УДК 519.6

В.И. ГРИЦЮК

АНАЛИЗ МОДИФИЦИРОВАННЫХ РЕКУРРЕНТНЫХ АЛГОРИТМОВ ДЛЯ ИДЕНТИФИКАЦИИ СИСТЕМ, ИЗМЕНЯЮЩИХСЯ ВО ВРЕМЕНИ

Приводится анализ модифицированных рекуррентных алгоритмов наименьших квадратов для оценки параметров, изменяющихся во времени. Исследуются их свойства сходимости. Алгоритм с экспоненциальным забыванием и восстановлением пригоден для отслеживания параметров, изменяющихся во времени, имеет тот же порядок сложности, что и стандартный рекуррентный алгоритм наименьших квадратов, но улучшенные свойства сходимости. Представлены результаты моделирования, которые демонстрируют способность приведенных алгоритмов отслеживать изменяющиеся во времени параметры.

1. Введение

Адаптивное регулирование вызывает необходимость построения новых, исходящих из метода наименьших квадратов, рекуррентных алгоритмов, которые отслеживают изменяющиеся во времени параметры и справляются с влиянием неизмеряемых помех и немоделированной динамики.

Поэтому актуальным является построение алгоритмов, обладающих указанными свойствами, которое концентрируется на решении проблемы - при сохранении глобальной сходимости во время-инвариантном случае обеспечить неисчезающие элементы ковариационной матрицы P_{ν} [1,2].

Цель исследования — сравнение модифицированных рекуррентных алгоритмов, их свойств сходимости, анализ результатов моделирования, подтверждающих свойства приведенных алгоритмов

2. Сходимость

Сравнивается алгоритм с постоянным следом (ПСА) и алгоритм с экспоненциальным забыванием и восстановлением (ЭЗВА). В первом при заданном следе определяется переменный фактор забывания:

$$\hat{\beta}_{k} = \hat{\beta}_{k-1} + \frac{\alpha_{T} P_{k-1} \phi_{k}}{1 + \phi_{k}^{T} P_{k-1} \phi_{k}} (y_{k} - \phi_{k}^{T} \hat{\beta}_{k-1}),$$
(1)

$$R_{k} = P_{k-1} - \frac{\alpha_{T} P_{k-1} \phi_{k} \phi_{k}^{T} P_{k-1}}{1 + \phi_{k}^{T} P_{k-1} \phi_{k}}, \qquad (2)$$

$$P_{\mathbf{k}} = 1/\overline{\lambda}_{\mathbf{k}} R_{\mathbf{k}} , \qquad (3)$$

$$_{\Gamma \text{Де}} \ \overline{\lambda}_k = \frac{\text{tr} R_k}{\text{tr} P_0}$$

Для исследования сходимости алгоритма рассматривается последовательность квадратов норм ошибок параметров [3]:

$$\widetilde{\beta}_{k} = \beta_{k} - \widehat{\beta}_{k}, \ \left\| \widetilde{\beta}_{k} \right\|_{P_{k}^{-1}}^{2} = \widetilde{\beta}_{k}^{T} P_{k}^{-1} \widetilde{\beta}_{k}. \tag{4}$$

Можно доказать, что квадраты норм (4), возникающие из (1)-(3), образуют для каждого $\hat{\beta}_0 \in \mathbb{R}^M$ невозрастающую монотонную последовательность:

$$\left\|\widetilde{\beta}_k\right\|_{P_k^{-1}}^2 - \left\|\widetilde{\beta}_k\right\|_{P_{k-1}^{-1}}^2 = -\frac{\overline{\lambda}_k \alpha_T \widetilde{\beta}_{k-1}^T \phi_k \phi_k^T \widetilde{\beta}_{k-1}}{1 + \phi_k^T P_{k-1} \phi_k} \,.$$

В случае переменных во времени параметров, если теряется положительная определенность P_k , $\left\|P_k^{-1}\right\| = \infty$, сходимости может не произойти.

Для второго типа алгоритма с матрицей ковариаций

$$P_k = \frac{1}{\lambda}P_{k-1} - \frac{\alpha P_{k-1}\phi_k\phi_k^TP_{k-1}}{1+\phi_k^TP_{k-1}\phi_k} + \beta I - \delta P_{k-1}^2$$

выполняются такие условия: 1)экспоненциальное эабывание и восстановление, 2)верхняя граница для P, т.е. ненулевая нижняя граница для P^{-1} , 3)верхняя граница для P^{-1} , т. е. ненулевая нижняя граница для P. Свойства сходимости могут быть обобщены для случая 3, изменяющегося во времени. Основанием для этого может служить условие, независимое от механизма генерирования данных.

3. Результаты моделирования

Для примера рассматривается модель скользящего среднего:

$$y_k = au_k + bu_{k-1},$$
 где $u_k = \frac{1}{2} \left[1 + sgn(\sin\frac{\pi}{400}k) \right]$

Параметры таковы:

$$\begin{bmatrix} 900,999 \end{bmatrix} \quad 0.4 \qquad \qquad 0.5 \quad \text{и} \qquad \begin{cases} \beta_0 = [ab]^T \,, \\ \widehat{\beta} = \left[\widehat{a}\widehat{b}\right]^T \,, \\ \phi_k = \left[u_k \, u_{\,k-1}\right]^T \,. \end{cases}$$

$$\begin{bmatrix} 1000,1099 \end{bmatrix} \quad 0.5 \qquad \qquad 0.6$$

$$\begin{bmatrix} 1100,1999 \end{bmatrix} \quad 0.6 \qquad \qquad 0.8$$

Результаты идентификации, использующие оба метода, приведены ниже.

На рис.1 и 2 сравнивается предсказанный выход, полученный с использованием ПСА и ЭЗВА соответственно, с выходом системы.

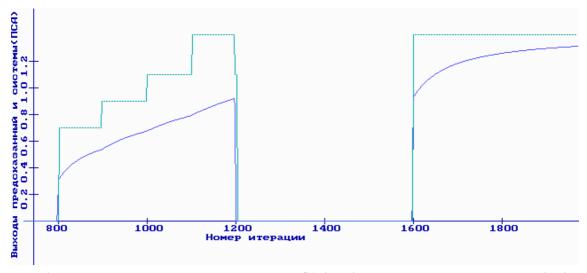


Рис. 1. Предсказанный выход с использованием ПСА (_____) в сравнении с выходом системы (...)

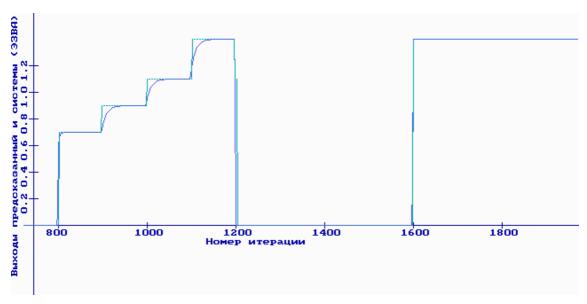


Рис. 2. Предсказанный выход с использованием ЭЗВА () в сравнении с выходом системы (...)

На рис.3 приводится сравнение корня из средне-квадратической ошибки предсказания $PE(\theta_k)$, полученной с использованием CT алгоритма и ЭЗВА:

$$\text{PE}(\theta_k) \, \triangleq \, (\frac{1}{k} \sum_{i=1}^k e_i^2)^{1/2} \, , \label{eq:pepsilon}$$

где
$$e_i = y_i - \phi_i^T \widehat{\beta}_i$$
 .

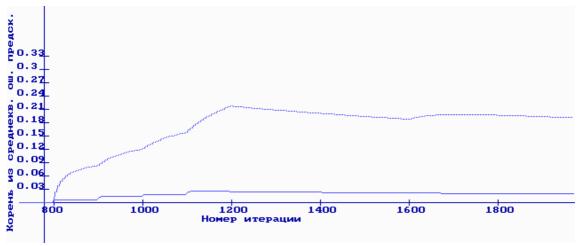


Рис. 3. Сравнение корня из среднеквадратической ошибки предсказания, полученной с использованием СТ алгоритма (...) и ЭЗВА (

На основе результатов , представленных на рис.1 и 2, можно заключить, что ЭЗВА производит быстрое оценивание (когда $\phi_k \neq 0$), благодаря его свойствам экспоненциального восстановления, и обеспечивает коррекцию быстрее, чем СТА (добавление единичной матрицы к обновленной P приводит к тому, что малое, но существенное усиление достижимо вдоль направления $\begin{bmatrix} 1 \end{bmatrix}^T$ при k=900).

Заключение

ЭЗВА имеет тот же порядок сложности, что и рекуррентный алгоритм наименьших квадратов, но обладает улучшенными свойствами сходимости. На основе результатов моделирования демонстрируются свойства приведенных алгоритмов. Для увеличения точности предлагается сочетать этот метод с методом факторизации [2].

Список литературы: 1. *Halwass M.* "Least squares"- Modifikationen zur schatzung zeitvarianter parameter /Messen Stenern Regeln, 1990. 33. N1. P. 8-14. **2.** *Грицюк В. И.* Рекуррентная факторизованная идентификация динамических объектов // Прогр. и аннот. докл. Международной школы. Проектирование автоматизированных систем контроля и управления сложными объектами. Харьков, 1992. С. 10. **3.** *Googwin G. C., Hill D. J., Palaniswami M.* A perspective on convergence of adaptive control algorithms . Automatica. 20.1984. 5.P. 519-532.

Поступила в редколлегию 23.05.2010

Грицюк Вера Ильинична, канд. техн. наук, доцент кафедры СТ ХНУРЭ. Научные интересы: стохастические системы управления. Хобби: музыка, литература. Адрес: Украина, 61166, Харьков, пр. Ленина, 14, тел. 702 -10-06.