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Abstract: A method is proposed targeting implementation of FPGA-based Mealy finite state machines.
The main goal of the method is a reduction for the number of look-up table (LUT) elements and their
levels in FSM logic circuits. To do it, it is necessary to eliminate the direct dependence of input memory
functions and FSM output functions on FSM inputs and state variables. The method is based on
encoding of the terms corresponding to rows of direct structure tables. In such an approach, only terms
depend on FSM inputs and state variables. Other functions depend on variables representing
terms. The method belongs to the group of the methods of structural decomposition. The set of
terms is divided by classes such that each class corresponds to a single-level LUT-based circuit.
An embedded memory block (EMB) generates codes of both classes and terms as elements of
these classes. The mutual using LUTs and EMB allows diminishing chip area occupied by FSM
circuit (as compared to its LUT-based counterpart). The simple sequential algorithm is proposed for
finding the partition of the set of terms by a determined number of classes. The method is based on
representation of an FSM by a state transition table. However, it can be used for any known form
of FSM specification. The example of synthesis is shown. The efficiency of the proposed method
was investigated using a library of standard benchmarks. We compared the proposed with some
other known design methods. The investigations show that the proposed method gives better results
than other discussed methods. It allows the obtaining of FSM circuits with three levels of logic and
regular interconnections.

Keywords: mealy finite state machine; synthesis; structural decomposition; FPGA; look-up table
elements; LUT; embedded memory blocks; EMB

1. Introduction

The model of Mealy finite state machine (FSM) is used very often in the process of designing
control units of modern digital systems [1–3]. There are many problems connected with optimization
of characteristics of control units [4,5]. One of the most important problems is a problem of hardware
reduction [6,7].

Solution of this problem allows reducing the power consumption and increasing the performance
(maximizing operating frequency) [8,9]. To solve this problem, it is necessary to take into account
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the specific features of both an FSM model and logic elements used to implement the circuit of
FSM [3,10].

The main specific of Mealy FSM is a dependence of input memory functions and output functions
on both input variables and state variables [1,8]. Our investigation of standard benchmarks [11] shows
that it could be up to 17 arguments in Boolean functions representing FSM circuits.

Presently, the field-programmable gate array (FPGA) chips are widely used for implementing
different digital systems [8,12,13]. Of course, FPGAs also are used to implement control units of these
systems. There are three main elements of FPGA which could be used to implement FSM circuits.
They are: look-up table (LUT) elements, embedded memory blocks (EMB) and tools of programmable
interconnections [14–16]. LUTs fit for implementing Boolean functions represented as sum-of-products
(SOP) [8]. EMBs implement large truth tables representing systems of Boolean functions (SBF).

A LUT is an array of SRAM cells with SL inputs (SL ≤ 6) [13,14]. Outputs of LUTs are connected
with programmable flip-flops which could be bypassed. Therefore, it is possible to implement
distributed registers keeping state codes [3].

An EMB is a RAM with SA address inputs and tF outputs. The main specific of EMBs is their
reconfigurability [3]. It means that the values of SA and tF could be changed. Of course, the number of
bits (the volume of EMB) is constant. It is determined as

V0 = 2SA · tF. (1)

Due to the reconfigurability, it is possible to tune EMBs to meet the requirements of a particular
design. There are the following pairs < SA, tF > [13]: < 15, 1 >, < 14, 2 >, < 13, 4 >, < 12, 8 >,
< 11, 16 >, < 10, 32 > and < 9, 64 >. It gives V0 = 32 K, bits.

In this article, we propose a method of synthesis leading an FSM circuit to implemented
as a network of EMBs and LUTs. The method is based on the structural decomposition [17] of
FSM circuit.

2. Background of Mealy FSMs

The logic circuit of Mealy FSM is represented by the following systems of Boolean functions [1]:

Φ = Φ(T, X); (2)

Y = Y(T, X). (3)

In (2) and (3), there are the following sets: Φ = {D1, . . . DR} is a set of input memory functions,
T = {T1, . . . TR} is a set of state variables, X = {x1, . . . xL} is a set of input variables, Y = {y1, . . . yN}
is a set of output functions.

To find systems (2) and (3), it is necessary to specify a behaviour of FSM. In this article,
we use a state transition table (STT) to represent a Mealy FSM. An STT contains information about
the transitions between internal states am ∈ A, where A = {a1, . . . aM} is a set of states [8]. There are
the following columns in an STT: am is a current state; as is a state of transition; Xh is a conjunction of
input variables (or their complements) determining the transition 〈am, as〉; Yh is a collection of output
functions (COF) generated during the transition 〈am, as〉; h is a number of transition (h ∈ {1, . . . , H}).
For example, consider some Mealy FSM S1 represented by STT (Table 1).

The following sets and their parameters could be derived from Table 1: A = {a1, . . . , a12}, M = 12,
X = {x1, . . . , x7}, L = 7, Y = {y1, . . . , y11}, N = 11. There are H = 20 rows in Table 1. To find the sets
Φ and T, it is necessary to encode the states am ∈ A by binary codes K(am) with R bits. It is a step of
state assignment [8]. Let us use minimum number of state variables when there is

R = dlog2Me. (4)
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In the discussed case, there is R = 4. It gives the sets T = {T1, . . . , T4} and Φ = {D1, . . . , D4}.
As follows from the set Φ, we use D flip-flops to implement the register(RG).

Table 1. State transition table of Mealy FSM S1.

am as Xh Yh h

a1 a2 x1 y1y2 1

a1 a3 x̄1 y3 2

a2 a3 x2 y2y5 3

a2 a5 x̄2x3 y4y11 4

a2 a2 x̄2 x̄3 y6 5

a3 a6 1 y3y8 6

a4 a2 x3 y7 7

a4 a7 x̄3 y2y5 8

a5 a8 1 y6 9

a6 a2 x4 y3y8 10

a6 a11 x̄4 y1 11

a7 a1 1 y9y10 12

a8 a19 x5 y1y7 13

a8 a10 x̄5 y4 14

a9 a4 x6 y1y10 15

a9 a11 x̄6 y9 16

a10 a7 1 y3 17

a11 a12 1 y4y11 18

a12 a10 x7 y7 19

a12 a1 x̄7 – 20

To get functions (2) and (3), it is necessary to turn an STT into a direct structure table (DST) [1] of
Mealy FSM. To do it, we should add three columns into an STT, namely: K(am) is a code of current
state; K(as) is a code of state of transition; Φh is a collection of input memory functions equal to 1 to
replace K(am) by K(as).

Each row of DST corresponds to a product term Fh (h ∈ {1, . . . , H}). The term Fh is
the following conjunction:

Fh =

(
R∧

r=1

Tlmr
r

)
· Xh (h ∈ {1, . . . , H}). (5)

The first member of (5) is a conjunction Am of state variables corresponding to the code K(am) of
the state am ∈ A from the h-th row of DST. There are lmr ∈ {0, 1}, T0

r = T̄r, T1
r = Tr (r ∈ {1, · · · , R}).

The symbol lmr stands for the value of the r-th bit of K(am).
The functions (2) and (3) depend on terms (5). The system (2) determines a block of input memory

functions (BIMF), the system (3) the block of output functions (BOF). State codes are kept into RG.
It determines a Mealy FSM U1 (Figure 1). The pulse Start loads the code K(a1) of the initial state
a1 ∈ A into RG. The pulse Clock allows changing the content of RG.
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Figure 1. Structural diagram of Mealy FSM U1.

3. Implementing Mealy FSMs with FPGAs

Each block of FSM U1 could be implemented using either LUTs or EMBs. We name the block
of LUTs as LUTer, the block of EMBs as EMBer. In the simplest case, we have a LUT-based FSM U1

(Figure 2).

Y
T

X

LUTerΦStart

Clock
LUTerY

Figure 2. Structural diagram of LUT-based FSM U1.

Let an FSM circuit be represented by I Boolean functions. There is I = R + N in the case U1.
Let the following condition take place:

L( fi) ≤ SL (i ∈ {1, . . . I}). (6)

In (6), the symbol L( fi) stands for the number of literals in a SOP of fi.
In this case, there are exactly I LUTs in the circuit of U1. If the condition (6) is violated, then some

functions should be decomposed. To do it, the different methods of functional decomposition are
used [18–20]. It leads to multi-level circuits with complex interconnections. The multi-level circuits of
LUTers consume more energy and have less performance than their single-level counterparts.

It is very important to use EMBs in FSM design. It decreases the chip area occupied by FSM
circuit, as well as the number of interconnections [21–23]. In turn, it results in decreasing for both
the power consumption and propagation time (as compared to LUT-based counterparts). Because of it,
there is a lot of EMB-based methods of Mealy FSMs synthesis [10,16].

Let the following condition take place:

2L+R(N + R) ≤ V0. (7)

In this case, it is enough a single EMB to implement the circuit of U1. It leads to FSM U2 (Figure 3).

Y

TEMBer

Start
Clock

RG
Φ

X

Figure 3. Structural diagram of Mealy FSM U2.
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If condition (7) is violated, then EMBer is implemented as a network of EMBs. It has sense till
the following conditions take places:

L + R ≤ SA; (8)

N + R > tF. (9)

If condition (8) is violated, then some methods of structural decomposition [16,17] could be used
to diminish the values of L( fi).

As a rule, the method of replacement of input variables is used [1,10]. In this case, the variables
xl ∈ X are replaced by variables pg ∈ P = {p1, . . . , pG}. In many practical cases, there is G ≤ 3 [2].
Our analysis of standard benchmarks [16] justifies this statement. In this case, three following SBFs
represent the FSM circuit:

P = P(T, X); (10)

Φ = Φ(T, P); (11)

Y = Y(T, P). (12)

As a rule, the system (10) is implemented by LUTs [10,21]. The systems (11) and (12) are
implemented by EMBs. It leads to Mealy FSM U3 (Figure 4).

Y

T

X
LUTerP EMBer

P

Start

Clock
RG

Φ

Figure 4. Structural diagram of Mealy FSM U3.

To find the system (10) it is necessary: (1) to construct the set P; (2) to execute the replacement of
X → P; (3) to encode the states and (4) to construct the table of LUTerP. To find the systems (11) and (12),
it is necessary to transform the initial DST of U1. The transformation is reduced to: (1) the replacement
xl ∈ X by pg ∈ P and (2) the replacement of the column Xh by the column Ph.

Let us use the symbol Ui(Sj) to show that the model Ui is used to synthesize an FSM circuit
starting from the STT of FSM Sj. Let us find the system (10) for FSM U3(S1).

As follows from Table 1, there are transitions depended on a single variable xl ∈ X or two
variables. Therefore, there is G = 2. It gives P = {p1, p2}. There is M = 12, R = 4. Let us encode
the states of S1 in the trivial way: K(a1) = 0000, . . . , K(a12) = 1011. The replacement X → P is
represented by Table 2. It is constructed using the rules [1].

After minimizing, we can find the following equations:

p1 = T̄4x1 ∨ T̄1T̄2T4x2 ∨ T2x4 ∨ T1x7; (13)

p2 = T̄1T̄2x3 ∨ T2x5 ∨ T1x6.

Obviously, a proper state assignment could diminish the number of arguments in functions (10).
These methods are discussed in [1,10].

Let the following condition take place:

2G+R(N + R) ≤ V0. (14)

In this case, it is enough a single EMB to implement the circuit of EMBer of FSM U3.
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Table 2. Table of replacement X → P.

am

pg p1 p2 K(am)

a1 x1 - 0000

a2 x2 x3 0001

a3 - - 0010

a4 - x3 0011

a5 - - 0100

a6 x4 - 0101

a7 - - 0110

a8 - x5 0111

a9 – x6 1000

a10 - - 1001

a11 - - 0101

a12 x7 - 0011

There are other methods of structural decomposition [10]. For example, there are such
methods as: (1) the encoding of collections of output functions; (2) the encoding of terms of DST;
(3) the transformation of object codes. In this article, we discuss the using the encoding of terms
in EMB-based Mealy FSMs. This method was used in FSMs implemented with programmable logic
arrays [1]. It has never been used in FPGA-based design.

Let us explain this approach. Let us encode a term Fh by a binary code K(Fh) with RH bits, where

RH = dlog2He. (15)

Let us use variables zr ∈ Z for the encoding, where |Z| = RH . Let us construct the following SBFs:

Z = Z(T, X); (16)

Φ = Φ(Z); (17)

Y = Y(Z). (18)

Let the following condition take place:

2L+R · RH ≤ V0. (19)

Let the condition (7) is violated. In this case, we propose the FSM U4 (Figure 5). In this FSM,
the EMB implements the system (16), the LUTerPhi the system (17) and the LUTerY the system (18).

Y

T

X
EMB Z

Start
Clock

LUTerΦ

LUTerY

Figure 5. Structural diagram of Mealy FSM U4.

Let the following condition take place:

RH ≤ SL. (20)
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In this case, there are R + N LUTs in the FSM circuit. Both LUTers have only a single level of LUTs.
However, if the condition (20) is violated, it is necessary to use the functional decomposition

of functions (17) and (18). In this article, we discuss a case when the condition (20) is violated.
Also, we discuss the additional condition: we could use only a single EMB. This restriction could be
connected with the fact that other EMBs are taken for implementing other parts of a digital system.

As a rule, it is very important to choose the state codes leading to minimizing the values of
L( fi) [8]. There are a lot of methods of state assignment targeting FPGA-based design [17–21,24,25].
There is an opinion that JEDI [8] is the best of them [4]. But in the case of U4 there is no influence
of state codes on the hardware amount. Therefore, we do not analyze the state assignment methods
in this article.

4. Main Idea of Proposed Method

Let a Mealy FSM be represented by an STT with H rows. Let us possess only a single EMB
to implement the FSM circuit. Let us have FPGA chip with LUTs with SL inputs. Let the terms Fh
(h ∈ {1, . . . , FH}) form a set F = {F1, . . . , FH}. Let us use the encoding of terms Fh ∈ F to reduce
the number of LUTs in the FSM circuit.

Let us find the value of K for given STT and value of SL, where:

K = dH/2SLe. (21)

Let us discuss a case, when K > 1. It means that RH > SL. Therefore, both LUTerΦ and LUTerY
of U4 are represented by multi-level circuits.

In this article, we propose a method allowing: (1) to diminish the number of LUTs in comparison
with equivalent FSM U4 and (2) to regularize the interconnections. The method is based on dividing
the initial STT by K sub-tables with up to 2SL rows. Let us illustrate this method using the STT of S1

(Table 1).
Let us use an EMB such that the condition (7) is violated for S1. Let the EMB have the configuration

〈SA, tF〉 such that the following conditions are true:

SA − 1 < L + R ≤ SA; (22)

N + R > tF ≥ RH . (23)

The condition (22) shows that it is enough a single EMB to implement SBF (16). The condition (23)
shows that it is not possible to implement an FSM circuit using a single EMB.

Let us find a partition ΠF = {F1, . . . , FK} of the set F such that the following condition takes place:

Rk ≤ SL (k ∈ {1, . . . , K}). (24)

Let it be Hk elements in the set Fk. The value of Rk is determined as:

Rk = dlog2Hke (k ∈ {1, . . . , K}). (25)

Each class Fk ∈ ΠF determines sets Yk ⊆ Y and Ak ⊆ A. The set Ak includes states of transition
written in the rows of STT corresponding to the class Fk ∈ ΠF. The set Yk includes output functions
written in the rows of STT corresponding to the Fk ∈ ΠF. Let us find such a partition ΠF that

|Yi ∩Y j| → min; (26)

|Ai ∩Y j| → min. (27)

In (26) and (27) , there is i 6= j and i, j ∈ {1, . . . K}.
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Let us encode the term Fh ∈ Fk by a binary code C(Fh) with Rk bits. Let us use variables zr ∈ Z
for the encoding. These variables are the same for all classes Fk ∈ ΠF. To distinguish the classes, let us
encode classes Fk ∈ ΠF by binary codes C(Fk) with RC bits:

RC = dlog2Ke. (28)

Let us use the variables vr ∈ V to encode the classes, where |V| = Rc.
Now, the code K(Fh) is represented as

K(Fh) = C(Fk) ∗ C(Fh), (29)

where ∗ is a sign of concatenation. Of course there is RH = Rk + RC.
Let the following condition take place:

∆t = tF − RH > 0. (30)

In this case, some functions Dr ∈ Φ and yn ∈ Y could be implemented by EMB. Let they form sets
ΦE and YE, respectively. Therefore, LUTs should be used for implementing the remained functions.
Let it be ΦL = Φ \ΦE and YL = Y \ YE. Using these preliminaries, we propose the model of Mealy
FSM U5 (Figure 6).

YL
K

T

X

EMB LUTer1

Start

Clock

LUTerK

LUTerΦY

Z

. . .
YL

ΦL
KYL

1ΦL
1

V
ΦE

YE

Figure 6. Structural diagram of Mealy FSM U5.

In FSM U5, the EMB generates functions (16) and the following SBFs:

V = V(T, X); (31)

ΦE = ΦE(T, X); (32)

YE = YE(T, X). (33)

The LUTerk (k ∈ {1, . . . , K}) generates functions:

Φk
L = Φk

L(Z); (34)

Yk
L = Yk

L(Z). (35)

The LUTerΦY implements functions Dr ∈ ΦL and yn ∈ YL where

Dr =
k∨

k=1

CrkVkDk
r ; (36)

yn =
k∨

k=1

CnkVkyk
n. (37)

In (36) and (37) the superscript k means that the corresponding function is generated by LUTerk.
The Crk(Cnk) is a Boolean variable equal 1 if and only if Dr ∈ Φk

L, yn ∈ Yk
L. Also, functions Dr ∈ ΦE
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enter LUTerΦY. Each function requires a flip-flop, so it uses a single LUT. The symbol Vk stands for
the conjunction corresponding to C(Fk):

Vk =
Rc∧

r=1

vlkr
r (k ∈ {1, . . . , K}). (38)

In (38), lkr is a value of the r-th bit of C(Fk), lkr ∈ {0, 1}, v0
r = v̄r, v1

r = vr (r ∈ {1, . . . , Rc}).
Because the condition (24) is true, there are |Φk

L| + |Yk
L| LUTs in the circuit of LUTerk.

If conditions (26) and (27) take places, the number of LUTs in LUTer1-LUTerK is minimized.
Assuming that a Mealy FSM S is represented by an STT, we propose the following design method

for FSM U5:

1. Creating the partition ΠF corresponding to (26) and (27).
2. Executing the state assignment.
3. Creating the DST of Mealy FSM.
4. Creating the sets YE, ΦE, YL and ΦL.
5. Encoding of terms and classes of ΠF.
6. Creating the systems (34) and (37).
7. Transformation of DST.
8. Creating the table of EMB.
9. Implementing FSM circuit with particular EMB and LUTs.

The number of LUTs in U5 are mostly determined by the partition ΠF. Let us discuss how to find
the partition ΠF.

5. Constructing Partition of the Set of Terms

The problem is formulated as the following. It is necessary to find the partition ΠF with K blocks
such that relations (26) and (27) take places. The value of K is determined by (21).

In this article, we propose a simple sequential algorithm for solution of this problem.
We characterize each term Fh ∈ F by two sets. The set Y(Fh) ⊆ Y includes output functions written
in the h-th row of STT. The set A(Fh) ⊂ A includes a state of transition as ∈ A from the h-th row of
STT. If Fh ∈ Fk, then yn ∈ Yk and as ∈ Ak. Of course, the set Φk is determined by the codes K(as) of
states as ∈ Ak.

We use two evaluations in this algorithm. The evaluation N(Fh, Yk) determines how many new
output functions will be added to Yk due to including Fh into Fk. We determine these evaluations as
the following:

N(Fh, Yk) = |Y(Fh) \Yk|. (39)

N(Fh, Ak) = |A(Fh) ∩ Ak|. (40)

There are ∆Z insignificant assignments of variables zr ∈ Z:

∆Z = 2SL · K− H. (41)

They could be used for minimizing function (34) and (35). We propose to distribute terms evenly
among K groups. It corresponds to the vector ∆ = 〈∆1, ∆2, . . . , ∆K〉. Therefore, each class Fk ∈ ΠF
includes Hk elements, where:

Hk = 2SL − ∆k (k ∈ {1, . . . , K}). (42)
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There are two stages in generating each block Fk ∈ ΠF. Let k− 1 blocks be constructed. At the
first stage, we should choose the basic element (BE) Fh ∈ F∗, where there is F∗ = F \ {F1∪, . . . ,∪Fk−1}.
The term Fh is a BE of Fk if it satisfies to the following relation:

|Y(Fh)| = max|Y(Fj)|, Fj ∈ F∗ \ {Fh}. (43)

If the condition (43) is true for terms Fi and Fj, the we choose the term Fj where i < j.
The second stage has Hk − 1 steps. At each step, we should choose the next element of Fk.

To do it, we use the following approach. Let us form a set P(Fk) including terms Fh ∈ F∗ such that
Y(Fh) ∩Yk 6= ∅. Let us select a term Fh ∈ P(Fk) such that

N(Fh, Fk) = max(|Y(Fk) ∪Y(Fh)| − N(Fh, Yk)). (44)

If more than a single term satisfies to (44), then we should choose the term with the following property:

N(Fh, Ak) = 1, Fh ∈ P(Fk). (45)

If there are several terms with the property (45), we choose a term with the less value of h.
Next, we should make P(Fk) = ∅ and eliminate the term Fh from F∗.

The constructing Fk is terminated if: (1) all terms are already distributed (F∗ = ∅) or (2) there are
Hk elements in Fk ∈ ΠF.

Let us discuss an example of creating the partition ΠF for Mealy FSM S1. Let it be SL = 3.
Using (21) gives K = 3. Using (41) gives ∆Z = 24− 20 = 4. Let us form the vector ∆ = 〈2, 1, 1〉. It gives
H1 = 6, H2 = H3 = 7. The process is shown in Table 3.

Let us explain columns of Table 3. There are terms Fh in the column h. The column N(Fh) contains
the numbers of output functions in terms Fh. There are basic elements of F1 and F2 shown in columns
BE1 and BE2, respectively. The symbol I stands for (39), the symbol I I for (40). The sign ⊕ means
that a particular term is chosen as a basic element. The sign “–” means than Fh /∈ F∗. The sign “+”
means that the corresponding term is included into the class Fk. There are terms Fh ∈ Fk in the row
Fk. They are shown in the order of their selection. There are output functions yn ∈ Yk in the row Yk,
the states as ∈ Ak in the row Ak. We determine the evaluation (40) only for terms with equal values
of (39).

As follows from Table 3, there are H1 + H2 = 13 steps in the process of selection. The class
F3 includes terms Fh /∈ F1 ∪ F2. Our approach allows constructing the partition ΠF = {F1, F2, F3}
with the following classes: F1 = {F1, F3, F8, F11, F12, F15}, F2 = {F4, F7, F13, F14, F18, F19, F20} and F3 =

{F2, F5, F6, F9, F10, F16, F17}. It gives the following sets: X1 = {x1, x2, x3, x4, x6}, X2 = {x2, x3, x5, x7}
and X3 = {x1, x2, x3, x4, x6}, Y1 = {y1, y2, y5, y9, y10}, Y2 = {y1, y4, y7, y11}, Y3 = {y3, y6, y8, y9},
A1 = {a1, a2, a3, a4, a7, a11}, A2 = {a2, a5, a9, a10, a12}, A3 = {a2, a3, a6, a8, a10, a11}. Therefore, there are
the following results for (26) and (27): |Y1 ∩ Y2| = 1, |Y1 ∩ Y3| = 1, |Y2 ∩ Y3| = 0, |A1 ∩ A2| = 1,
|A1 ∩ A3| = 2, |A2 ∩ A3| = 2.
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Table 3. The constructing the partition ΠF.

h N(Fh) BE1
I/II

BE2
I/II

1 2 3 4 5 1 2 3 4 5 6

1 2 ⊕ – – – – – – – – – – – –

2 1 −1 −1 −1 −1 −1 −1 −1 −1/ −1/0 −1 −1

3 2 0 0/0+ – – – – – – – – – –

4 2 −2 −2 −2 −2 −2 ⊕ – – – – –

5 1 −1 −1 −1 −1 −1 −1 −1 −1/ −1/0 −1 −1

6 2 −2 −2 −2 −2 −2 −2 −2 −2 −2/ −2 −2

7 1 −1 −1 −1 −1 −1 −1 −1 −1 −1/0 1+ –

8 2 0 0/0 2+ – – – – – – – – –

9 1 −1 −1 −1 −1 −1 −1 −1 −1 −1/0 −1 −1

10 2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2

11 1 1+ – – – – – – – – – – –

12 2 −2 −2 −2 −2 0/0+ – – – – – – –

13 2 0 0/0 0 0/0 0/0 −2 −2 −2 −2 0 0+

14 1 −1 −1 −1 −1 −1 1 1+ – – – –

15 2 0 0 0 0/1+ – – – – – – – –

16 1 −1 −1 −1 −1 −1 −1 −1 −1 −1/0 −1 −1

17 1 −1 −1 −1 −1 −1 −1 −1 −1 −1/0 −1 −1

18 2 −2 −2 −2 −2 −2 2+ – – – – –

19 1 −1 −1 −1 −1 −1 −1 −1 −1 −1/1+ – –

20 0 0 0/0 0 0/0 0/0 0 0 0+ – – –

Fk F1 F11 F3 F8 F15 F12 F4 F18 F14 F20 F19 F7 F13

Yk y1, y2, y5, y9, y10 y1, y4, y7, y11

Ak a1, a2, a3, a4, a7a11 a2, a5, a10, a12

6. Example of Synthesis

In Section 5, we found the partition ΠF for the discussed example. Let us use an EMB including
the configuration 〈11, 7〉. Therefore, there is SA = 11 and tF = 7. There is L + R = 11 for FSM S1.
The condition (22) takes place. There is H = 20 and SL = 3. Using (21) gives K = 3: so, there is
RC = 2 and V = {v1, v2} obviously, R1 = R2 = R3 = 3. Also, there is RH = 5. Because N + R = 15,
the condition (23) takes place. Therefore, it is possible to use the model U5 for FSM S1. Therefore, let us
design the FSM U5(S1).

Let us execute the state assignment allowing a reduction to the numbers of elements in the sets
Φk ⊆ Φ. One of the possible solutions is shown in Figure 7.

Using Figure 7 and sets A1 − A3 gives the sets Φ1 − Φ3. They are the following:
Φ1 = {D2, D3, D4}, Φ2 = {D1, D2, D4} and Φ3 = Φ.

Using Table 1 and codes form Figure 7, we can construct the direct structure table of FSM U5(S1).
It is Table 4. To construct the transformed DST, it is necessary to find codes C(Fh) and C(Fk).
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T1T2

T3T4
00 01 11 10

00

01

11

10

a1 a2 a10a5

a3 a4 a12a9

a7 a11 a8a6

∗ ∗ ∗∗

Figure 7. State codes for Mealy FSM U5(S1).

Table 4. DST of Mealy FSM U5(S1).

am K(am) as K(as) Xh Yh Φh h

a1 0000 a2 0100 x1 y1y2 D2 1
a3 0001 x̄1 y3 D4 2

a2 0100 a3 0001 x2 y2y5 D4 3
a5 1100 x̄2x3 y4y11 D1D2 4
a2 0100 x̄2 x̄3 y6 D2 5

a3 0001 a6 1110 1 y3y8 D1D2D3 6

a4 0101 a2 0100 x3 y7 D2 7
a7 0010 x̄3 y2y5 D3 8

a5 1100 a8 1010 1 y6 D1D3 9

a6 1110 a2 0100 x4 y3y8 D2 10
a11 0110 x̄4 y1 D2D3 11

a7 0010 a1 0000 1 y9y10 – 12

a8 1010 a9 1101 x5 y1y7 D1D2D4 13
a10 1000 x̄5 y4 D1 14

a9 1101 a4 0101 x6 y1y10 D2D4 15
a11 0110 x̄6 y9 D2D3 16

a10 1000 a7 0010 1 y3 D3 17

a11 0110 a12 1001 1 y4y11 D1D4 18

a12 1001 a10 1000 x7 y7 D1 19
a1 0000 x̄7 – – 20

Let us construct the sets YE, φE, YL and ΦL. To do it, we should find the value of ∆t. There
are RH = 5 and tF = 7. Using (30) gives ∆t = 2. We should eliminate functions Dr ∈ Φ and
yn ∈ Y which belong to K corresponding sets. In the discuss case, there is D2, D4 ∈ Φ1 ∪ Φ2 ∪ Φ3.
Therefore, let us form the sets ΦE = {D2, D4} and ΦL = {D1, D3}. Obviously, there are YE = ∅ and
YL = Y. Now, we have the sets Φ1

L = {D3}, Φ2
L = {D1} and Φ3

L = {D1, D3}. Of course, there are
the sets Y1

L = Y1, Y2
L = Y2 and Y3

L = Y3.
Let us construct the systems of Boolean functions shoving dependence of functions Dk

r ∈ Φk
L and

yk
n ∈ Yk

L on the terms Fh ∈ Fk (k ∈ {1, . . . , K}). To do it, we use the DST (Table 4) and classes Fk ∈ ΠF.
We could find the following systems:
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D1
3 = F8 ∨ F11;

y1
1 = F1 ∨ F11 ∨ F15;

y1
2 = F1 ∨ F3 ∨ F8;

y1
5 = F13 ∨ F8; (46)

y1
9 = F12;

y1
10 = F12 ∨ F15.

D2
1 = F4 ∨ F13 ∨ F14, F18, F19;

y2
1 = F13;

y2
4 = F4 ∨ F14 ∨ F18; (47)

y2
7 = F7 ∨ F13 ∨ F19;

y2
11 = F4 ∨ F18.

D3
1 = F6 veeF9;

D3
3 = F6 ∨ F9 ∨ F16 ∨ F17

y3
3 = F2 ∨ F6 ∨ F10 ∨ F17; (48)

y3
6 = F5 ∨ F9;

y3
8 = F6 ∨ F10;

y3
9 = F16.

Let us encode the terms Fh ∈ Fk in such a manner that there is minimum number of literals
in systems (46) and (48). We could get codes shown in Figure 8.

(a)

z1z2

z3 00 01 11 10

0

1

F8 F3 F11F1

F12 ∗ F15∗
(b)

z1z2

z3 00 01 11 10

0

1

F7 F19 F20F13

F4 F18 F14∗
(c)

z1z2

z3 00 01 11 10

0

1

F2 F5 F10∗

F6 F9 F17F16

Figure 8. Codes of terms of Mealy FSM U5(S1). System (46)—(a), (47)—(b), (48)—(c).

Using the system (46) and Karnaugh map (Figure 8a), we could form the following system:

D1
3 = z̄2z̄3; y1

1 = z1; y1
2 = z̄1z̄3 ∨ z2;

y1
5 = z̄1z̄3; y1

9 = z̄1z3; y1
10 = z3. (49)

The system (49) represents the circuit of LUTer1. It includes 4 LUTs and has 9 interconnections
with the EMB.

Using the system (47) and Karnaugh map (Figure 8b), we could form the following system:

D2
1 = z3 ∨ z2z̄3; y2

1 = z1z2; y2
4 = z3;

y2
7 = z̄1z̄3 ∨ z1z2; y2

11 = z̄1z3. (50)
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The system (50) represents the circuit of LUTer2. It includes 4 LUTs and has 9 interconnections
with the EMB.

Using the system (49) and Karnaugh map (Figure 8c), we could form the following system:

D3
1 = z̄1z3; D3

3 = z3; y3
3 = z̄2;

y3
6 = z̄1z2; y3

8 = z̄1z̄2z3 ∨ z1z̄3; y3
9 = z1z2. (51)

The system (51) represents the circuit of LUTer3. It includes 5 LUTs and has 10 interconnections
with the EMB.

Let us encode the classes Fk ∈ ΠF as the following: C(F1) = 00, C(F2) = ∗1 and C(F3) = 1∗.
It gives the conjunctions V1 = v̄1v̄2, V2 = v2 and V3 = v1. Using these codes and Equations (49) and (51),
we could find the systems (36) and (37). They are the following:

D1 = v2D2
1 ∨ v1D3

1; L(D1) = 4;

D2 = EMB[6]; L(D2) = 1; (52)

D3 = v̄1v̄2D1
3 ∨ v1D3

3; L(D3) = 4;

D4 = EMB[7]; L(D4) = 1.

y1 = v̄1v̄2y1
1 ∨ v2y2

1; L(y1) = 4

y2 = v̄1v̄2y1
2; L(y2) = 3; (53)

y3 = v1y3
3; L(y3) = 2; y4 = v1y3

3; L(y4) = 2;

y5 = v̄1v̄2y1
5; L(y5) = 3; y6 = v1y3

6; L(y6) = 2;

y7 = v2y2
7; L(y7) = 2; y8 = v1y3

8; L(y8) = 2;

y9 = v̄1v̄2y1
9 ∨ v1y3

9; L(y9) = 4;

y10 = v̄1v̄2y1
10; L(y10) = 3; y11 = v2y2

11; L(y11) = 2.

As follows from the system (52), it is necessary to transform the equations for D1 and D3.
But we can escape it using the following approach. There is L(D2

1) = 2. Let us multiply it by
v2. It gives D1 = v2(z2 ∨ z2z̄3). Now, we could represent D1 as D1 = D2

1 ∨ v1D3
1 with L(D1) = 3.

So, now it is enough a single LUT for implementing the function D1. The same could be done for y1.
But it is necessary to apply the rules of functional decomposition for functions D3 and y9. For example,
there are two LUTs in the circuit for D3 (Figure 9).

LUT1
D3

1

v1 f1 D3v2 LUT1
D3

3

Figure 9. Implementing the function D3.

The equation D3 is represented as f1 ∨ v1 D3
3, where f1 = v̄1v̄2D1

3. The equation for y9 will be
the following: f2 ∨ v1y3

9. Here f2 = v̄1v2y1
9. Therefore, there are two LUTs in the circuit of y9.

To find the systems (16) and (31), it is necessary to transform the DST of Mealy FSM U5.
To transform the DST, it is necessary to delete the column as, K(as), Yh and Φh. They are replaced
by the following columns: C(Fk), C(Fh), Vh, Zh, YEh and ΦEh . The column Vh includes the variables
vr ∈ V equal to 1 in the code C(Fk) from the h-th row of transformed DST. The column Zh includes
the variables zr ∈ Z equal 1 in the code C(Fh) of the term Fh h ∈ {1, . . . , H}. The column YEh
includes the functions yn ∈ YE generated during the h-th transition of FSM. The column ΦEh contains
the variables Dr ∈ ΦE equal to 1 in the h-row of initial DST. In the discussed case, there is YE = ∅ .
So, the column YEh is absent in the transformed table of Mealy FSM U5(S1) (Table 5).
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To implement the functions Z(T, X), V(T, X), ΦET, X and YE(T, X), it is necessary to construct
the table of EMB. It contains the following columns: K(am), X, Z, V, ΦE, YE, q. The addresses of cells
are determined by concatenations of K(am) and X. The table includes HE rows:

HE = 2L+R. (54)

It is necessary H(am) rows to represent transitions from a state am ∈ A, where

H(am) = 2L. (55)

Using (54) and (55) gives HE = 2048 and H(am) = 128 for U5(S1). The first 8 rows of table of
EMB is shown in Table 6. These rows represent transitions from the state a1. There is x1 = 0 for these
rows. Therefore, these 8 rows correspond to h = 2 from Table 5. Due to Ye = ∅, we do not show
the column YE in Table 5.

Table 5. Transformed DST of Mealy FSM U5(S1).

am K(am) C(Fk) C(Fh) Vh Zh ΦEh h Xh

a1 0000 00 110 – z1z2 D2 1 x1
*1 000 v2 – D4 2 x̄1

a2 0100 00 010 – z2 D4 3 x2
1* 001 v1 z3 D2 4 x̄2x3
*1 010 v2 z2 D2 5 x̄2 x̄3

a3 0001 *1 001 v2 z3 D2 6 1

a4 0101 1* 000 v1 – D2 7 x3
00 011 – z2z3 – 8 x̄3

a5 1100 *1 011 v2 z2z3 – 9 1

a6 1110 *1 100 v2 z1 D2 10 x4
00 100 – z1 D2 11 x̄4

a7 0010 00 001 – z3 – 12 1

a8 1010 1* 110 v1 z1z2 D2D4 13 x5
1* 101 v1 z1z3 – 14 x̄5

a9 1101 00 101 – z1z3 D2D4 15 x6
*1 111 v2 z1z2z3 D− 2 16 x̄6

a10 1000 *1 101 v2 z1z33 – 17 1

a11 0110 1* 011 v1 z2z3 D4 18 1

a12 1001 1* 010 v1 z2 – 19 x7
1* 100 v1 z1 – 20 x̄7
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Table 6. Part of table of EMB of Mealy FSM U5(S1)

K(am) X Z V ΦE q
T1T2T3T4 x1x2x3x4x5x6x7 z1z2z3 v1v2 D2D4

0000 0000000 000 01 01 1

0000 0000001 000 01 01 2

0000 0000010 000 01 01 3

0000 0000011 000 01 01 4

0000 0000100 000 01 01 5

0000 0000101 000 01 01 6

0000 0000110 000 01 01 7

0000 0000111 000 01 01 8

7. Experimental Results

To investigate the efficiency of proposed method, we use standard benchmarks from
the library [11]. The library includes 48 benchmarks taken from the design practice. The benchmarks
are rather simple, but they are very often used by different studies to compare new and known
results [26]. The benchmarks are represented in KISS2 format. The characteristics of benchmarks are
shown in Table 7.

We used our CAD tool K2F [26] to translate KISS2 –based files into VHDL-based FSM models.
Next, the Active-HDL environment was used to synthesize and simulate FSMs. To get FSM circuits,
we used Xilinx CAD tool Vivado [27]. The FPGA chip XC7VX690TFFG1761-2 by Vertex-7 [28] was
used as a target platform. The chip includes LUTs with 6 inputs and EMBs with configurations from
〈15, 1〉 till 〈9, 64〉.

We presume that only a single EMB is available to implement an FSM circuit. As follows from
Table 7, the condition (7) takes place for 33 benchmark FSMs (it is around 68% from all benchmarks).
Therefore, it is necessary only a single EMB to implement an FSM circuit for these benchmarks.
We mark this situation by the sign “+” in the column “EMB” of Table 7. Also, we show in this column
pairs 〈SA, tF〉 corresponding to the configuration required to implement the circuit with a single EMB.
The further research was conducted for these 15 benchmarks.

Three discussed methods (U1, U3 and U4) were taken to compare with our approach (U5).
The results are shown in Table 8 (the number of LUTs in FSM circuits), Table 9 (the operating frequency)
and Table 10 (the consumed energy). To design FSM U1, a single EMB was used to implement a part of
FSM circuit. We do not know which part of a circuit was implemented as an EMB. It is up to Vivado
and cannot be directly specified by a designer.

Tables 8–10 are organized in the same order. The rows are marked by the names of benchmarks,
the columns by design methods. The rows “Total” include results of summation for values from
corresponding columns. The summarized characteristics of U5-based FSMs are taken as 100%.
The rows “Percentage” show the percentage of summarized characteristics respectively to U5-based
benchmarks. To design all circuits, we use the mode AUTO of Vivado.

As follows from Table 8, the U5-based FSMs require fewer LUTs than their counterparts based
on other FSM models. There is the following economy: (1) 23% regarding U1; (2) 4% regarding U3;
(3) 45% regarding U4. Therefore, for these benchmarks the U4-based FSMs require the largest number
of LUTs. It is connected with the fact that the condition (20) is violated for all considered U4-based
benchmarks. It results in multi-level circuits implementing functions (17) and (18).
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Table 7. Characteristics of Mealy FSM benchmarks.

Benchmark L N H/RH M/R EMB

bbara 4 2 60/6 10/4 +

bbsse 7 7 56/6 16/4 +

bbtas 2 2 24/5 6/3 +

beecount 3 4 28/5 7/3 +

cse 7 7 91/7 16/4 +

dk14 3 5 56/6 7/3 +

dk15 3 5 32/5 4/2 +

dk16 2 3 108/7 27/5 +

dk17 2 3 32/5 8/3 +

dk27 1 2 14/4 7/3 +

dk512 1 3 15/4 15/4 +

donfile 2 1 96/7 24/5 +

ex1 9 19 138/8 20/5 <14, 19>

ex2 2 2 72/7 19/5 +

ex3 2 2 36/6 10/4 +

ex4 6 9 21/5 14/4 +

ex5 2 2 32/5 9/4 +

ex6 5 8 34/6 8/3 +

ex7 2 2 36/6 10/4 +

keyb 7 7 170/8 19/5 +

kirkman 12 6 370/9 16/4 <16,6>

lion 2 1 11/4 4/2 +

lion9 2 1 25/5 9/4 +

mark1 5 16 22/5 15/4 +

mc 3 5 10/4 4/2 +

modulo12 1 1 24/5 12/4 +

opus 5 6 22/5 10/4 +

planet 7 19 115/7 48/6 <13,19>

planet1 7 19 115/7 48/6 <13,19>

pma 8 8 73/7 24/5 <13,8>

s1 8 7 106/7 20/5 <13,7>

s1488 8 19 251/8 48/6 <14,19>

s1494 8 19 250/8 48/6 <14,19>

s1a 8 4 107/7 20/5 +

s208 11 2 153/8 18/5 <16,2>

s27 4 1 34/6 6/3 +

s298 3 6 1096/11 218/8 +

s386 7 7 64/6 13/4 +

s420 19 2 137/8 18/5 <24,2>

s510 19 7 77/7 47/6 <25,7>

s8 4 1 20/5 5/3 +

s820 18 19 232/8 25/5 <23,19>

s832 18 19 245/8 25/5 <23,19>

sand 11 9 184/8 32/5 <16, 9>

shiftreg 1 1 16/4 8/3 +

sse 7 7 56/6 16/4 +

styr 9 10 166/8 30/5 <14,10>

tma 7 8 44/6 20/5 +
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Table 8. Results of experiments (the number of LUTs).

Benchmark U1 U3 U4 U5

ex1 22 19 48 36

kirkman 30 26 27 11

planet 21 16 51 38

planet1 21 16 51 38

pma 28 23 27 14

s1 26 23 24 12

s1488 24 21 52 37

s1494 28 24 50 39

s208 29 23 8 7

s420 38 36 8 7

s510 39 36 22 15

s820 40 34 47 36

s832 41 34 47 35

sand 27 23 29 16

styr 26 20 31 18

Total 440 374 522 359

Percentage 123% 104% 145% 100%

Table 9. Results of experiments (the operating frequency, MHz).

Benchmark U1 U3 U4 U5

ex1 141.43 105.78 158.28 212.93

kirkman 125.78 107.81 155.11 174.73

planet 122.01 105.41 124.31 187.95

planet1 122.01 105.41 124.31 187.95

pma 115.41 114.49 127.65 186.22

s1 124.49 117.80 132.85 178.84

s1488 127.80 112.79 131.77 186.37

s1494 122.79 124.92 135.73 181.62

s208 144.92 128.04 144.05 209.36

s420 148.04 112.66 152.65 192.14

s510 122.66 111.42 138.75 192.87

s820 121.42 88.65 133.36 163.18

s832 98.65 115.57 100.53 184.69

sand 135.57 104.68 146.78 178.65

styr 114.68 116.47 115.69 181.22

Total 1887.66 1671.90 2021.82 2798.72

Percentage 67.4% 59.7% 72.2% 100%
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Table 10. Results of experiments (the consumed energy, Watts).

Benchmark U1 U3 U4 U5

ex1 3.560 3.290 3.014 2.918

kirkman 4.922 3.562 2.811 2.476

planet 3.222 3.756 1.727 1.527

planet1 3.222 3.756 1.727 1.527

pma 4.778 4.915 4.257 3.683

s1 3.694 3.813 3.578 3.058

s1488 1.586 2.412 1.449 1.785

s1494 1.730 2.398 1.453 1.302

s208 3.005 3.544 2.574 2.248

s420 1.604 3.384 1.543 1.292

s510 1.883 1.996 1.878 1.682

s820 2.465 2.161 1.756 1.843

s832 2.515 2.504 2.193 1.732

sand 2.579 2.578 2.385 2.017

styr 1.467 1.556 1.307 1.112

Total 42.232 45.625 33.652 30.202

Percentage 139.8% 151% 111.4% 100%

As follows from Table 9, the U5-based FSMs have the highest operating frequency as compared
to other investigated FSMs. We think that this is due to the smaller number of logic levels and
inter-level connections compared to other investigated FSMs. But we cannot prove this statement
because Vivado does not show these details about implemented circuits. There is the following
gain in operating frequency: (1) 32.6% regarding U1; (2) 44.3% regarding U3; (3) 27.8% regarding U4.
The lowest frequency takes place for U3 —based FSMs. It is connected with rather big amount of inputs.
Because L + R >> SL, the circuit of LUTerP is multi-level. For discussed benchmarks, the number of
logic levels in U3-based FSMs is higher than it is for FSMs produced by other investigated methods.

As follows from Table 10, the U5-based FSMs consume less energy than their counterparts based
on other FSM models. There is the following economy: (1) 39.8% regarding U1; (2) 51% regarding U3;
(3) 11.4% regarding U4. It is connected with the fact that U5-based FSM circuits have fewer LUTs and,
therefore, interconnections compared to other investigated FSMs. Interconnections are known to be
responsible for up to 70% of energy losses in FPGA-based circuits [26]. The results shown in Table 10
include the total power value in Watts. It should be noted that the total power consists of individual
powers such as: static power, I/O, signals, LUT as Logic, F7/F8 Muxes, BUFG, registers and others.
Furthermore, the frequency has a very strong impact to the power consumption.

Therefore, our approach produces better results for FSMs whose circuits cannot be implemented
as a single EMB. Of course, this conclusion is true only for the benchmarks [11] and the device
XC7VX690TFFG1761-2. It is almost impossible to make similar conclusion for the general case.

8. Conclusions

Contemporary FPGA devices include a lot of look-up table elements. It allows the implementation
of very complex digital system using only a single chip. But LUTs have rather small amount of inputs
(SL does not exceeds 6). This value is considered to be optimal [6]. Such a limitation leads multi-level
circuits representing, for example, sequential blocks of digital systems. To design multi-level circuits,
the methods of functional decomposition are used. But these blocks can be synthesized using different
methods of structural decomposition. As our studies [26] show, the structural decomposition can lead
to FSM circuits with better characteristics than their counterparts based on functional decomposition.
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The aim of this article is a presentation of a novel method of logic synthesis targeting Mealy FSMs
implemented with LUTs and a configurable EMB. It is the method of structural decomposition based
on encoding of product terms of Boolean functions representing FSM logic circuits. The essence of our
approach is a splitting of the set of terms in a way minimizing the number of LUTs in FSM circuits.
The proposed method is technology depended because it takes into account the number of inputs of
LUT elements.

The experiments conducted using the Xilinx CAD tool Vivado 2019.1 clearly show that
the proposed approach leads to reduction for such values as the number of LUTs, propagation time
and consumed energy in comparison with FSM circuits based on known methods of terms encoding.

There are three directions in our future research. The first is connected with development design
methods targeting FPGA chips of Intel (Altera). The second direction is connected with using our
approach in real devices such as PDMS micro-optofluidic chip [29,30]. The last direction targets
sequential blocs represented by Moore FSMs.
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Abbreviations

The following abbreviations are used in this manuscript:

BIMF block of input memory functions
BOF block of output functions
COF collection of output functions
DST direct structure table
EMB embedded memory block
FSM finite state machine
FPGA field-programmable gate array
LUT look-up table
SBF systems of Boolean functions
SOP sum-of-products
STT state transition table
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