

simulate viscous flows occurs, for example, in 

fluid dynamics, thermal power, chemical kinetics, 

biomedicine, radio electronics, etc. [2-4, 11, 20].  

The Navier-Stokes equations [12, 16, 17], 

describing such problems, have a number of 

specific features, such as nonlinearity and the 

presence of a small parameter at the highest 

derivative (the value is inverse to the Reynolds 

number). Furthermore, they often have to be 

solved in the areas of complicated geometry. When 

solving the exterior problems, the area under 

consideration may also be unlimited, but in the 

numerical solution it is modeled as a finite domain. 

It complicates the implementation of boundary 

conditions at infinity. Moreover, conditions at 

infinity are being demolished on certain contour, 

located far enough away from the streamlined 

body, which leads to additional errors in the 

approximate solution. 

There is an extensive class of flows in which 

the nonlinear terms can be neglected to obtain the 

linear problem. The complete neglect of the inertial 

terms leads to the so-called equations of creeping 

flows or Stokes equations [5,11,13]. But there is no 

solution of the Stokes equations (Stokes paradox 

[5,11,25,26]) for the problem of unbounded 

viscous incompressible fluid flow past a cylindrical 

body. In this case, the Oseen approximation should 

be used [1,11,25]. 

When solving the hydrodynamics problems, 

the adequate consideration of the area geometry is 

important. It is implemented in a variety of 

computational methods with different degrees of 

effectiveness. The constructive apparatus of the R-

functions theory of V.L. Rvachev [9,22-24], 

Ukraine National Academy of Science 

academician, allows to take into account the 

geometry of the area accurately and satisfy the 

boundary conditions of the problem precisely. The 

R-functions method in hydrodynamics problems 

was used by Kolosova S.V., Suvorova I.G., 

Maksimenko-Sheiko K.V.,  Sidorov M.V., but the 

problems of calculating the ideal fluid flows [6] 
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and the viscous fluid flows in limited areas [8,28-

30] or in the presence of helical symmetry [18] 

were considered.  

The problems of external viscous fluid flows 

around bodies using the R-functions method were 

discussed in [7,13-15]. In [13] the problem of 

calculating the external slow viscous 

incompressible fluid flows past bodies in spherical 

and cylindrical coordinate systems was studied. For 

solving the nonlinear stationary problem of the 

viscous incompressible fluid flow past the cylindrical 

body in a cylindrical coordinate system, the paper 

[14] proposed a numerical method, based on the joint 

use of the R-functions method, the successive 

approximation method and the Galerkin-Petrov 

method. In [7] the application of the R-functions 

method, the successive approximation and the 

Galerkin-Petrov methods to the calculation of 

axisymmetric viscous incompressible fluid flows (the 

flowing around the finite bodies of rotation) was 

considered. In [15] the problem of mass transfer of 

the body of revolution with uniform translational 

flow was considered. 

The purpose of this research is to apply the R-

functions method and the Galerkin method for 

mathematical modeling of the linear and nonlinear 

stationary problem of viscous incompressible fluid 

flow past the cylindrical body in a rectangular 

coordinate system. 

 

 

PROBLEM STATEMENT 

 

Problem 1. Let us consider the problem of 

slow uniform viscous incompressible fluid flow 

with velocity U  past a cylindrical body, the 

cross-section of which is a finite region   with 

piecewise continuous boundary   [1,11,19]: 
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n  is external normal to the . 

Problem 2. Consider the nonlinear stationary 

problem of viscous incompressible fluid flow past 

a cylindrical body [21]. In this case, the stream 

function satisfies the equation: 

 

2 Re
y x x y

    
    

    
 outside . (4) 

 

Eq. (4) is supplemented by the boundary 

conditions (2) and the condition at infinity (3). 

 

NUMERICAL METHOD 

 

The R-functions method [9,22-24] of  

V.L. Rvachev, Ukraine National Academy of 

Science academician, is proposed for solving the 

problem 1 and 2.  

Let outside of   a sufficiently smooth 

function ( , )x y , that satisfies the following 

properties, is known:  

 

1) ( , ) 0x y   outside  , 

2) ( , ) 0x y


  ,     (5) 

3) 1



 

n
, 

 

where:  n  is external normal to the . 

Let us introduce a sufficiently smooth function 

( )My f x  from [27], which satisfies the 

following requirements: 

 

a) (0) 0Mf  ,    b) (0) 1Mf   , 

c) (0) 0 0Mf x    ,        (6) 

d) ( ) 1 ( 0)Mf x x M M const     . 

 

 

The conditions (7) are satisfied, for example, 

by means of the function [27]: 

 

1 exp ,0 ;
( )

1, .
M

Mx
x M

f x x M

x M


  

 
 

  (7) 

 

Obviously, ( ) [0, )Mf x C  . 

Let us denote ( , ) [ ( , )]M Mx y f x y   .  
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It is easy to verify that the function ( , )M x y  

satisfies the conditions 1) – 3) of (5). Besides, 

( , ) 1M x y  , if ( , )x y M  . 

Note that this condition means: if the function 

( , )x y  is increasing monotonically while 

removing from the contour  , then the function 

( , )M x y  is different from unity only in some 

finite annular region  0 ( , )x y M   , that is 

lying outside   and is adjacent to the  . 

The following theorem has been proved. 

Theorem. For any choice of sufficiently 

smooth functions 
1  and 

2  

 ( 1

2 2
0

x y





 as 

2 2x y  )  

 

the function 
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exactly satisfies the boundary conditions (2) and 

the condition at infinity (3). Here 
2

0 2 2
1

R
U y

x y


 
   

 
 is the solution of the 

ideal fluid flow past circular cylinder of radius R  

(the cylinder of radius R  entirely lies inside the 

streamlined body), ( )M Mf   , ( )Mf   has the 

form of (7), and   is function with the properties 

of (5). 

Problem 1. For approximating the indefinite 

components 1  and 2  it is proposed to use the 

Galerkin method [10]. The functions 1  and 2  

will be presented as follows:  
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partial solutions of the equation 
2 0    for the 

region  ( , )x y M  . Here 
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  is defined by the relations: 
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Thus, the approximate solution of the problem 

(1) – (3) is sought in the following form:  
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Let us determine the complete sequence of 

functions relatively to the whole plain: 
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The values of the coefficients k  

1( 1,2,..., )k m  and j  2( 1,2,..., )j m  in 

accordance with the Galerkin method will be found 

from the condition of the residual 
2 Re ( )N N NR A       orthogonality to the 

first N  ( 1 2N m m  ) elements of the sequence 

(10): 

 , 0N iR f  , 1, 2, ...,i N .       (11) 

Besides, by the properties of M  and coordinate 

functions, the integration in (11) can be done only 

over a finite region  0 ( , )x y M    when 

calculating the scalar products. 

Problem 2. For solving the task (4), (2), (3) we 

propose to use a nonlinear Galerkin method. 

Approximate solution of problem (4), (2), (3) will 

be sought in the form (9), where 1  and 2  have 

the form (8). The values of the coefficients k  and 

j  will be found from the condition of the residual 
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NQ  orthogonality to the elements 
1, ..., Nf f  of 

the sequence (10): 

 

( , ) 0N iQ f  , 1,i N , 
1 2N m m  ,  (12) 

 

where:  

 

2 Re .N N N N
N NQ

y x x y

    
     

    
 

 

Besides, by the properties of M  and coordinate 

functions, the integration in (12) can be done only 

over a finite region  0 ( , )x y M    when 

calculating the scalar products. 

As a result, we obtain a system of nonlinear 

equations, each of which is a quadratic function 

with respect to k  and j . The resulting system 

can be solved by Newton's method. As an initial 

approximation, the set of k  and j , 

corresponding to the solution of the Oseen problem 

or, at high Reynolds numbers, to the solution 

obtained at lower Reynolds numbers, can be 

chosen. 

 

 

RESULTS 

 

The computational experiment has been 

conducted for the problem of flow past the 

cylindrical body 
8 8 1x y   at 1U   and 

Reynolds numbers Re 0,01; 5; 10; 15;20 . 

Fig. 1 – 5 shows the streamline contours of the 

obtained approximate solution for 10M  , 

1 48m  , 2 35m  . 

Detailed pictures of the streamline contours 

and vector velocity fields are shown in Fig. 6 – 10. 

As can be seen from the figures, at low 

Reynolds numbers the flow is symmetric, has no 

separation zone in the aft area of the body. As 

Reynolds number is increased, the flow character 

is changed: the secondary vortices occur behind 

the body, their size and intensity grows, what 

coincides with physical experiments. 

 

 
Fig. 1. The streamline contours at Re 0,01  

 

 

 

 

 

 

 
Fig. 2. The streamline contours at Re 5  
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Fig. 3. The streamline contours at Re 10  

 

 
Fig. 5. The streamline contours at Re 20  

 

 

 

 

 

 

 

 
Fig. 4. The streamline contours at Re 15  

 

 
Fig. 6. Detailed pictures of the streamline 

contours and velocity vector fields at 

Re 0,01
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Fig. 7. Detailed pictures of the streamline contours 

and velocity vector fields at Re 5  

 

 
Fig. 8. Detailed pictures of the streamline contours 

and velocity vector fields at Re 10  

 
Fig. 9. Detailed pictures of the streamline contours 

and velocity vector fields at Re 15  

 

 
Fig. 10. Detailed pictures of the streamline 

contours and velocity vector fields at Re 20  
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CONCLUSIONS 

 

The method for calculating the external flow of 

a viscous incompressible fluid, based on the joint 

use of the R-functions structural method and the 

Galerkin projection method, which differs from the 

known methods of universality (the algorithm does 

not change with changes in the geometry of the 

field) and the fact that the structure of the solution 

exactly takes into account the boundary conditions 

at the boundary of the body and the condition at 

infinity, has been proposed. For different Reynolds 

numbers the stationary problem of viscous 

incompressible fluid flow past the cylindrical body 

in a rectangular coordinate system has been solved 

numerically. The method developed allows to 

conduct the mathematical modeling of various 

biological, physical and mechanical flows. 

 

 

REFERENCES 

 

1. Babenko K.I., Vvedenskaya N.D. and 

Orlova M.G. 1975. Calculation of the steady 

flow of a viscous fluid past a circular cylinder 

(in Russian). Zh. vychisl. mat. i mat. fiz., 15 

(№ 1), 183-196. 

2. Batluk V., Basov M. and Klymets’. 2013. 
Mathematical model for motion of weighted 

parts in curled flow. ECONTECHMOD An 

International Quarterly Journal On Economics 

In Technology, New Technologies And 

Modelling Processes. Vol. 2, No 3, 17-24. 

3. Batluk V. and Batluk V. 2012. Scientific 

bases of creation of dust catchers. 

ECONTECHMOD An International Quarterly 

Journal On Economics In Technology, New 

Technologies And Modelling Processes. Vol. 

1, No 4, 3-7. 

4. Batluk V., Batluk V., Basov M. and 

Dorundyak L. 2012. Mathematic model of the 

process of dust catching in an apparatus with a 

movable separator. ECONTECHMOD An 

International Quarterly Journal On Economics 

In Technology, New Technologies And 

Modelling Processes. Vol. 1, No 1, 13-16. 

5. Happel J. and Brenner H. 1965. Low 

Reynolds Number Hydrodynamics: with 

special applications to particulate media. 

Prentice-Hall, 630. 

6. Kolosova S.V. 1972. The use of projection 

methods and R-functions method to the 

solution of boundary value problems in infinite 

domains (in Russian). PhD thesis, Kharkiv 

National University of Radioelectronics, 85. 

7. Kolosova S.V., Lamtyugova S.N. and 

Sidorov M.V. 2003. The iterative methods 

application to solving the external tasks of 

hydrodynamics (in Russian). Radioelektronica 

i informatika, № 3, 13-17. 

8. Kolosova S.V. and Sidorov M.V. 2003. 
Application of R-functions method to the 

calculation of plane viscous liquid flows (in 

Russian). Vestnik KhNU. Ser. Prykl. Math. 

And Mech., № 602, 61-67. 

9. Kravchenko V.F. and Rvachev V.L. 2006. 
The algebra of logic, atomic functions and 

wavelets (in Russian). Moscow: Fizmatlit, 400. 

10. Krasnoselskiy M.A., Vainikko G.M., 

Zabreiko P.P., Rutitskii Y.B. and Stecenko 

V.Y. 1969. Approximate solution of operator 

equations (in Russian). Moscow: Nauka, 420. 

11. Kutepov A.M., Polyanin A.D., Zapryanov 

Z.D., Vyazmin A.V. and Kazenin D.A. 1996. 
Chemical Hydrodynamics (Handbook) (in 

Russian). Moscow: Quantum, 336. 

12. Lamb H. 1993. Hydrodynamics. 6th Edition. 

Cambridge University Press, 768. 

13. Lamtyugova S.N. 2012. Mathematical 

modelling of flow linearized problems in the 

spherical and cylindrical coordinate systems 

(in Russian). Visnyk ZNU. Physics 

Mathematics, № 1, 112-122. 

14. Lamtyugova S.N. 2012. Mathematical 

modeling of steady flow past a cylindrical 

body with viscous fluid (in Russian). Visnyk 

ZNU. Physics Mathematics, № 2, 57-65. 

15. Lamtyugova S.N. 2012. The R-functions 

method application to solving mass transfer 

problems. Proceedings of the 2nd international 

scientific conference of students and young 

scientists. Theoretical and applied aspects of 

cybernetics. Kyiv: Bukrek, 108-111. 

16. Landau L.D. and Lifshitz E.M. 1987. Fluid 

Mechanics. 2 Ed. Volume 6 of Course of 

Theoretical Physics. Pergamon Press, 532. 

17. Loitsyansky L.G. 1995. Mechanics of Liquids 

and Gases. 6th ed. New York: Begell House, 

971. 

18. Maksimenko-Sheiko K.V. 2005. Mathematical 

modeling of heat transfer at motion of fluid 

through the channels with the screw type 

symmetry of the R-functions method (in 

Russian). Dop. NAN Ukr, № 9, 41-46. 

19. Polyanin A.D. 2001. Handbook of Linear 

Partial Differential Equations (in Russian). 

Moscow: Fizmatlit, 576. 

20. Polyanin A.D., Kutepov A.M., 

Vyazmin A.V., Kazenin�D.A. 2002. 
Hydrodynamics, Mass and Heat Transfer in 

Chemical Engineering. London: Taylor & 

Francis, 406. 



50 S.N. LAMTYUGOVA, M.V. SIDOROV 

21. Polyanin A.D. and Zaitsev V.F. 2002. 
Handbook of Nonlinear Partial Differential 

Equations: Exact solutions (in Russian). 

Moscow: Fizmatlit, 432. 

22. Rvachev V.L. 1982. Theory of R-functions 

and its some applications (in Russian). Kiev: 

Nauk. Dumka, 552. 

23. Rvachev V.L. and Sheiko T.I. 1995. R-

functions in boundary value problems in 

mechanics. Appl. Mech. Rev, 48(4), 151-188. 

24. Shapiro V. 2007. Semi-Analytic Geometry 

with R-Functions. Acta Numerica, 16, 239-

303. 

25. Shkadov V.Y. and Zapryanov Z.D. 1984. 
Viscous Fluid Flows (in Russian). Moscow, 

200. 

26. Sliozkin N.A. 1955. Dynamics of viscous 

incompressible fluid (in Russian). Moscow, 

521. 

27. Strel'chenko A.J., Kolosova S.V. and 

Rvachev V.L. 1972. A method for solving 

boundary value problems (in Ukrainian). Dop. 

AN URSR. Ser. A, № 9, 837-839. 

28. Suvorova I.G. 2004. Computer modeling of 

axisymmetric flows in the channels of complex 

shape (in Russian). Vestnik NTU KhPI, № 31, 

141-148. 

29. Suvorova I.G., Kravchenko O.V. and 

Baranov I.A. 2011. Mathematical and 

computer modeling of axisymmetric flows of 

incompressible viscous fluid with the use of R-

function method (in Russian). Math. methody 

ta phys.-mech. polya, 54(2), 139-149. 

30. Tevyashev A.D., Gibkina N.V., Sidorov M.V. 

2007. On one approach to the mathematical 

modeling of plane steady flows of viscous 

incompressible fluid in simply connected 

domains (in Russian). Radioelectronika i 

informatika, № 2, 50-57. 

 


