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Figurate Numbers (Arithmetic Progression) and Electromagnetic Wave
Scattering on Spatial Lattices of Resonant Magnetodielectric Spheres
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Considered is the problem of electromagnetic wave scattering on complex
spatial lattices of special kind, consisting of resonant-size spheres whose spatial
distribution is controlled by figurate numbers. Expressions for the scattered

fields are derived.

The interest in figurate numbers arose in V century B.C. in Ancient Greece in connection with
the development of Pythagorean arithmetic. The number structures had profound influence on the
medieval arithmetic and continue influencing the mathematics and other sciences of today. There are
various structures of figurate numbers, specified through functions or numerical tables.

Consider a specific structure of figurate numbers, defined through a numerical table [1] and the

function

1+ (s|+ D],

where |S| =0,1,2,3, ..., and |t| =0,1,2,3, ... . A specific table column corresponds to each value of |S|

The column |s| =0 corresponds to the arithmetic natural series.

Table
|t| |S| o1 12|34 |5|6|7]|-
0 1f1 (1 (11 ]1]1]1]-
1 21314516 |7|8|9]|-
2 3151719 (11131517 —
3 417 [10[13]|16]19 |22 |25 |~
4 5019 [13(17(21]25]29|33|—
5 6|11 ]16|21|26|31|36|41]|—
6 71131192531 (37|43 (49| -
7 8115(22(29 (36|43 |50|57|—

i Originally published in Radiophysics and Electronics, Vol. 8, No 2, 2003, pp. 206-212.
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The magnitude 1+(|s|+1)|t| is the arbitrary term of the arithmetic progression a;a,+d,
a,+2d, a +3d ... when the first term of the progression equals @, =1and the common difference d

assumes the values d =1,2,3, ...etc. (d =|s|+1).

Of considerable interest are the lattices in which the spatial distribution of nodes is controlled by
numerical structures.

This paper is aimed at solving the problem of electromagnetic wave scattering on special
complex spatial lattices consisting of small-size homogeneous resonant magnetodielectric spheres whose
spatial distribution is controlled by figurate number structures (arithmetical progression) [1]. The
scattered wavelength can be commensurate with the lattice constants, which enables studying the effect
of structural lattice resonances of the electromagnetic interaction between the spheres on internal
resonances of the lattice spheres and their fine structure. The solution describes the domains of abnormal
dispersion of the lattices.

1. Problem formulation and solution

Consider a complex spatial lattice consisting of C sublattices (¢ € C') . The sublattices are
generated by the coordinate representation, whose Cartesian (rectangular) form is

% =[5 -0S(1 Bl - ()5, (s=02122..)
yc,t = [t - 05{(_1)t - 1} ]h - (_l)t_l yc,t:O (t = Oailaiz"")’ (1)

z,, =[p=0.5{(-1)" -1 -(-)""z,,, (p=0,2142,..£[|s|+1]| ),

where the values of d, h, and [ are determined by the conditions x=0, x=d; y=0, y=h; z=0,
z =1 while X, 0> Veso and z, =0 are coordinates of the node generating the sublattice ¢ and located

inside the domain (Fig.1).

0<x.,.gsd,0<y._o<h 0<z  _,<I 2)

The coordinates x,.,y,, and z_, define positions of nodes of the sublattice ¢ outside the

domain Eq.(2) and are functions of the coordinates of x. _,,y.., and z By considering

c,p=0"
X.so>Vero and z, o as certain functions of time, we can introduce a time dependence in the
coordinate representation Eq.(1). Each node of the spatial lattice ¢ Eq.(1) is associated with an ordered

triple of numbers, u =c(p,s,t); the selected node will be denoted u' =c'(p’,s’,¢"), while the node

within the domain Eq.(2) as c(O =0,s=0,¢= O). Setting maximum limiting values for the numbers

p,s,tinEq.(1), we can consider finite and infinite lattices.

The necessary type of the elemental lattice cell (primitive, body-centered, face-centered or other)
is formed from C nodes within the domain Eq.(2), which is replicated by the coordinate representation
Eq. (1) beyond the domain Eq.(2) in the form of a spatial lattice of specific form.
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Fig. 1 shows spatial distributions of lattice nodes when the generating node is at the center of
domain Eq. (2) for the cases p=0,%1;5=0,%1;7=0,+1 and p=0,1,2,3,4,5,6;
s=0,%x1,£2; t=0,£1, 2.
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Fig. 1 Spatial lattice of nodes and problem geometry.

The node distribution along the z axis is governed by the table of figurate numbers (Fig.2). Each
triple of numbers p =0,s,¢ of the plane x__, YessZe pmo 18 associated with a specific number in the
table, for example: point p =0, s =-3, t =—-3 corresponds to the number 13; point p=0, s=-5,
t =4 to the number 25, and point p =0, s =4, ¢ =3 is associated with the number 16.

These numbers determine the number of nodes along the z -axis Eq.(1) for the given node p=0,s,¢

(Fig. 2).

The interaction between the triple of numbers p=0,s,¢ of the plane x_,,y.,,z. ,,and the

c,p=0
number in the table (Fig.2) is determined by the function

1+ (s + D]

Hence, the numbers p, determining the node coordinates along the z-axis Eq.(1) are set by the
sequence

0.41,42,...£([L+ (Js| + ]| - 1,

where |s|,[f}=0,1,2,3, ...
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Fig. 2 Table of figurate numbers on plane X

c,s?

¥,

If the node coordinates in the domain Eq.(2) are varied, the positions of nodes outside the
domain Eq.(2) will shift correspondingly, reflecting cell rearrangement and formation of the spatial
configuration of the lattice. The node separation can be determined from Eq.(1),

2 2 2
rc'(p',s',t'),c(p,s,t) = \/(‘xc',s' - xc,s ) + (yc',t' - yc,t) + (Zc',p’ - Zc,p ) . (3)

In case the center of the domain Eq.(2) is occupied by a single lattice generating node, then for
p,s =0, we obtain from Eq.(1) a plane lattice whose nodes are distributed along the z-axis following

the law of the natural number series (Fig.3).
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p 8 6 42 02468
Fig. 3. Plane lattice of nodes ( p,s =0,¢) Fig. 4. Plane lattice of nodes p,s =1,¢
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With p,s =1,¢ we obtain a plane lattice with the nodes distributed along the z-axis according to
the number sequence (1, 3, 5,7,9, 11, ...) (Fig.4).

For p,s =3,¢ we obtain a plane lattice with the node distribution dictated by the sequence (1, 5,
13,17, 21, ...) (Fig.5).
If p=0,s,t =0 we obtain a linear lattice with nodes distributed along the x-axis.

From the proper sections of the node distribution Eq. (1), one can obtain rearrangeable plane lattices of

various forms. If an elemental cell is formed in the domain Eq.(2), then the lattices of Figs. 3-5 will
contain cells from the domain Eq.(2) instead of single points.

® 0 06 06006006 00 0600 000000000000 _4

pli2 8 4 0 A4 -8 -I2

Fig. 5. Plane lattice of nodes p,s=3,¢

The nodes of the sublattices Eq.(1) accommodate centers of material spheres of radii a,,, .

characterized by the permittivities €., . > M. (denoted below as &, 1., a,). The lattice spheres are
in free space.

We will assume that a, /A <<1 out of the spheres, while inside a sphere the resonant case
a./A, ~1ispossible (here A is the wavelength out of the sphere and A, inside the sphere [2]).

To solve the problem, we will use the formalism of integral equations [3] and perform the
analysis in two stages. First, we will find the internal field in the scattering spheres, and find the field
scattered by the spatial lattice of spheres at stage two. The fields will be represented as follows:

E(F,0)=EF)e'™ , H(F,t)=HF)e'™.

The scattered field can be determined from the known internal field in terms of the electrical,
II¢, and magnetic, I1" , the Hertz potentials:

B\ = (VY + K g0ty )T~ ik psy [ V, 11" ],

_ _ _ 4
Hopy =(VV + K801y ) 11"+ e, [ VT .
The Hertz potentials of the scattered field have the form:
i =L [ £ o1 B (7) (7 - 7)) av,
4z i\ &
()

fin =L (i—ljﬁ‘)(f')f( F-F)av,

_47rV
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where E°(7")and H°(7') are the internal fields of the scatterer; V the scatterer volume; g, and p, are

the free space permeabilities and the function f (|l7 -7 '|) is the solution of

AN (F =7+ e uy f(F = F)) = -4z (F - F)).
It satisfies the radiation condition at infinity and has the form

L e—ki\/%\f—f’\
S (r -r |)=|q—q, (6)

First we will evaluate the internal field of the scatterers for the case of a, /A, <<1 inside the
sphere and a, / A <<1 outside, and then extend the results of the calculations to the resonant case when
a,/ ﬁg ~ 1 inside the sphere. It can be shown that for external points of the sphere, 7 > r', the Green
function Eq. (6) of free space, integrated over the space volume gives:

_’k\/‘?oﬂo" " 47Z' e—iklr

w(r)= _[ |r— | =3 (sinklac—klaccosklac)T, (7)
1

where k, =k,/e 1, ; k =27/ A and r determines the distance from the center to an external point of

the sphere.
The internal field of the sphere at ¢'(p',s',¢') can be found from the set of quasistationary non-

uniform equations, which can be constructed based on integral equations [3]. The non-uniform
equations for an arbitrarily selected sphere are

=, . 1( ¢, =
EOc'(p',s',t') (I" ’t) = [{1 + g[_ - j}ES'(p’,s',t ( ) Zp:zzl:{ (vv + kng:UO ) x

c'(p,s,t)=c'(pls'st'); (c=c’), ®)
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B =1 1 c' [y =
H()cf(pr,sl,tr)(r,r>=[{1+§(jj——1}}Hs/<pf,s.,/)<rJ)—zzz{(vw%oﬂo)x
0

p s t
He m =\ 17 = . 1 &
XE{,UO —l)Wc,(p’S’[) (r)HCO,(p,”) (r ,t)+lk6‘0 {V,E( ):I}J_
C _

. IJWG(P“)(F)Eo(p”)(F’,t
0

I d 17 d -0 - r70 -
where  Eo. o (F'0)y Hopipom(F'50)and  E s (7',1), H cpsn (7', 1) are
field of the internal field of the
Ec(p o (751), H ., (7,1) are the exterior fields of the rest of the spheres

The values W, (7")and

, respectively, the
incident wave

spherec'(p',s',t'),

and the

while

C’Z'p’s’t) (7") are given by Egs. (3), (7) and (8).

—ikyr.,
4 o s )
e =1\ _ : _
W oy ()= E (sinka, —ka, coska, )x ,
1 rc(p ,s't),e(pasit)
—iky,
4o o s )
m =1\ __- . _
Wi (7)= 5 (sinka, —ka, coska,)x
1 P (p'.s"t')c(pasit)

The first terms in the right-hand parts of Egs. (8) relate to the internal field c'(p',s',t") of the

sphere without account of the effect of all other spheres, while the rest of the terms make allowance for
the effect of all other spheres on the scatterer ¢'(p',s',¢")

c=1

Egs. (8) represent a set of 2N = ZZ N, non-uniform vectorial equations , where N is the total

number of the lattice spheres and », is the number of spheres of sublattice c. The solution for a selected
sphere has the form

0 1 - "eu n =1
Ec’(p’,s t') ( ) A ;(Z[ pst)( ) ﬂ pst)(r t)]\]a
o ©)
Ho([’ st ( )_ A ;[z[ ”mu 0c(p.s.t) (l" t)+gu 0c(p.s.t) (F,’t):ﬂ’

where A”" is the determinant of the principal matrix of the equation set Eq. (8)
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The solutions Eq.(9) are valid when a, /A <<1 outside the sphere and a, /A4, <<1 inside.
However, they can be extended to the resonant case a, /A, ~1 if we introduce effective permeabilities

[2, 4] instead of £,and 1, (see Fig.6),

Eeoy =N (kacm ),
Heo = M1 (kac\/a )

(10)

where F(ka /& ) =...

ImF(6),ReF (6)

A

12 +

6.4

w N -
0
1o
w

ﬁ@
©
o

4.8

Fig. 6 The F(0) function.

Fig.6 shows the behavior of Re F'(€) (solid curve) and Im F'(&) (broken curve) depending on
Red for a variety of magnitudes of the dielectric loss tangent,
tan o, (specifically, I)tan o, =0; 2)tand, =0.05; 3)tand, =0.1)and x, =1; here 6 =ka /¢ i .

In case the electromagnetic interaction between the spheres can be neglected, then general
expressions for the internal field of an arbitrary sphere in the lattice Eq.(9) take the form (10)

6,

EOc(p,s,t) (7’,1‘)’

3g,e

= 3 -
(566}7 +2&,) + chgcgff + z@lc(gceﬂ +2¢&,)

Ef(p,x,t) (F”t)

3ﬂoei91(:
('uceff + 2#0) + 912“”06/3’ + ielc (:uceﬂ + 2:“0)

I:]c(')(p,s,t) F,’t) = I:IOC(p,s,t) (F,’Z)’
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with 8 =k’a’e,u, .
The Hertz potentials Eq.(5) of the field scattered by the spheres of the lattice, can be represented

as a superposition of the Hertz potentials of individual spheres of the lattice, taking into account Egs. (9)
and (10),

_ C R _ikl’?:(p,s,z)
I (7,t) = Z{ZZZ%(sinklac —k,a, coska, )[ Co _ 1JEf(p o) (?’,Z)—e ] ;
AR B e(psa)

(11)

B C ’ R L
" (7,t) = —Z{ZZZ%(sin k,a, —ka, cos klac)('u“d) - IJHS(NJ) (F',t)e—}.
P t H

0 rc(p,s,t)

Here 7.,

= \/(x — xm)2 +(y - yc,t)2 +(z— Zc,p)2 , where the coordinates (x, y,z) represent the
observation node of the scattered field out of the lattice spheres; the (x, ,».,,z.,) coordinates

correspond to the point of location of the scattering sphere center ( the lattice of Eq.(1)). Then, taking
account of Egs.(10) and (11) we can find from Eq.(4) the field scattered by the lattice spheres,

C
E., = Z{ZZZ%(sm ka, —ka,coska, ){(—gceﬁ —1)]:0Ec(p o) (7) -
c=l| p s t 1 & ”

0

. Hee B Iy - i\wi=kyr, Posit
_lkll'lo( L _1J(_1)BrHc(’)(p,s,t) (I" )}e( ( )):l:
Hy
(12)
A=Y L (sinka, —ka coska )| X _1 (=) L.A° (7
scat _Z ZZZ?(SIH 14, — 14, Cos lac) - (_ ) ¢ c(p,s,t)(r )+
c=l| p s t 1 1u0
sikey| L1 |pES () Lel ]
0 P ce(p.s.t) ’
Here ZC and f’c are functional matrices of the form
xxc ¥ xyc k4 xzc 0 ¥ zc ¥ ())’C
- ' -
Lc = \Pyxc \Pyyc \Pyzc H c \ch 0 \ch
IPZ)CC \PZyC \PZZC leC lP(;C 0
The values contained in the functional matrices Eq. (12) have the form
1 2 3(x_xcs)2_rcz(pst) klz(x_xcs)2 S(X_xcs)z_rcz(pst)
Y .= kZegpy + 5 e — ———+ik 7 -,
rc(p,s,t) rc(p,s,t) rc(p,s,t) rc(p,s,l)
2, ) 2 2
S B RV 3(9=Yes) iy K (V=red) ik 3y =) ~Tipen
yye 5 3 4 ’
rc(p,s,t) rc(p,s,t) rc(p,s,t) rc(p,s,t)
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‘Pzzc = szOluO + 3 +ik1 ’
c(p.sit) rc(pst) rc(prt) rc(pvt)
¥_ - - 3(x xc,;)(y Ver) o (x—x, ;)(y Yer) . 3(x—xc4q)(y ycz)’
’ rc(p,s,t) rc(p,s,t) rc(p,s,t)
o e ) o) o))
Te(pasit) Te(pasi) Tposi)
v v - 3(y ycs,)(z Zep) e (v yc,;)(z—ch) " 3(y yc:)(z—ch)’
rc(p,x 1) rc(p,s 1) rc(p s,t)
\ch - (XS_XCS) +ikl (xz_xc g)’ lP(‘)rc __\{jxc’
rc(p s.t) rc(p,s 1)
\P}L_(y_yc,t) kl(yz th),lP?}CZ—\PyC,
rc(p s,t) rc(p 5,1)
w, L) o) ey
rc(p,s,t) rc(p s,t)

The field at an arbitrary node of the space outside the sphere can be represented as
E(F,t) = E,(F,t) +E,, (F,1),

where E'O (7,t) is the undisturbed field of the incident wave.
The determinant of the equation set Eq. (8) allows deriving the resonance conditions. Provided
the permittivites &, and g, of the lattice spheres are real-valued and a, /A, ~ 1, the conditions can be

found from

det RE|a | =0 (13)

where Hasj H is the principal matrix of the equation set Eq. (8) [5]. If the electromagnetic interaction of the

spheres in Eq.(13) can be neglected, then by solving it relative to the function F(6,) (Fig.6), we can

derive the condition for internal magnetic-type resonances of sphere ¢ in the form

2uy(cosb, +0,.sinb,,)
M. [(1 +672)cosf,, +6, sin 9ch ’

F(0.)=-

where 0. =ka, \[e.p., O, =ka.\|s,u, -
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Conclusions

Wave scattering by a lattice of spheres whose spatial distribution is governed by figurate
numbers (arithmetic progression) has been considered for the first time. This solution for lattices with an
anisotropic topological structure controlled by an arithmetic progression can be useful for developing
devices to control the radiation field of electromagnetic emitters; creating highly dispersive composite
materials with the use of regions of abnormal lattice dispersion, and for studying the effect of lattice
defects on electromagnetic wave propagation.
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