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Electromagnetic Excitation of PEC Slotted
Cones by Elementary Radial Dipoles — a Semi-
Inversion Analysis
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Abstraci— his paper presents a novel method that is based on
the vse of the Kontorovich-Lebedev integral transform and the
semi-inversion technique. developed for building the efficient and
accurate numerical solutions to the boundary-value problems of
clectromagnetic wave scattering by the 3D coaxial slotted cones.
A generie structure under consideration consists ol two semi-
infinite coaxial circular perfectly electrical conducting (PEC) and
zero-thickness cones with periodic longitudinal slots excited by a
radial dipole. The considered problem is reduced to an infinite set
of linear algebraic equations of the Fredholm second Kkind that is
truneated and solved numerieally. A detail analysis of the
accuracy and convergence of the method is presented. The hasic
clectromagnetic characteristics such as the field behaviour near
the structure singularities, field patterns in the wave zone, and
field polarization  for  various problem parameters are
investigated for the cones excited by on-axis elementary dipoles.
The slotted cones allow obtaining more divectional patterns in
wider band than the solid ones.

fuden Terms—Coaxial cones, Kontorovich-Lebedey integral
transtorm, semi-inversion method, tip hehaviour.

. INTRODUCTION

PL’(‘ conical and biconical surfaces belong to canonical

oceometries in diffraction theory, As for the applications.
among the microwave and radiolrequency antennas conical
and biconical hollow metallic structures are well known Tor
their wideband properties [1].

The solution of the scalar problem of the acoustic wave
scattering by a hard infinite cone was obtained long ago |2].
Fowever, the scatlering by conical structures of various

seometries still keeps drawing atlention of many researchers

[3-4]. Various forms of the rigorous field representation in the

presence of semi-infinite PEC cones and also the asymptotic

solution  analvses  were  considered  in |3-11]. Solution

representation in the form ol series in eigenlunctions [3] is of

limited use because of slow convergence of these series in the
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Fig 1. Problem geometry. Conieal structure X=X, X, consists of two
semi-inlinie PEC circular cones A . cach with & Jongitudinal

periodical slots S - having common vertex O and axis OZ0 A radial
dipole sporee s aL i
high-frequency domain. In this sense solution in the form ol a
contour integral [8] is more convenient and enables one to
obtain an expression suitable for numerical analysis in the
domain of specular reflection.

In the case ol dilfraction by a semi-infinite elliptic cone it is
possible to separale variables in sphero-conical coordinate

system [12-13]. DifTraction by cones of arbitrary cross section

has been a challenge in diffraction theory for many years |4,
4], The approach developed in [4, 14] allows to obtain a
solution in the high-frequency case, but it is not valid for the
investizgation ol the field in the near zone and at the cone tip.
Numerous papers have been devoled to the investigation of
diffraction by finite cones, The KirchholT method or physical
optics (POY was applied in |1 5] where the main contribution of
a finite cone o the axially scattered field was found. Later the
method ol seometrical theory of diffraction (GTD) and more
universal method of the physical theory of diffraction (PTD)
were applied for solving the diffraction problems for [inite
circular and elliptic cones [16-18]. However the solutions
obtained by such heuristic methods fail (o determine the field
and current near the tip of the cone and require verification by

the accurate methods [19-201.
Studying the ficld behaviour near the singularities of a
scatterer is one of the principal tasks in the rigorous diffraction
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theory. Various types of structures with singular points are
widely used in  the waveguide and antenna systems,
Knowledge of the lield behaviour near such points and edges
allows estimates of the accuracy of the numerical solutions and
speeding up the algorithm convergence. Works [21-23] were
devoted 1o studying the field behaviour near the tip of a PEC
solid cone of arbitrary cross-section (in particular. a plane
angular sector).

Open conical and biconical structures find applications, for
example, in radar where reflectors with the necessary beam
forming properties can be developed. Besides. it is known that
lor the radiation of powerlul super-wideband impulses the

radiation patiern (RP) of an element ol a scanning antenna

wrating should be close to the cardioid pattern.

Antenna built on the basis of 4 sohlid cone or bicone can be

super-wideband however fail to produce directive RPs. The
use of additional reflector for obtaining a cardioid RP sharply
worsens impedance characteristics ol a conical structure and

increases its size. A remedy can be a replacement ol the full
metallic conical surface by its part. This motivates research
into electromagnetic wave dillraction problems for more
complicated open conical structures.

Active development in the area of clectromagnelic antennas
design and measurements requires accurate and efficient
algorithms  of modelling  of  wave

numerical computer

prapagation and scatlering.  For the 3D wave diffraction

problems associated  with  complicated conical  radiating
structures this is a tedious task for the finite-difference, beam
propagation, linite element or transmission line methods. The
use of semi-analytical techniques promises a great advantage
especially when multiple caleulations are nceded in the
computer-aided design.  Therefore the importance ot the

development ol a mathematical approach that guarantees fast

convercence and controlled accuracy when applied 1o conical

structures with slots 1s evident.

An o accurate  approach  to o solving  the  problem  of

electromagnetic wave diffraction by a PEC
roposed in [24]. It is based on the Kontorovich-Lebedey
Prog

integral transform, which allows studying 2D and 3D problems

infinite cone was

with complicated open conical geometries [25]. This approach
was applied 1o a single infinite PEC cone with longitudinal
slots in [26]. The analvtical solutions in some special cases
such as “semi-transparent” cone (e with farge number of
slots (N == 1) much narrower than the period) and cones with
narrew slots or strips were obtained. However, no numerical
analysis for arbitrary slot size was perlormed.

In view of these circumstances, the development and
application of an accurate analvtical-numerical approach for
solving the problems with 3D PEC open canical and biconical

slotted structures for o wide range of angular paramelers are ol

areat interest. We are zoing to build this approach using the
semi-inversion technique.

Fhis paper is organized as follows. The problem geometry
and solution method for the radial dipole source are presented
in Section Il. The dual series equations are converled 1o a

Iredholm second-kind infinite matrix equation by the semi-
inversion technique in Section [11. Special attention is paid in
Section IV to the regions close to the structure tip and slot
cdges. where the lield exhibits singular behaviour. Sections V
and VI present some numerical characteristics for the scattered
show its  polarisation and  far-field patterns.

field that

Conclusions are given in Section VI

1. PROBLEM FORMULATION
A 3-D

considerec

double-cone  structure  presented in Fig.l s

in the spherical coordinates  (r.8,) with the

origin at the common tip of the cones. A time-harmonic

( ~expliean) ) radial dipole with the moment g, = p"'% (s =1

is for the electric dipole. s =2 is for the magnetic one) is

located at the point B,. The cone surfaces £ are defined by

the equations &=y . j=1.2. Lach surface has zero thickness
and N slots of the angular width ¢ (for cone Z,) and of the
angular width ¢, (for cone X, ). cul with the same angular
period [ =2x/N . The orientation of the slots on inner cone
relative to those in the outer is arbitrary.

Denote the PEC strips of the cone L, as M and the slots
as S, The vectors £ and A of the total field must satisty the
equations. PEC
|, =0. (M=MUM,) the condition of local

Maxwell boundary condition on  the

strips: £

T
eneray finiteness and the radiation condition at infinity.

The conditions mentioned above guarantee the uniquencss

of solution [27]. In order to find it. it is convenient to use the

auxiliary function, Debye potential 0", which satisfies 3D

homogeneous Helmholtz equation, A +k70" =0 (kisthe
wavenumber) outside the cone strips and the source: boundary

condition on the strips. & '™ an | =0, where y=1 for

A
the Dirichlet condition, and s =2 for the Neumann condition;
the condition of radiation, and the condition of local energy
finiteness. Note that it using only one Debye potential (either
p'' ar ') is enough to solve the problem with a radial-
dipole excitation. In the case of source being arbitrarily
oriented dipole or plane-wave excitation one needs (heir
combination to build the solution,

Decomposing the total field into incident and scattered

fields, £=£"+E" . H=H"+H", werepresent v'”as

OE el s, ettt e n
ro4nR

where vl and v correspond to the dipole field and the
feld scattered by the conical structure, respectively.

To lind the solution we apply the Kontorovich-Lebedev
integral transform |24}
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and expand the unknown spectral density function as follows:

1.‘) ;\.I\ ' = \}' H.}. v 1y

(0 (0p) (3)

where /77 (k) s the Hankel function of the second kind.

coefficients ¢« and 5"

"t

(6,) are given in Appendix A,

is unknown function. The radial dipole can be

:’.«';‘:'(E)._ o)

located inside the cone T (6, <y p=11 or outside the
coneg I, (8 > pes p=2))

The houndary condition imposed on the strips and the field
continuity condition on the slots yield, together with (3). the
dual series equations (DSEs) for the unknewn coeflicients

0 connected with the expansion coefficients of &0, )

=g -"(\;_I, Vo WA e M i )l =% 2 {-—l—}
2 )| # | o
> [\ A+ }J ; Bl )
|: h i \|\[- o ey )_'I I_:-:\.":_h [NRIESTH (.r . }]: |J
| It | il I me | I 2 |
I - tpe.\‘_ F=L2 (3)
I' ] e | [ e
M =<0= T - S, S, =
l_ / | ,
Coefficients g ""(v ) ) e are  given in

Appendix B. Note that ! behave as

B = | N == (6)
(m+v) N-

where w1/ N =m, —v . m, is the integer nearestto m/ N |
—1/2=v<1/2,and 8(s)=(-1)""
[n particular case when the cone X, is absent. ie. T=%,.

DSES (), (5) can be reduced to (omitting index j);

peM (7
Zl N{n+ \‘J] i ”| e Wi =0 pe S (8)

[ the cone X, has slots and £ has not, DSEs (4). (3) can

be written as;

@l B peM . ;=12 (9)

A

Tl e 8

= [-"V(m.. + \')]i"" M(l

m

(10)

THE SECOND KIND

(7)(8). and (9)-(10)
the semi-inversion

FION OF

I FREDHOLM MaTRIN EQUA

Each pair of the obtained DSEs (4)-(5).
is the first-kind equation. By using
technique (for a review of such techniques in computational
clectramagnetics see [28]) based on analytical solution to the
Riemann-Hilbert problem [29], these DSEs are reduced to the
Fredholm infinite matrix equations ol the second kind that can
he elficiently solved numerically.

For example. for the radial electric dipole (s =1 ) DSEs (7)-

(8) are reduced to the following matrix equation:

1y l’(!T{ ”l)"—l? I(_Ul}) = |p Sl g <|| ",
P i (S e S o B S =7
e 2 5 Ol ), (),
(1)
w0 =y Ry = 3 s ety = ey,
L ? '
(12)
where
m, MtV |H| I I
L= (=1 — got Jxt 13
0" m, v J'?(‘ {’)1 (12)
|-80,=[1-ell,] (14)

coelficients V"™ (u ). 1" "(u)) are presented in Appendix C.

uy = cos| 2(l - d)/1].

This sel ol equations can be written in operator notation as:

P (#,) is the Legendre polynomial.

Y4 dl¥=5, (15)
where

Y={w.}  .a={a}" ,B={b (16)

o {run'”

and the elements of a

(12).

and A = arc defined by (11) and

i

The most important feature of (13) is that || A | |y, <%

and || 8|, <= (provided that the dipole is located oft Z).

Then (13) is a redholm second kind operator equation.

The set (9. (10} can be reduced to a similar matrix
equation, Note that the coefficients ¥ do not depend on the
wavenumber that is convenient for finding the field both near
the vertex (k<< 1) and far from it (kr>=1). The solution
convergence is guaranteed by the Fredholm nature of (15), in

the sense that more accurate numerical solutions are obtained
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by salving linite matrix cquations truncated 1o progressively

larger orders.

e(l) )
Po* — oy |- == d=307
001k \o s (il
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Fig. 30 Condition number of the matrix equation (131 vs, the sfol

widih ‘The sourge is on the cone axis. @, =7 . and cone X has one

The rate of convergence can be estimated through the

calculation ol the relative error ol truncation [28]:

e = ol TR e P (17)

where £ is the order of truncation. The plots presented in I'ig.
2 show that taking only 40 equations is enough to obtain the
solution with relative error (L)< 10" for a cone with
arbitrary slot width.

T
quantity
stability of numerical solution. The condition number of the

e condition number of the matrix is another important

because the smaller this number, the better the

matrix (15) is calculated as v =|/+A[ || (/+4)"

. where
[ is the identity operator, and depicted in Fig. 3. As the value
of v does not exceed a few hundred. the abtained equations

are well-conditioned,

IV, FIELD NEAR TUHE STRUCTURE SINGULARITIES

The analvsis ol the field behaviour near the structurc
singularities, such as the cone tip or slot edges. is onc of the

key problems in the ricorous wave diffraction theory. The
knowledge ol the field behaviour is important for building the
efficient computational codes for 3-D structures of mare
wave studied the field bebaviour (i) near

veneral shapes. We
the tip of the cone X =2, with one slot (cone X is absent)
(Figs. 4 and 3} and (ii} near the common tip of two coaxial
cones. =X, lJ T, where cone X has no slots and cone X,
has only one slot (Figs. 6 and 7). As a source, we consider a
radial clectrical dipole (s =1) on the cone axis (6, = 7 ).
The field components near the conical tip behave as
Hl~ hr ", kr<<]

| E | ke (18)

where o =—1/2+min{i,. and g are the eigenvalues of

Debye potential o' (see Appendix D),
Fig. 3 gives the dependence of the electrical lield singularity

degree. . on the conical angle v for several values of the

slot width "', for the structure (i). There is also a curve for the
solid cone that is shown to demonstrate the slot effect. It is
obvious that with the appearance of a slot the degree of

clectrical field singularity increases. Magnetic field has no
fie

d singularity near the cone tip.

X

Fia 4 Near-field region in the case (D,

oL
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Fig. 5 Field singularity e in the case (1) for different slot widths.
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Fia. 6, Near-field region in the case (1)
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Fig. 7. Field singularity oo the case {113 for different anales v of

the salid cone

he behavior ol the electrical field singularity value in the

7 as dependences ol ¢ on the slot

case (1) is presented in Fig

width " for several values of the solid cone angle v, . It can

be seen that increasing the angle v, leads to decrcasing the
singularity of the electrical lield near the tip.

If o, = 180", the plane with a cut turns to the hall-plane and
the singularities of £ w A lields turn to the known square-
root singularities, | k| "7, near the edge [23]. This fact is the

evidence of the correctness of the obtained results,

V. POLARIZATION OF THE SCATTERED FIELD

To analyze the polarization of the scatlered field it is

convenient to introduce the polarization  characteristic,

Y(0.9)= L, (£, . inthe form:

Y(O.@)= Y (6.@) (19)

As known. the values Arg Yr0,0)==xn/2 correspond 1o
the circular polarization of the field, and Arg V8 pi=0+r
are for the linear polarization. The rest of the argument values
correspond Lo the  elliptic polarization.

e.0)—0 or

It is known thal the polarization of the field scattered by a

V{0.q) | 2, polarization becomes linear.

solid PEC cone is linear if the source is placed on the cone
axis. According to the obtained results (Figs. 8, 9), we can
conclude that the field scattered by the cone with one slot has

an elliptic polarization. Only for a narrow slot (¢ <10") ar a

Naote  that if

narrow strip (o = 300") does the palarization of the scattered
| |

lield ransform to linear.

ArgY(p)
020
e —_—— £l i
1 < . --. - .l‘. L
e =8, 0=, ke =1 | ',.--‘" =
010k ....I,I Lakdd d ]SU
o at .'
0.08<} o 2240
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- &t vt _aepl
ODJ:-olouoioonuoonoouo{iﬂfrlﬂnn““non“nu d=339
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Fig. 9

cone with oane slot. as a function of the szimuth coordinate ¢

Absolute value of the polarization characteristic for one

VI FIELD IN THE WAVE ZONE

Consider the Tar zone where the diffracted feld is an
outgoing spherical wave. The diffracted field can be presented
as the sum ol an image field reflected [rom the cone surface
and the field caused by presence of the tip. There is no field of
specular reflection in the domain of the space delined by the
inequality 2y, <@. that is why here the diffracted field is
characterized only by the field scattered from the common tip
ol the double-cone surface X . The numerical solution of the
matrix equation (13) and the use ol an asymptotic form
{ kr == 1) tor the potential (2) allow studying numerically the
diffracted ficld paltern in the wave zone. Suppose that the
source is at the cone axis, ie. ¢, =0. 0, =7, and m=0.
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Fig, 10 The same as in Fig 100 however ford =90° and a radial

magnetic dipole as a souree,

Fig. 10 depicts the scattered E-field patterns for one PEC
cone with one slot { & = 1) and two PEC coaxial cones excited

by the radial electrical dipole. For the magnetic dipole case,

see Fig. 1L The patterns are svmmetrical with respect to the
slot center (o =0"). Analysis shows that their shape can be
controlled by the change of the slot width ¢" and cone angles
¥, .. One can see that the presence of the solid cone X, elTects
the scattered feld in small manner in the case of excitation
with a radial clectrical dipole (Fie, [0} However, if the source
is w radial magnetic dipole (Fige. 1) the solid cone has more

significant influence on the scattered leld.

VI CONCLUSIONS
The PEC coaxial slotted cones excited by elementary radial

dipo

¢s have been considered. The proposed solution method
inteural

translorm and the semi-inversion technique. Each problem has

is based on applying the Kontorovich-lLebedev

been reduced 1o solving an infinite Fredholm second kind
equation with a well-conditioned matrix. This can be done
numerically 1o any pre-specilied accuracy (within machine
precision) after matrix truncation,

Numerical results for the field singularity in the vicinity of
the PEC slotted cone tip have been presented

. This may be
used to improve the convergence of numerical solutions for
many other practical problems. by introducing the singularity
as a priord information. Our results. in particular, allow finding
the field behaviour near the Aip of a cone with longitudinal
slots that can be used in the electromagnetic diagnostics of
cracks on a conical surface.

We have also  analyzed the effects accompanying
electromagnetic wave diffraction by the structure consisting of
lwo coaxial PEC circular cones with longitudinal slots. They
have shown that the shape of the far-field pattern can be
controlled by the change of the slat width and cone angles.
One can sce that the presence of a solid cone X has
signiticant influence on the shape of the pattern in the case of
the radial magnetic dipole as a source, in contrast to the radial
electric dipole. Also. by varying the slot width one can change

the shape of the scattered field pattern considerably.

APPENDIX A

Coefficients for the unknown function (3) arc as follows:

_ i B v, T/ 2=m+i1)
i oo BT Bl o 0 TR, iy
&, cosh e Jn M1/ 2+m+it)
f’.'-."""(‘l..)—-;’F"-F('r’..=9.=:”?‘T}}t({—ﬂ”(@:.—';-‘,..))v @1)
an ' '

where /(8.0 ) [P (cos)PY . (~cos0,),0 <0,
vhere /(0.0 .m.1) =< ' i :
: [P (~c0s0)P, (cas0, )., <8’

P {x) is the associated Legendre function and y(a) is the

Heaviside function, t.e. |if ¢ =0 or 0 otherwise.

The unknown function &/

=t

can be presented in the form of
the Tollowing serics in separate regions:

o i s (1)l B S

i

o = ) 2 B,

(22)

; v <0<y,

(—cos @)™ v <0 <

The links between the unknown coefficients o!l!, B, £0F

it ? w2

n'!are determined due to the boundary conditions on the
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surfaces 8=y, B=v,. therefore coefficients P’ and &

vl
can he expressed through o and 0! as

. i=1
Fraa i o * (cosy)—nt! 4 — P (=08 Y)
.fll-}. = —_— - !\ . —_——
C—C ) B a5
dy
(23)
BT i B gy
_Ua oy | Ao 5 %) e N CI’I‘;-’Z.I 2l C0s Y, )
' 2
(=0 ;-_-—__-I A T
(24)
where
! W ! 2
: v P ) - P 0SS
(.:ff];" {fl\': : {25;
o ) o ;
o Gt o Sl ) PR {eoss)
dy ey '
APPENDIX B
Unknown coelTicients in DSEs (4)-(5) have the [orm as
2y 1=l
il ] (26)
where f=1.2 and
d! e
e — PV (e0s ) (27)
o t}"'f'l' '
- o @
_llh.-. i 4 \ | AT {COS ?_‘_J {28}
: c..";f:
Coefficients g™y Y. 4" gl in DSEs (4)-(5) are

agiven by formulas

it [ A
81 (0) = —— - (8,0
g () Bk de™! (

g (0.8, m = L T). (29)

7 ) i
J|y?ll‘f =N o I
' ol

e n{ "’

dv

i (=1 ey

Nin+w]" i(]—z:f.j"...l— - T

(s 4Tt (n+v)N) (=€)
(atit—(n+v)N) o i Z I
il +it—(n+v)N) clr’. P (asy ) Ll’. PO sosy )
ayys Cdy : .

g
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APPENDIX C
According to [29]. coefficients V"™ (w,). V", '(u,) in the

matrix equation (1 1),(12) are given by

[ 1 ;
‘ EZ_,:,p"”"’(”J;"""(H)’ n =l
ve ey =4 %|P_I;f'n) - Py, m=0 (32)
| < .
e : Vo =
! 5 Z.‘.p P, () ms0
where
p, =l pluy=-u. p_,(uy="P ()= 2uP ()+ P .(u).and
2]
P iy = — P ) - W) py—p o). 33)

N+ PA=u)+ 8 (=u)

A shorter form ol the matrix elements can be obtained after
Jaining (1) and (12) in one equation: for details see [30].
APPENDIX D
To find the eigenvalues, substitute the Debye potential u!”

(2) into the formulas for the lield components:

ar e :
Fot B (") BB (34)
oo ard " wsin0 Ap
| ok 2
(L L Y O &SV
"opsin droe i w oo

Then. alter integrating along the imaginary axis ([l=/1.
0s1<
hall" plane ( Refi = 0). one can obtain the feld representation

rec ) and closing the integration contour in the right

in the form ol series in residuals,

[n this case, the spectrum ol the boundary-value problem
{i.e. the set ol eigenvalues) coincides with the poles of
coefficients x!'". To find the poles we use the Cramer rule:

A

| i
-\‘_.I. Viga _'Ef_l. N (
""\_r'.'

fad

o

where \" is the determinant of the matrix (11)-(12). Thus,
finding the spectrum is equivalent to finding the reots of
equation

AP (d,y, NY=0. (36)
The distinctive feature of this problem is that the spectral

parameter can be any of the angular values v, and « ; it is

i
also a [unction of the number of strips N . The spectrum is
discrete and defines the natural modes, which may exist in the



given structure. The smallest cigenvalues determines the field
behavior near the tip of the open cone (see [21] Tor details).
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