
Abstract — The component-based approach to software 
design and development is being focused on. By analyzing the 
main ideas of this approach, their currently existing 
implementations, their limitations and promising lines of 
development we suggest a new component architecture which 
extends capabilities of existing component technologies. The 
main principles for building such architecture are described. 

Index Terms — Runtime environment, software 
architecture, software engineering, software reusability 

I. INTRODUCTION

N the field of software development, the idea of code 
reuse has always been of utmost importance [6], 

reducing costs, minimizing errors, making the code 
maintainable. The first examples are program libraries, 
design patterns [4] and application frameworks. Object-
oriented and generic programming [3] also contains this 
idea at its core. 

But the most promising manifestation of the idea of code 
reuse is probably the component-based software 
engineering [7]. The term “component” is usually used to 
refer to a program entity that holds data and implements 
some functionality, which are hidden by a well-defined 
interface (cf. [8], [9]). A more formal definition is given at 
sec. IV. 

The concept of interface varies from one technology to 
another. It may be a number of “properties” (or attributes, 
members etc.) [11] or an independent indivisible entity [1]. 
There’re another options. Below an approach that we 
consider optimal is presented and justified. 

Combining components into a working system is usually 
though of as a relatively simple procedure (e.g. [2]). The 
structure of the system, however, is manipulated differently 
in different technologies. Our goal here is to find the 
optimal way of organizing component interaction, 
introducing a good balance between flexibility and ease of 
use. 

Manuscript received September 27, 2010.  
E. M. Grinkrug is with the Business Informatics Department, Higher 

School of Economics, Moscow, Russia (e-mail: egrinkrug@hse.ru).
A. R. Shakurov is with the Business Informatics Department, Higher 

School of Economics, Moscow, Russia (e-mail: egrinkrug@hse.ru).

II. LIMITATIONS OF COMPONENT MODELS

Despite the advantages of the component approach its 
current implementations have a number of substantial 
limitations. The core difficulty here is to introduce a 
component that provides a necessary functionality but 
doesn’t exceed it, bloating the system under development. 

One way to strike such compromise is to separate the 
designtime work with a component from its runtime use. 
The need for such distinction is realized and implemented 
to some extent (see [11] e.g.), but we believe more can be 
done here. 

For example, let us suppose we’re designing a GUI 
application and we want to change a text on a button (that 
already has its functionality somehow connected to the 
application). The change is considered to be permanent: the 
text won’t be changed during the runtime. The procedure is 
quite obvious (one has only to set the needed value to the 
corresponding property of the button), but its 
implementations in various frameworks share a common 
flaw: the variable property is left variable for the lifetime of 
the component. Although it’s known for a fact the label is a 
subject to change only during design time (and at runtime 
it’s constant), we have no means of expressing that. 

This problem can be treated in a different way. 
Difficulties in deep adjustment of a component to the 
context of its use (the design/runtime opposition is just an 
example) are rooted in the fact that essentially we’re 
dealing with the need of defining a new type of data. And 
since any activities concerning a component implying the 
use of its functionality and therefore its execution, the 
process of defining a new type must take place at runtime 
(and without recompiling a program). 

There are several bypass routes such as source code, 
bytecode or binary code generation, runtime compiler calls 
etc. This routes, however aren’t always an option (in 
embedded systems, for example, the compiler is usually 
unavailable). That’s why a system capable of building new 
types from user-configured components without stepping 
over the bounds of its component model is of great interest. 

Component Architecture with Runtime Type 
Definition

E. M. Grinkrug, A. R. Shakurov 

I

R&I, 2010, N4 27



III. DATA ORGANIZATION AND CONTROL FLOW 

MANAGEMENT

Let us concisely consider the main aspects of existing 
object-oriented programming languages and component 
technologies. Analysis of their advantages and limitations 
has defined the main features of the suggested component 
model described in the next section. 

A comprehensive consideration of specific languages and 
technologies, however, is beyond the scope of this work 
(see [10] for such review). We base on a generalized object-
oriented concept, engaging other technologies when it’s 
necessary since the requirement of runtime data type 
definition leads to a component technology to which 
designtime and runtime aren’t clearly distinguished. 

Any development and execution environment can be 
looked at from the two points of view, viz. the principles 
and mechanisms of data organization and control flow 
management. From the first point of view, one of the 
greatest strengths of the object-oriented paradigm is the 
hierarchical data organization. It’s a well-tried remedy for 
handling a growing complexity of software systems, so the 
suggested component model is made to be capable of 
combining components into interacting groups, constituting 
new components (strictly speaking, combined into groups 
are types of components, and only then composite 
components are created, see sec. IV). 

From the managing control flow point of view, object-
oriented approach provides us with methods. We believe 
the concept of method to be too flexible and complex, 
which overcomplicates the structure of the programs using 
it. A method may have a return value, or it may return 
nothing. The return value itself may be a reference to some 
internal class member, or it may be a defensive copy. A 
method is allowed to have an arbitrary number of 
parameters of arbitrary types. This list can be continued 
(consider overloading and overriding, for example). The 
concept of method is not specific enough to allow the 
desired formalization of object interaction. 

The concept of property presented by some frameworks 
(C#, JavaBeans) is more apposite. It combines features of 
both object field (well-defined type and a fixed set of 
operations: reading, writing) and method (behind access 
operations a programmer-defined functionality can be 
hidden). The property-based component interaction model 
is simple and formal because of the limited number of 
characteristics of the “property” concept. However, 
properties (the way they are implemented in C#, for 
example) can’t compete with methods in capabilities. If a 
property can only be accessed for read/write operations it’s 
impossible to efficiently implement well-known callback 
mechanism. An operation of binding is needed (see below). 

Following the two key principles we’ve pointed out 
(hierarchical organization of components and property-
based interaction) is, in our view, necessary to create a 

viable component model. Along with the runtime type 
definition requirement, these principles form the basis of 
the suggested solution, which we will now describe. 

IV. MODEL

Let us describe the component model that will allow one 
to keep the strengths on the existing technologies and 
models, while eliminating the drawbacks mentioned above. 

A. Component 

The main idea of component-based software 
development is the distinction between an interface and an 
implementation, which lets one to implement and use a 
component separately. By component we mean a “black 
box”, i.e. data and functionality hidden behind an interface. 
Therefore component is described by its interface, 
implementation and state (data incorporated in it and 
changed during its lifetime). 

The interface of the component is described by the set of 
its properties (named attributes with a given value type and 
access permissions). The implementation defines a 
behavior of the component and is different for primitive, 
composite and compiled components 

Interface 

The unit cell of the interface part of the component is its 
property, an entity with a specified type that represents 
some aspect or attribute of the component. Some of the 
three operations may be applicable to the property: reading, 
writing and binding. The applicability is governed by the 
access permissions (defined in the component type, 
subsec. IV.B). 

The value of the property (when it can be read) is defined 
by the internal state of the component, which is changed by 
the property writing operations. The operation of binding 
property A to property B (A and B may be owned by 
different components) allows the owner of B to receive 
notifications of change of A’s value in form of the new 
value being written to B.

Implementation 

Sticking to the idea of hierarchical organization of 
components, we distinguish three kinds of them: primitive, 
composite and compiled.

Primitive components are similar to variables of 
primitive types in programming languages. They hold data 
of most common types (numbers, characters, text string, 
logical values etc.), are indivisible from the model’s point 
of view and don’t have any properties. Primitive 
components are so-called value-variables, whose values are 
given at initialization and are immutable. The prime 
characteristic of such component is the distinction of its 
identity. 

Compiled components are implemented with use of off-

28 R&I, 2010, N4



site means (i.e. outside the component model). Having this 
kind of components around is required to integrate thirds-
party technologies (e.g. JavaBeans). Both compiled and 
primitive components are not introspected by the model. 
The main differences between them are that the latter is an 
immutable value-variable without properties and that the 
former has a default state (i.e. it can be created without any 
context, while a primitive component requires at least it’s 
initial value to be given during its creation). 

Composite component is a set of other components 
(called supercomponent and subcomponents respectively) 
interconnected by event connections and shared 
properties. An event connection is created when two 
properties are bound (see above) to each other. A shared 
property connection implies that a subcomponent uses its 
supercomponent’s property (of the same type) instead of 
creating a new property of its own. The reference to the 
shared property is provided to the subcomponent by the 
supercomponent at initialization time (subsec. IV.B 
describes the implementation of this mechanism). Since the 
same property may be shared by several properties of 
subcomponents, their interaction is flexibly adjustable. 

This way of “projecting” interface onto its 
implementation serves an apposite compromise between a 
trivial (giving access to an internal variable) and a too 
complex, model-breaking (writing in a programming 
language) approaches to implementing properties’ 
functionality.  

Since subcomponents are allowed to be composite 
components, the hierarchy can have an arbitrary depth 
(limited only by available hardware). Leafs of the tree are 
primitive (and maybe compiled) components. 

Let us now describe component types and mechanisms of 
their creation. 

B. Component type 

A component type is a named entity that specifies the 
way the component of this type can be built. The concept of 
type is similar to that of class in object-oriented languages. 
The type describes the interface, the implementation and 
their interconnection for the components of this type. The 
interface part is comprised of property descriptors, each 
specifying a name, a type, access permissions and a default 
value for the property of the future component. The 
implementation part is different for primitive, compiled and 
composed types (corresponding to the three kinds of 
components described above). For primitive type, the 
implementation is a variable holding the current value of 
the component. For the compiled type, it’s the instructions 
for obtaining an implementation of the component and 
connecting it to the interface. To create a JavaBeans 
component, for example, one has to provide the name of the 
corresponding java class (the rest is done by the Java 
reflection mechanism [5]). 

A composite type includes a set of subcomponent 

descriptors, each specifying a type of the corresponding 
subcomponent of the future component and its initial value. 
This information is completed with connection 
specifications. For every property of every subcomponent 
it’s specified which property of the supercomponent it 
shares (if sharing takes place). The list of necessary event 
connections is also stored within the type. 

Let us consider the component construction process. 
First, references to properties are set up to point to either 
preliminary created properties or the shared properties of 
supercomponent accordingly to property descriptors. 
Second, subcomponents are created (one for each 
subcomponent descriptor) and the references to shared 
properties (if any) are given to them. Third, necessary event 
connections are established. 

After a certain type was instantiated, the resulting 
component has all the corresponding properties and 
subcomponents. And all the restrictions that are being 
complied with during its functioning (type and access 
control etc.) are governed by the metainfo of the type. 

C. Runtime type definition 

Let us consider a process of defining a new type at 
runtime for which the model suggests the following course 
of action. 

First of all, the user chooses a component from a type 
library (that contains predefined primitive types along with 
composite types defined earlier) and creates a type editor – 
a special entity that holds functionality for defining new 
types from existing ones. It receives the chosen type as its 
input data and allows performing actions listed below. 

Second of all, the user is allowed to configure the 
resulting structure. He can change property descriptors 
(names, default values and access permissions) as well as 
implementation metadata: add or remove subcomponents, 
event connections and shared properties. It’s important to 
notice that instances of a newly defined type adjust deeply 
to its requirements. For instance, changing a property from 
being random-accessed to read-only switches the 
underlying implementation from a variable to a constant. As 
another example, making a property unbindable entirely 
removes change listener-related functionality from the 
component. 

Finally, when the necessary modifications are done, the 
newly created composite type can be added to the type 
library and be used on equal terms with other types. 

The type editor also allows wrapping an arbitrary 
structure into a composite component. This is important at 
the beginning of development process when there’re only 
primitive types in the library. 

The type editor thereby provides access to the internal 
data of the type and allows modifying its copy in order to 
be able to create modified versions of types that have 
instances in the system without tracking changes in every 
type and spreading them to its instances. This makes the 

R&I, 2010, N4 29



implementation of the type editor relatively simple and we 
won’t concentrate on the question in this work. 

V. CONCLUSION

We have described the core principles of the new 
component architecture that extends capabilities of existing 
component models. We have tried to demonstrate their 
flexibility and versatility. We believe that applications 
following the architecture will be able to extend, evolve and 
adapt to the changing requirements faster and more actively 
than the traditional software. 

REFERENCES

[1] Bruneton, E., Coupaye, T., Stefani, J.B., The Fractal Component 

Model specification. Version 2.0-3, The ObjectWeb Consortium, 
2004.

[2] Costa Seco, J., Silva, R., Piriquito, M., “ComponentJ: A Component-
Based Programming Language with Dynamic Reconfiguration”, 
Computer Science and Information System, ComSIS Consortium, 
Novi Sad, Serbia, 2008, pp. 63-86.  

[3] Dos Reis, G., Järvi, J., “What is Generic Programming?” Library-

Centric Software Design, Montréal, Québec, Canada, 2005, pp. 1-11.  
[4] Gamma, E., Helm, R., Johnson, R., Design Patterns: Elements of 

Reusable Object-Oriented Software, Addison-Wesley, 1994. 
[5] Gosling, J., Joy, B., Steele, G., The Java™ Language Specification. 

3rd ed., Addison Wesley, 2005. 
[6] Krueger, C.W., “Software reuse”, ACM Comput. Surv. Vol. 2, ACM, 

New York, 1992, pp. 131-183. 
[7] McIlroy, M.D., “Mass produced software components”, Naur P., 

Randell B., “Software Engineering, Report on a conference 

sponsored by the NATO Science Committee, Garmisch, Germany, 7th 

to 11th October 1968”, Scientific Affairs Division, NATO, Brussels, 
1969, pp. 138-155. 

[8] Object Management Group, The Common Object Request Broker: 

Architecture and Specification. Version 3.1. Part 3 - Components,
OMG document formal/2008-01-08, 2008. 

[9] Redmond, F.E., DCOM: Microsoft Distributed Component Object 

Model, IDG Books Worldwide, Inc., Foster City, 1997. 
[10] Stiemerling, O., Component-Based Tailorability, Bonn University, 

Bonn, 2000. 
[11] Sun Microsystems Inc. The JavaBeans™ API specification. Version 

1.01-A, Sun Microsystems Inc., 1997. 

30 R&I, 2010, N4


