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SET OPERATION SPEED-UP OF
FAULT SIMULATION

S.A. ZAYCHENKO,
A.N. PARFENTIY,

E.A. KAMENUKA,
H. KTIAMAN

Design Automation Department, Kharkiv National
UniversityofRadio Electronics, Leninave, 14, Kharkiv,
61166 Ukraine. E-mail: hahanov@kture.kharkov.ua

Abstract. In this paper there are presented data
structures and algorithms for performing set theory
operations upon lists of defects within deductive
fault simulation method of digital systems. There are
suggested 4 types of data structures and calculation
procedures, which provide maximum performance
for basic operations required for effective software
implementation of the method.

Keywords: set operations, data structures,
performanceanalysis, fault, fault simulation.

1. Introduction

Hardware designers and manufacturers demand
significant performance acceleration for fault
simulation and automatic test patterns generation
tools (ATPG) [1] for large-scale digital systems,
being targeted into the application specific
integrated circuits (ASIC’s). Over 50% of existing
ATPG systems [1-4] use deductive method of
fault simulation to obtain table of faults, covered
by the applied test.

The performancedistribution analysis of computation
cycle during test-vector processing within deductive
method (fig. 1) shows, that about 70% of time is
spent on performing set theory’s operations upon
lists of faults: union, intersection and complement
(difference). That’s why the software
implementation performance of the deductive
method strongly depends on implementation
efficiency of the set theory operations.

DA - Dump of the
results

B - Fault-free
simulation

mC - Deductive
simulation events

D - Set operations

Figure 1. Performance distribution of computation cycle
of the deductive fault simulation method
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Software implementation of the set operations
may use classic storage data structures and
algorithms, which efficiency differs for various
numbers of elements under processing. Relatively
to deductive fault simulation method, the particular
computations at the same time are performed
upon sets with various range of elements number.
That’s why, there is no well-known data structure
in general programming, which provides
acceptable performance of implementation of
the set operations for deductive fault simulation
method.

The research goal is to analyze and select
optimal data structures and processing algorithms
of set theory operations, that will provide the
highest performance and lowest memory usage
for software implementation of the deductive
fault simulation method.

The research tasks include:

— analysis of classic data structures, being used
in discrete mathematics [5,6] and general
programming [7-9] for implementation of set
theory operations;

— development of the computation strategy,
which provides high speed and low memory
usage for fault simulation of large-scale digital
systems;

— efficiency assessment of the developed
strategy.

2. Classic data structures for sets.
Characteristic vectors

Set theory operations are used for solving many
mathematical tasks, including those, which are
related to the described fault simulation topics.
There are several data structures with different
internal organization, which are frequently used
indiscrete mathematics and programming for set
elements storage:

characteristic vectors;
— linked lists;
— Dbinary trees;
hash-tables.

Definition 1. Characteristic vector [1,5,6] is a
data structure for storing subsets of universe U
with finite number of elements n, represented by
the n-width binary word, where value 1 of bit I
means that element i of U belongs to the set,
while 0 means opposite:
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W = (Wo,eos Wiy Wy 1)

1
1< W; eU; M
0« W; ¢U,

i_

where W — characteristic vector for stored set,
W, — bit i of the characteristic vector.

For example, the representation of the set with 4
elements, such as {2, 4, 7, 9}, in the universe of
10 elements will contain 4 bits with 1-value and
6 bits with 0-value in the indices, corresponding
to element indices minus 1 (fig. 2):

012345672829
|0|1||0|1|0|0|1|0|1|0|

Bit numbers

Values

| Elements {2, 4, 7, 9} |

Fig. 2. Set representation by the characteristic vector

Main advantage of the characteristic vectors is
the simplicity of implementation of the set
operations, which are reduced to standard logic
computations:

Wau =Wa v W, Wy g =Wy -Wg,

Wo g=Wu - Wg, )

where Wp g, Wa~B> Wa_p — characteristic
vectors of union, intersection and complement

results, W, , Wg — characteristic vectors for
operand sets.

From (2) it is obvious, that such implementation
of set operations has linear complexity relatively
to the length of characteristic vector:

0poup(n)=t, -n,05~pgn)=tg -n,
3)

where 0, 5, O7A~B-0a_p — complexity of

0p-p(n)=(tg +1)-n,

union, intersection and complement operations,
t, , tg , t; —time for performing logic operations
OR, AND, NOT upon 1-bit arguments.

Another advantage of the characteristic vectors
is the fixed amount of storagememory: allocation

is performed only once during simulation
initialization, and cleanup — once at the end.

Main disadvantage of using characteristic vectors
for fault simulation is the square complexity of

T3T

the storage memory depending on the number of
circuit lines:

Mznl-nwzn-n=n2, 4)

where M — total amount of set storage memory,
n; —number of lines in the circuit, n, —length
of the characteristic vector, n=n; =n, .

For instance, to simulate relatively small circuit
with 10 thousands gates, accordingly to (3), it is
required to allocate 100 millions of bits. Such big
memory usage makes characteristic vectors
almost unacceptable for designs, which have
hundreds of thousands and millions of gates. This
problem can be partially solved by hierarchical
device model decomposition, but this significantly
complicates simulation between hierarchy levels.

Another significant disadvantage of the
characteristic vectors is that large part of the
memory is not being used within computations,
as number of elements activated during simulation
rarely exceeds 20%. The example shown on the
fig. 2 contains 6 bits, holding non-informative
zero bits. It shows that large part of the
computations during set operations with
characteristic vectors are performed on 0 values
and are not useful.

3. Linked lists

Definition 2. Linked list [7-9] is a structure of
interconnected information blocks, stroring data
and addresses of the neighbor blocks:

L=(L,....L;,....Ly), Li =D, A1, A1), (5)

where L —stored set, L; — i set block, D; —date
of the i set element, A;— address of the i
block.

The amount of memory required for storing such
sets is proportional to the number of elements.
The set, described on fig. 2, by applying definition
2, can be represented by the following data
structure:

List
Tail

Fig. 3. Representation of the set by the linked list

It is efficient to perform set operations with
ordered linked lists. Such structure does not
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spend time on searching elements during
comparison of two sets.

To perform union operation upon ordered linked
lists (see procedure 6) it is required to iteratively
compare elements from lists A and B with
consequent increment of those index, whose
current element is smaller, which should be
written in the resulting set C. If elements of both
lists are equal, one of them should be recorded to
C withincrement of both indices. After performing
procedure (6) list C will be also ordered. The
intersection (7) and complement (8) set operations
can be implemented in the similar way.

Ai<Bt—)Cj=Ai;j=j+l;i=i+1;
A
A

i>Bt—>Cj:Bt;j:j+1;t:t+l;

i:Bt—>Cj:Bt;j:j+1;i:i+l;t:t+1,
(6)

A;>B;>t=t+1;

A;<B;—>i=i+];

A; =By —)Cj =Byj=j+Li=i+Lt=t+1;
(7)
Ai>Bi>t=t+1];
Aj=B;>i=i+Lt=t+1 ®)
Aj<B{—>Cj=Bgj=j+Li=i+1
where A, B—operands;N—result; i, ], t—current
element indices for A, B and C sets.

Procedures (6-8) have linear complexity relatively
to the sum of number of elements for both sets:

OAuB =2 tC ~min(11,n2)+tA '(1’11 +1’12)+2't1 . (1’11 +1’12);

Oa~B =(2- tc +ta)-minfy,ny) +t; - (n) +ny +miny,ny));

eA—B =2- tc ~min(11,n2)+tA N+t - (2'111 +Il2),

9
where nj,n, — number of operands’ elements,
tc — comparison time for 2 elements, t, —

assignment time to the element of output list, t;
— increment time.

The worst task for linked lists is an insertion of a
single element. In this case it is required to locate
the position of the new element taking existing
order into a count, which requires sequential list
iteration. Insertion of new element to the found
position requires to assign references between
element and its left and right neighbor.

EWDTW’T004

4. Binary trees

Definition 3. Binary tree [5-6] — is an acyclic
graph that represents relations between elements
(subsets), where each node has one input and
two output edges. The weight of each node is
always bigger than the weight of left descendant
and smaller than the right one:

V= (Vi ViseaVi)s Vi = ]AF < A; < ARJ(10)

where V — binary tree; V, — i node of the tree;

A; — weight of the i" node, AL, AR — weights
of the left and right descendants.

Such set representation requires the amount of
memory proportional to the number of elements,
which is equivalent to linked lists. The set, shown
on fig. 3, by taking into a count definition 3, can
be represented by the following data structures:

Fig. 4. Representation of the set by the binary tree

The search of the element in the binary tree is
implemented by the iterative comparison of the
required value and the current node according
the following rule:

X<Ai—)AiL;

X>A > AiR. (D
Binary tree is called balanced, if it is organized in
such way, that the number of left and right sub-
trees is approximately equal. Balanced binary
treeprovides logarithmic computation complexity
for the element search operation. In unbalanced
tree state search becomes ineffective, because
finding the element position requires more
comparison operations. To convert unbalanced
tree into balanced one it is necessary to select
one of the nodes as a new root one in such way
that the total amount of left and right sub trees
would become approximately equal.

Usage of the binary trees is effective for execution
of sets union, intersection and complement
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operations, which can be implemented in the
following way:

AmB:AieB—)CjzAi;j=j+1;i=i+l;

Ci=Api=i+Lj=j+1
AUB: o

B g A—>C;=Byj=j+Lt=t+1(12)
A—B:Ai ﬁB—)CJ =Ai;j=j+1;i=i+1,

The complexity of procedures (12) is relative to
the size of the operands and defined as follows:

0a~B(1N1,12) =05 _p(ny,n2) =1y - B(np) =1y - log ny

eAuB(nl’nz) =N, +n, 'es(nl) =n, +n, '10g2 n,
(13)

where Og — complexity of the element search in
the tree.

5. Hash-tables

Definition 4. Hash-table [7-9] is a data structure
for storage of set of elements, which position is
defined by the hash-function.

Definition 5. Hash-function — special selected
function returning low-informative decimal
numbers (hash-codes) for the element values
with small probability of duplication for different
applied arguments.

Hash-codes are interpreted as cell indices of the
table, which allows determining location of the
element by fast hash-code computation. In general
case, the dependency between element values,
generated hash-codes and cell indices is very
hard to predict. If table contains m cells, to define
index of the element it is required to calculate
modulo of the hash-code division on the m:

P - H(D»—}M[,
m

where H — used hash-function; D; —value of the
i set element; P, — position of the i in the hash-
table; | [ — notation of the integer division.

(14)

To store the set shown on fig. 2 in the hash-table
it is required to create model, similar to the one
shown on fig. 2. Let’s assume, table contains 8
cells and hash-function for the elements generates
the hash-codes, presented in (15). By computing
modulo of the integer division of hash-codes on
8, the cell indices can be obtained:
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H(2) = 1160294; P(2) = 1160294 mod 8 = 6:
H(4) = 1191544; P(4) = 1191544 mod 8 = 0:
H(7)=1238419; P(7)= 1238419 mod 8 = 3;(1>)
H(9) = 1269669; P(9) = 1269669 mod 8 = 5.

Cell indices | 0 1 213145617
Cell values | 4 7 91| 2

Fig. 5. Set representation by hash-tables

Element search and insertion operations in the
hash-table have amortized constant complexity [7-
9]. Thismeans, thatin special situations, like collision
and rehashing, operations can be more expensive.

Collision — situation during the work of hash-
table, when calculated cell indices for two
different elements are equal. In this situation
element is placed in the closest free cell with
bigger index. Frequent collisions make hash-
tables inefficient.

To reduce collision probability the number of
hash-table cells should be increased, which
involves low-performance rehashing operations.
This includes recalculation of all cell indices
taking new size of the table into a count, and also
elements replacing.

Implementation of the intersection, union and
complement upon hash-tables is done according
to (12), but unlike binary trees has amortized
linear complexity:

0a~B(n1,0n3)=0,_p(n;,ny)=n;-0g(ny)=

=1, -0" (const),

16
OauB(ny,ny)=ny +n,-Bg(n;)= (16)
=n; +n,-07 (const),

where " (const) — widely used notation of the
amortized constant complexity.

Hash-tables are much more effective than binary
trees for sets with large number of elements, but for
very small sets (less than 10 elements) hash-tables
are slower than all other described data structures.

The amount of storage memory for the hash-
tables depends on the number of cells, which
should be at least two times larger than the
number of stored elements. This is required for
effective hashing organization without frequent
collisions. It is bigger, than for binary trees, but
significantly smaller than for characteristic
vectors.
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6. Performance comparison of
classic data structures

Performance of the described classic data
structures can be experimentally compared by
measuring computation time of big number (104-
105 times) of intersection and union operations
on sets of various sizes, filled by pseudo-random
elements.

Experiment 1: let’s measure the performance
for operations upon sets containing less than
1000 elements (fig. 6 and fig. 7). Results allow to
make the following conclusions:

1) Characteristic vectors should be used for
smallest sets only (less than 50 elements); for
larger sets this data structure uses unacceptable
amount of memory.

2) For sets from 50 to 1000 elements usage of
linked lists, binary trees and hash-tables is almost
equivalent.

25
—e— Hash-Tables /
—a— Binary Trees
—a— Linked Lists /
—+— Characteristic Vectors /

8

-
[$)]
L

-
o

(&)}
L

Intersection time, sec

5 10 20 30 50 70 90 120 180 250 350 500 700 900
Hements Count
Fig. 6. Performance of intersection for small sets

100 »

90 || —¢—Hash-Tables [
go || —=Binary Trees /
—a— Linked Lists /
70 1 m
60 —e— Characteristic Vectors /
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Fig. 7. Performance of union for small sets

Experiment 2: let’s measure the performance
for operations upon sets, containing from 1 to 50
thousand elements (fig. 8 and fig. 9).
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Fig. 8. Performance of intersection for large sets

Results allow to make the following conclusions:

1) Linked list is the most effective data structure
for operations with large sets, esp. for union.

2) Performance of the set operations when
using the hash tables is much better than using
binary trees upon sets with 2-25 thousands of
elements, but because of rehashing effects during
table growth their efficiency for larger sets
becomes closer to binary trees.
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Fig. 9. Performance of union for large sets

Experiment 3: let’s measure the performance
of operation of single element insertion (fig. 10).
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Fig. 10. Performance of single element insertion
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Results show, that low-performance of the
element insertion reduces advantages of the
linked lists, found inexperiment 2, almost to zero.

So, the researched internal structure and
performance of the classic data structures for
sets allow to make the following conclusions:

1) Definite choice of the most effective universal
data structure for representing fault lists is not
possible: performance properties of data
structures are different for various operation
types and set sizes.

2) Data structure should be effective both for
set operations and single element insertion.

3) Any data structure for sets is not effective
when number of stored elements strongly
changes.

4) Exact estimation of the memory amount for
elements, which are expected to appear in the
future, is the way to improve performance of the
basic operations execution.

7. Development of effective processing
strategy for fault sets

Usage of only one of described data structures
for representing defect lists in deductive fault
simulation method will not provide performance
acceptable for processing of large-scale digital
systems. To create fast simulation program the
FLP computation strategy is suggested, which is
based on the fault lists pool.

The key of this strategy consists in centralized
management of the data objects, implementing
representation of the fault lists. Pool automatically
manages creation, storage, allocationand cleanup
of the list-objects, and also selection of the most
effective list object for particular set operation.
FLP works in the following way:

1) Pool manages created, used and freed list
objects, dividing them according to the set size
ranges.

2) Deductive simulator requests the most
effective list object in the pool before set operation.

3) Depending on the operand sizes and the
selected operation, pool estimates the maximum
possible number of elements in the resulting set:

np~g <min(np,ng); Na g <Np +N0p;

(17)

NA_BSNu;
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where n,,ng — sizes of operand sets, ny ~g,

naUB-NA_B — Sizes of intersection, union and
complement results.
4) Taking the previous estimation into a count,

pool searches the suitable list object using the
algorithm, which is shown on fig. 11:

Is there are free
previously created set
object of this range?

Yes
1

Reuse the object ]

No

| What is the estimation of the resulting set size? |

) ) }

[ 1-s00 | | s00-s000 | [ >s000 |

New binary New linked New
tree list hash-table

Fig. 11. Optimal list-object selection algorithm

5) Selected list object is passed to the deductive
simulator for performing set operation.

6) If deductive simulator no longer needs the list
object, it returns it to the pool, so it can be reused
in further operations later.

Implementation of the set theory operations
using the FLP resolves described problems of
the classic data structures:

1. Accordingly to size of the set, pool creates the
most effective object for the list. This allows
using data structures at the most suitable range
of sets size, providing maximum performance
relatively to other data structures.

2. Preliminary estimation of the operation result
size reduces time being spent on internal data
structure reorganization, which increases the
speed of the operations computation and tends to
rational memory usage.

The disadvantage of the suggested computation
strategy is that unordered and ordered data
structures can not be used at the same time for
computation. For instance, hash-tables hold their
elements in the unpredictable order, and other
data structures — in the sorted. If operand sets
are ordered and the result isn’t, computations do
not make difficulties. But if operand set is
unordered, the resulting set must be unordered
too.
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Asusage ofthepool reduces the strong oscillations
of the number of stored elements, the possibility
of using the simplest data structure — fixed-size
arrays —appears. Without pool its usage does not
have a sense, as the sizes of sets might be
significantly changed during the simulation. For
implementation of set theory operations on the
base of arrays the same algorithms as for linked
lists may be used.

Unlike linked lists, fixed-size arrays provide fast
element insertion possibility, if performed in
parallel with set theory operations:

1) It is required to locate expected insertion
position of the single element in each array using
the binary search algorithm [6-8].

2) Operand arrays are separated on two parts —
before located insertion position and after it.

3) The set operation upon first parts of the
operands is performed.

4) The single element should be added at the end
of resulting array.

5) The set operation upon second parts of the
operands should be performed.

The disadvantage of using arrays in pool is that
they cannot be effectively used together with
other data structures. But the speed of the set
operations using the arrays is equivalent to the
fastest linked lists, while insertion time is even
better than for hash-tables. Also arrays require
much smaller amount of the storage memory.

Experiment 4: efficiency assessment for the
developed fault lists processing strategy. Fig. 12
shows the performance of deductive fault
simulation using different set processing strategy.

800

0l | —=— FLPwitharays /
o —4— FLP with classic structures
@ 600 +—
2 —— Linked lists without FLP / /'
£ %7 — Hashitables without FLP
S
©
Fo ra
£

200 /////é‘/

100

. 4}%

250 500 1K 25K 5K 10K 20K K 40K 50K
Lines number

Fig. 12. Performance of the developed FLP-strategy
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Experimental results confirm significant
advantage (up to 3-4 times) of the developed
FLP-strategy for processing fault lists in
comparison with the best widely used approaches.

8. Conclusions

Suggested FLP-strategy for implementation of
the set theory operations allowed to develop a
high-performance deductive fault simulation
system for fault coverage estimation of applied
tests.

Main scientific and practical results include:

— performance properties assessment of the
classic data structures for implementation of the
set theory operations;

— selection of the optimal data structures for
implementation of set theory operations and
development of the FLP-strategy for processing
fault lists, providing the maximum speed among
with small memory usage;

— joining efficiency of the set operations upon
fault lists with the speed of single fault insertion;

— high-performance software implementation
of the deductive fault simulation method,
acceptable for processing modern large-scale
digital system-on-chips, containing millions of
logical gates.
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ELECTRICAL TESTISNOT ENOUGH
FORQUALITY

BENGT MAGNHAGEN

JONKOPINGUNIVERSITY, SWEDEN
bengt.magnhagen@ing.hj.se

Electrical test means Functional Test (FT), In Circuit
Test (ICT) or Boundary Scan Test (BST) or even a
combination of these technologies. However, with
modern technology, like SMD (Surface Mounted
Devices) technology, BGA (Ball Grid Array)
components and extremely small component
dimensions, electrical test alone does not meet the
qualityrequierments.

Electrical test can not identify bad soldering and bad
alignment of components, as examples. Missing
decoupling capacitors and so on can not be detected
because of it is hard to get physical access for
testprobes. Donot forget that digital designs contains
a lot of analogue devices!

The tutorial will discuss today test technology with
equipment for ICT and BST as well as its pros and
cons. And as the addition of this, Inspection.
Inspection has traditonally been performed manually
but this is not realistic today with board crowded by
components. Today Inspection is performed by
machine vision. Optical techniquenamed Automated
Optical Inspection (AOI) and more advanced X-ray
inspection (AXI). AOIand AXIis not the future, itis
here today.

EMC/EMlI s also a growing challenge and somenew
ideas will be discussed how to test for these
phenomenas.
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