
74

Додаток А

preprocessing.ipynb

CICIDS2017 csv files are required for the operation of the program.

These files must be located under the "CSVs" folder in the same directory

as the program.

The purpose of this program is to clear the csv files containing

CICIDS2017 data from errors.

the faults observed are:

1- 288602 of the entries in the file "Thursday-WorkingHours-

Morning-WebAttacks.pcap_ISCX.csv" are empty / meaningless.

(e.g.

",,

,,,,,,,,")

2- In the original csv files, while describing the Web Attack types

such as Brute Force, XSS, Sql Injection, the character used is not recognized

by the Python-Pandas library and leads to the error.

this character ("–", Unicode code:8211) has been

changed with another character ("-", Unicode code:45) to correct the error.

After the error correction, all the csv files were made into a single

file (all_date.csv) to make it easier to process.

import pandas as pd

import os

from sklearn import preprocessing

import time

seconds = time.time()

%matplotlib inline

print("This process may take 5 to 10 minutes, depending on the performance of

your computer.\n\n\n")

number="0123456789"

CSV files names:

csv_files=["Monday-WorkingHours.pcap_ISCX",

 "Tuesday-WorkingHours.pcap_ISCX",

 "Wednesday-workingHours.pcap_ISCX",

 "Thursday-WorkingHours-Morning-WebAttacks.pcap_ISCX",

 "Thursday-WorkingHours-Afternoon-Infilteration.pcap_ISCX",

 "Friday-WorkingHours-Morning.pcap_ISCX",

 "Friday-WorkingHours-Afternoon-PortScan.pcap_ISCX",

 "Friday-WorkingHours-Afternoon-DDos.pcap_ISCX",]

Headers of column

main_labels=["Flow ID","Source IP","Source Port","Destination

IP","Destination Port","Protocol","Timestamp","Flow Duration","Total Fwd

Packets",

75

 "Total Backward Packets","Total Length of Fwd Packets","Total Length of

Bwd Packets","Fwd Packet Length Max","Fwd Packet Length Min",

 "Fwd Packet Length Mean","Fwd Packet Length Std","Bwd Packet Length

Max","Bwd Packet Length Min","Bwd Packet Length Mean","Bwd Packet Length

Std",

 "Flow Bytes/s","Flow Packets/s","Flow IAT Mean","Flow IAT Std","Flow IAT

Max","Flow IAT Min","Fwd IAT Total","Fwd IAT Mean","Fwd IAT Std","Fwd IAT

Max",

 "Fwd IAT Min","Bwd IAT Total","Bwd IAT Mean","Bwd IAT Std","Bwd IAT

Max","Bwd IAT Min","Fwd PSH Flags","Bwd PSH Flags","Fwd URG Flags","Bwd URG

Flags",

 "Fwd Header Length","Bwd Header Length","Fwd Packets/s","Bwd

Packets/s","Min Packet Length","Max Packet Length","Packet Length

Mean","Packet Length Std",

 "Packet Length Variance","FIN Flag Count","SYN Flag Count","RST Flag

Count","PSH Flag Count","ACK Flag Count","URG Flag Count","CWE Flag Count",

 "ECE Flag Count","Down/Up Ratio","Average Packet Size","Avg Fwd Segment

Size","Avg Bwd Segment Size","faulty-Fwd Header Length","Fwd Avg Bytes/Bulk",

 "Fwd Avg Packets/Bulk","Fwd Avg Bulk Rate","Bwd Avg Bytes/Bulk","Bwd Avg

Packets/Bulk","Bwd Avg Bulk Rate","Subflow Fwd Packets","Subflow Fwd Bytes",

 "Subflow Bwd Packets","Subflow Bwd

Bytes","Init_Win_bytes_forward","Init_Win_bytes_backward","act_data_pkt_fwd",

 "min_seg_size_forward","Active Mean","Active Std","Active Max","Active

Min","Idle Mean","Idle Std","Idle Max","Idle Min","Label","External IP"]

main_labels2=main_labels

main_labels=(",".join(i for i in main_labels))

main_labels=main_labels+"\n"

flag=True

for i in range(len(csv_files)):

 ths = open(str(i)+".csv", "w")

 ths.write(main_labels)

 with open("./CSVs/"+csv_files[i]+".csv", "r") as file:

 while True:

 try:

 line=file.readline()

 if line[0] in number:# this line eliminates the headers of

CSV files and incomplete streams .

 if " – " in str(line): ## if there is "–" character ("–

", Unicode code:8211) in the flow , it will be chanced with "-" character (

Unicode code:45).

 line=(str(line).replace(" – "," - "))

 line=(str(line).replace("inf","0"))

 line=(str(line).replace("Infinity","0"))

 line=(str(line).replace("NaN","0"))

 ths.write(str(line))

 else:

 continue

 except:

 break

 ths.close()

 df=pd.read_csv(str(i)+".csv",low_memory=False)

 df=df.fillna(0)

76

 string_features=["Flow Bytes/s","Flow Packets/s"]

 for ii in string_features: #Some data in the "Flow Bytes / s" and "Flow

Packets / s" columns are not numeric. Fixing this bug in this loop

 df[ii]=df[ii].replace('Infinity', -1)

 df[ii]=df[ii].replace('NaN', 0)

 number_or_not=[]

 for iii in df[ii]:

 try:

 k=int(float(iii))

 number_or_not.append(int(k))

 except:

 number_or_not.append(iii)

 df[ii]=number_or_not

 string_features=[]

 for j in main_labels2: # In this section, non-numeric (string and / or

categorical) properties (columns) are detected.

 if df[j].dtype=="object":

 string_features.append(j)

 try:

 string_features.remove('Label')#The "Label" property was removed from

the list. Because it has to remain "categorical" for using with different

machine learning approach.

 except:

 print("error!")

 labelencoder_X = preprocessing.LabelEncoder()

 for ii in string_features: ## In this loop, non-numeric (string and/or

categorical) properties converted to numeric features.

 try:

 df[ii]=labelencoder_X.fit_transform(df[ii])

 except:

 df[ii]=df[ii].replace('Infinity', -1)

 df=df.drop(main_labels2[61], axis=1) ## Column 61 is deleted because it

is unnecessary, column 41 ("Fwd Header Length" feature) had be mistakenly

rewritten.

 ##All CSV files are merged into a single file.

 if flag:

 df.to_csv('all_data.csv' ,index = False)

 flag=False

 else:

 df.to_csv('all_data.csv' ,index = False,header=False,mode="a")

 os.remove(str(i)+".csv")

 print("The pre-processing phase of the ",csv_files[i]," file is

completed.\n")

print("mission accomplished!")

77

print("Total operation time: = ",time.time()- seconds ,"seconds")

This process may take 5 to 10 minutes, depending on the performance of your c

omputer.

The pre-processing phase of the Monday-WorkingHours.pcap_ISCX file is compl

eted.

The pre-processing phase of the Tuesday-WorkingHours.pcap_ISCX file is comp

leted.

The pre-processing phase of the Wednesday-workingHours.pcap_ISCX file is co

mpleted.

The pre-processing phase of the Thursday-WorkingHours-Morning-WebAttacks.pca

p_ISCX file is completed.

The pre-processing phase of the Thursday-WorkingHours-Afternoon-Infilteratio

n.pcap_ISCX file is completed.

The pre-processing phase of the Friday-WorkingHours-Morning.pcap_ISCX file

is completed.

The pre-processing phase of the Friday-WorkingHours-Afternoon-PortScan.pcap_

ISCX file is completed.

The pre-processing phase of the Friday-WorkingHours-Afternoon-DDos.pcap_ISCX

file is completed.

mission accomplished!

Total operation time: = 434.0625455379486 seconds

statistics.ipynb

all_data.csv file is required for the operation of the program.

all_data.csv file must be located in the same directory as the program.

The purpose of this program is to produce CSV files consisting of only

one type of attack and benign flow.

These files contain all attack flow and some benign data flow. The rate :

(attack= 30% , benign=70%)

normal data streams are randomly selected

import random

import os

import pandas as pd

import time

78

seconds = time.time()

%matplotlib inline

def folder(f_name): #this function creates a folder named "attacks" in the

program directory.

 try:

 if not os.path.exists(f_name):

 os.makedirs(f_name)

 except OSError:

 print ("Tthe folder could not be created!")

print("This process may take 3 to 8 minutes, depending on the performance of

your computer.\n\n\n")

Headers of column

main_labels=["Flow ID","Source IP","Source Port","Destination

IP","Destination Port","Protocol","Timestamp","Flow Duration","Total Fwd

Packets",

 "Total Backward Packets","Total Length of Fwd Packets","Total Length of

Bwd Packets","Fwd Packet Length Max","Fwd Packet Length Min",

 "Fwd Packet Length Mean","Fwd Packet Length Std","Bwd Packet Length

Max","Bwd Packet Length Min","Bwd Packet Length Mean","Bwd Packet Length

Std",

 "Flow Bytes/s","Flow Packets/s","Flow IAT Mean","Flow IAT Std","Flow IAT

Max","Flow IAT Min","Fwd IAT Total","Fwd IAT Mean","Fwd IAT Std","Fwd IAT

Max",

 "Fwd IAT Min","Bwd IAT Total","Bwd IAT Mean","Bwd IAT Std","Bwd IAT

Max","Bwd IAT Min","Fwd PSH Flags","Bwd PSH Flags","Fwd URG Flags","Bwd URG

Flags",

 "Fwd Header Length","Bwd Header Length","Fwd Packets/s","Bwd

Packets/s","Min Packet Length","Max Packet Length","Packet Length

Mean","Packet Length Std",

 "Packet Length Variance","FIN Flag Count","SYN Flag Count","RST Flag

Count","PSH Flag Count","ACK Flag Count","URG Flag Count","CWE Flag Count",

 "ECE Flag Count","Down/Up Ratio","Average Packet Size","Avg Fwd Segment

Size","Avg Bwd Segment Size","Fwd Avg Bytes/Bulk",

 "Fwd Avg Packets/Bulk","Fwd Avg Bulk Rate","Bwd Avg Bytes/Bulk","Bwd Avg

Packets/Bulk","Bwd Avg Bulk Rate","Subflow Fwd Packets","Subflow Fwd Bytes",

 "Subflow Bwd Packets","Subflow Bwd

Bytes","Init_Win_bytes_forward","Init_Win_bytes_backward","act_data_pkt_fwd",

 "min_seg_size_forward","Active Mean","Active Std","Active Max","Active

Min","Idle Mean","Idle Std","Idle Max","Idle Min","Label","External IP"]

main_labels=(",".join(i for i in main_labels))

attacks=["BENIGN", "Bot", "DDoS", "DoS GoldenEye", "DoS Hulk", "DoS

Slowhttptest", "DoS slowloris", "FTP-Patator", "Heartbleed", "Infiltration",

"PortScan", "SSH-Patator", "Web Attack – Brute Force", "Web Attack – Sql

Injection", "Web Attack – XSS"]

folder("./attacks/")

benign=2359289

79

dict_attack={

"Bot":1966,

"DDoS":41835,

"DoS GoldenEye":10293,

"DoS Hulk":231073,

"DoS Slowhttptest":5499,

"DoS slowloris":5796,

"FTP-Patator":7938,

"Heartbleed":11,

"Infiltration":36,

"PortScan":158930,

"SSH-Patator":5897,

"Web Attack - Brute Force":1507,

"Web Attack - XSS":652,

"Web Attack - Sql Injection":21}

for i in dict_attack: # in this section, a file is opened for each attack

type and is recorded at a random benign flow.

 a,b=0,0

 ths = open(".\\attacks\\"+i + ".csv", "w")

 ths.write(str(main_labels)+"\n")

 benign_num=int(benign/(dict_attack[i]*(7/3)))

 with open("all_data.csv", "r") as file:

 while True:

 try:

 line=file.readline()

 line=line[:-1]

 k=line.split(",")

 if k[83]=="BENIGN":

 rnd=random.randint(1,benign_num)

 if rnd==1:

 ths.write(str(line)+"\n")

 b+=1

 if k[83]==i:

 ths.write(str(line)+"\n")

 a+=1

 else:

 continue

 except:

 break

 ths.close()

 print(i ,"file is completed\n attack:%d\n benign:%d\n\n\n " %(a,b))

##All web attack files are merged into a single file.

webs=["Web Attack - Brute Force","Web Attack - XSS","Web Attack - Sql

Injection"]

flag=True

for i in webs:

 df=pd.read_csv(".\\attacks\\"+str(i)+".csv")

 if flag:

 df.to_csv('.\\attacks\\Web Attack.csv' ,index = False)

 flag=False

80

 else:

 df.to_csv('.\\attacks\\Web Attack.csv' ,index =

False,header=False,mode="a")

 os.remove(".\\attacks\\"+str(i)+".csv")

print("mission accomplished!")

print("operation time: = ",time.time()- seconds ,"seconds")

This process may take 3 to 8 minutes, depending on the performance of your co

mputer.

Bot file is completed

 attack:1966

 benign:4778

DDoS file is completed

 attack:41835

 benign:99398

DoS GoldenEye file is completed

 attack:10293

 benign:24105

DoS Hulk file is completed

 attack:231073

 benign:591524

DoS Slowhttptest file is completed

 attack:5499

 benign:12795

DoS slowloris file is completed

 attack:5796

 benign:13296

FTP-Patator file is completed

 attack:7938

 benign:18693

Heartbleed file is completed

81

 attack:11

 benign:26

Infiltration file is completed

 attack:36

 benign:94

PortScan file is completed

 attack:158930

 benign:393748

SSH-Patator file is completed

 attack:5897

 benign:13778

Web Attack - Brute Force file is completed

 attack:1507

 benign:3460

Web Attack - XSS file is completed

 attack:652

 benign:1594

Web Attack - Sql Injection file is completed

 attack:21

 benign:49

mission accomplished!

operation time: = 303.9238567352295 seconds

In []:

feature_selection_for_attack_files.ipynb

"attacks" folder (with attack csv files) is required for the operation of

the program.

"attacks" folder must be located in the same directory as the program.

the purpose of this code is to determine which features to use in the

machine learning phase.

82

for this purpose, the importance weights of the attacks are calculated.

this calculation was made using sklearn-RandomForestRegressor.

the some codes parts used for calculation and graphing are taken from the

following site.

http://scikit-

learn.org/stable/auto_examples/ensemble/plot_forest_importances.html

import numpy as np

import os

import pandas as pd

import matplotlib.pyplot as plt

%matplotlib inline

from sklearn.ensemble import ExtraTreesClassifier

from sklearn.ensemble import RandomForestRegressor

import sklearn as sk

import time

seconds = time.time()

def folder(f_name): #this function creates a folder named "feaure_pics" in

the program directory.

 try:

 if not os.path.exists(f_name):

 os.makedirs(f_name)

 except OSError:

 print ("The folder could not be created!")

CSV files names:

csv_files=os.listdir("attacks")# It creates a list of file names in the

"attacks" folder.

Headers of column

main_labels=["Flow Duration","Total Fwd Packets", "Total Backward

Packets","Total Length of Fwd Packets","Total Length of Bwd Packets","Fwd

Packet Length Max","Fwd Packet Length Min",

 "Fwd Packet Length Mean","Fwd Packet Length Std","Bwd Packet Length

Max","Bwd Packet Length Min","Bwd Packet Length Mean","Bwd Packet Length

Std",

 "Flow Bytes/s","Flow Packets/s","Flow IAT Mean","Flow IAT Std","Flow IAT

Max","Flow IAT Min","Fwd IAT Total","Fwd IAT Mean","Fwd IAT Std","Fwd IAT

Max",

 "Fwd IAT Min","Bwd IAT Total","Bwd IAT Mean","Bwd IAT Std","Bwd IAT

Max","Bwd IAT Min","Fwd PSH Flags","Bwd PSH Flags","Fwd URG Flags","Bwd URG

Flags",

 "Fwd Header Length","Bwd Header Length","Fwd Packets/s","Bwd

Packets/s","Min Packet Length","Max Packet Length","Packet Length

Mean","Packet Length Std",

 "Packet Length Variance","FIN Flag Count","SYN Flag Count","RST Flag

Count","PSH Flag Count","ACK Flag Count","URG Flag Count","CWE Flag Count",

 "ECE Flag Count","Down/Up Ratio","Average Packet Size","Avg Fwd Segment

Size","Avg Bwd Segment Size","Fwd Avg Bytes/Bulk",

 "Fwd Avg Packets/Bulk","Fwd Avg Bulk Rate","Bwd Avg Bytes/Bulk","Bwd Avg

Packets/Bulk","Bwd Avg Bulk Rate","Subflow Fwd Packets","Subflow Fwd Bytes",

 "Subflow Bwd Packets","Subflow Bwd

Bytes","Init_Win_bytes_forward","Init_Win_bytes_backward","act_data_pkt_fwd",

83

 "min_seg_size_forward","Active Mean","Active Std","Active Max","Active

Min",

 "Idle Mean","Idle Std","Idle Max", "Idle Min","Label"]

ths = open("importance_list_for_attack_files.csv", "w")

folder("./feaure_pics/")

for j in csv_files:

 df=pd.read_csv(".\\attacks\\"+j,usecols=main_labels)

 df=df.fillna(0)

 attack_or_not=[]

 for i in df["Label"]:#it changes the normal label to "1" and the attack

tag to "0" for use in the machine learning algorithm

 if i =="BENIGN":

 attack_or_not.append(1)

 else:

 attack_or_not.append(0)

 df["Label"]=attack_or_not

 y = df["Label"].values

 del df["Label"]

 X = df.values

 X = np.float32(X)

 X[np.isnan(X)] = 0

 X[np.isinf(X)] = 0

 #computing the feature importances

 forest =

sk.ensemble.RandomForestRegressor(n_estimators=250,random_state=0)

 forest.fit(X, y)

 importances = forest.feature_importances_

 std = np.std([tree.feature_importances_ for tree in forest.estimators_],

 axis=0)

 indices = np.argsort(importances)[::-1]

 refclasscol=list(df.columns.values)

 impor_bars =

pd.DataFrame({'Features':refclasscol[0:20],'importance':importances[0:20]})

 impor_bars =

impor_bars.sort_values('importance',ascending=False).set_index('Features')

 plt.rcParams['figure.figsize'] = (10, 5)

 impor_bars.plot.bar();

 #printing the feature importances

 count=0

 fea_ture=j[0:-4]+"=["

 for i in impor_bars.index:

 fea_ture=fea_ture+"\""+str(i)+"\","

 count+=1

 if count==5:

 fea_ture=fea_ture[0:-1]+"]"

 break

 print(j[0:-4],"importance list:")

 print(j[0:-4],"\n",impor_bars.head(20),"\n\n\n")

 print(fea_ture)

 plt.title(j[0:-4]+" Attack - Feature Importance")

 plt.ylabel('Importance')

84

 plt.savefig("./feaure_pics/"+j[0:-4]+".pdf",bbox_inches='tight',

papertype = 'a4', orientation = 'portrait', format = 'pdf')

 ths.write((fea_ture))

 plt.tight_layout()

 plt.show()

 print("--

-----------------------------\n\n\n\n")

print("mission accomplished!")

print("Total operation time: = ",time.time()- seconds ,"seconds")

ths.close()

feature_selection_for_all_data.ipynb

"all_data.csv" file is required for the operation of the program.

"all_data.csv" file must be located in the same directory as the program.

the purpose of this code is to determine which features to use in the

machine learning phase.

for this purpose, the importance weights of the attacks are calculated.

this calculation was made using sklearn-RandomForestRegressor.

the some codes parts used for calculation and graphing are taken from the

following site.

http://scikit-

learn.org/stable/auto_examples/ensemble/plot_forest_importances.html

import numpy as np

import os

import pandas as pd

import matplotlib.pyplot as plt

%matplotlib inline

from sklearn.ensemble import ExtraTreesClassifier

from sklearn.ensemble import RandomForestRegressor

import sklearn as sk

import time

seconds = time.time()

def folder(f_name): #this function creates a folder named "feaure_pics" in

the program directory.

 try:

 if not os.path.exists(f_name):

 os.makedirs(f_name)

 except OSError:

 print ("The folder could not be created!")

CSV files names:

csv_files=["all_data.csv"]# It creates a list of file names in the "attacks"

folder.

85

Headers of column

main_labels=["Flow Duration","Total Fwd Packets", "Total Backward

Packets","Total Length of Fwd Packets","Total Length of Bwd Packets","Fwd

Packet Length Max","Fwd Packet Length Min",

 "Fwd Packet Length Mean","Fwd Packet Length Std","Bwd Packet Length

Max","Bwd Packet Length Min","Bwd Packet Length Mean","Bwd Packet Length

Std",

 "Flow Bytes/s","Flow Packets/s","Flow IAT Mean","Flow IAT Std","Flow IAT

Max","Flow IAT Min","Fwd IAT Total","Fwd IAT Mean","Fwd IAT Std","Fwd IAT

Max",

 "Fwd IAT Min","Bwd IAT Total","Bwd IAT Mean","Bwd IAT Std","Bwd IAT

Max","Bwd IAT Min","Fwd PSH Flags","Bwd PSH Flags","Fwd URG Flags","Bwd URG

Flags",

 "Fwd Header Length","Bwd Header Length","Fwd Packets/s","Bwd

Packets/s","Min Packet Length","Max Packet Length","Packet Length

Mean","Packet Length Std",

 "Packet Length Variance","FIN Flag Count","SYN Flag Count","RST Flag

Count","PSH Flag Count","ACK Flag Count","URG Flag Count","CWE Flag Count",

 "ECE Flag Count","Down/Up Ratio","Average Packet Size","Avg Fwd Segment

Size","Avg Bwd Segment Size","Fwd Avg Bytes/Bulk",

 "Fwd Avg Packets/Bulk","Fwd Avg Bulk Rate","Bwd Avg Bytes/Bulk","Bwd Avg

Packets/Bulk","Bwd Avg Bulk Rate","Subflow Fwd Packets","Subflow Fwd Bytes",

 "Subflow Bwd Packets","Subflow Bwd

Bytes","Init_Win_bytes_forward","Init_Win_bytes_backward","act_data_pkt_fwd",

 "min_seg_size_forward","Active Mean","Active Std","Active Max","Active

Min",

 "Idle Mean","Idle Std","Idle Max", "Idle Min","Label"]

ths = open("importance_list_all_data.csv", "w")

folder("./feaure_pics/")

for j in csv_files:

 df=pd.read_csv(j,usecols=main_labels)

 df=df.fillna(0)

 attack_or_not=[]

 for i in df["Label"]:#it changes the normal label to "1" and the attack

tag to "0" for use in the machine learning algorithm

 if i =="BENIGN":

 attack_or_not.append(1)

 else:

 attack_or_not.append(0)

 df["Label"]=attack_or_not

 y = df["Label"].values

 del df["Label"]

 X = df.values

 X = np.float32(X)

 X[np.isnan(X)] = 0

 X[np.isinf(X)] = 0

 #computing the feature importances

 forest =

sk.ensemble.RandomForestRegressor(n_estimators=250,random_state=0)

 forest.fit(X, y)

86

 importances = forest.feature_importances_

 std = np.std([tree.feature_importances_ for tree in forest.estimators_],

 axis=0)

 indices = np.argsort(importances)[::-1]

 refclasscol=list(df.columns.values)

 impor_bars =

pd.DataFrame({'Features':refclasscol[0:20],'importance':importances[0:20]})

 impor_bars =

impor_bars.sort_values('importance',ascending=False).set_index('Features')

 plt.rcParams['figure.figsize'] = (10, 5)

 impor_bars.plot.bar();

 #printing the feature importances

 count=0

 fea_ture=j[0:-4]+"=["

 for i in impor_bars.index:

 fea_ture=fea_ture+"\""+str(i)+"\","

 count+=1

 if count==5:

 fea_ture=fea_ture[0:-1]+"]"

 break

 print(j[0:-4],"importance list:")

 print(j[0:-4],"\n",impor_bars.head(20),"\n\n\n")

 print(fea_ture)

 plt.title(j[0:-4]+" Attack - Feature Importance")

 plt.ylabel('Importance')

 plt.savefig("./feaure_pics/"+j[0:-4]+".pdf",bbox_inches='tight',

papertype = 'a4', orientation = 'portrait', format = 'pdf')

 ths.write((fea_ture))

 plt.tight_layout()

 #plt.show()

 print("--

-----------------------------\n\n\n\n")

print("mission accomplished!")

print("Total operation time: = ",time.time()- seconds ,"secomds")

ths.close()

87

ВІДОМІСТЬ МАГІСТЕРСЬКОЇ КВАЛІФІКАЦІЙНОЇ РОБОТИ

№ Позначення Найменування
Дод.

відомості

 Текстові документи

1 ГЮІК.ХХХ166Стз.01ПЗ Пояснювальна записка 85 стор.

 Графічні документи

2 Слайд-презентація 12 слайдів

3 Інші документи

 Електронна версія ПЗ 1

 Рецензія 1 с.

 Відгук 1 с.

ГЮІК.ХХХ166Стз.01ВД

Змін. Арк. Номер докум.
Під

п

Дат

а
Розроб. Кононова Г.О. Метод виявлення вторгнень

в комп'ютерну мережу на

основі технологій

машинного навчання

Літ Аркуш Аркушів

Перевір. Мартовицький В.О У

Н.контр. Конєва Н.Ф. ХНУРЕ

Кафедра БІТ Затв. Халімов Г.З.

