UDC 004 056 55

0O.Kachko, Ph.D., D.Televnyi
THE KUPYNA HASH FUNCTION CRYPTANALYSIS WITH MERKLE TRESS
SIGNATURE SCHEMES

Introduction

In the modern world, digital signatures (DSAs) have become a crucial element in any
cryptographic system. Their usage is not limited only by enterprise or banking systems. The
application happens to be huger than thought. The «MUST HAVE» feature of every modern CRM
or ERP system. The most widely used systems are based on the asymmetric pair cryptography.

With the development of quantum computing a new problem appears for existing signatures.
Some are based on the asymmetric transformation, mostly in GF or EC. Thus, quantum algorithms
can solve Discrete logarithm tasks or factorization in seemingly short time and memory which
makes existing schemes vulnerable. To gain enough strength either a key size must be increased, or
a signature run timing, that would result to insufficiency of the signatures.

Since late 70’s other schemes were developed. One of them is hash-based signatures. But the
machine capabilities did not allow to use them rather than RSA or DSAs.

Modern hardware lacks such problems, as well as new algorithms were developed. The signature
schemes can be divided into OTS (Lamport, Winternitz, etc.) and FTS (Merkle trees, etc.).

Since the large scaling of systems, the later are more preferred. The main goal of this paper is to
analyze the security of Merkle Tree Signature Schemes and the national standard application to it.

1. The Kupyna hash function
Ukraine had used the GOST 34.311-95 [1] has function before it was replaced in 2015 by DSTU
7564:2014 [2]. According to authors, the new hash function is based on common, well-known and
reliable constructs. [3].
The construction concept features the Even-Mansour scheme with Davies-Mayer compress
function and inner permutation block from Kalyna (DSTU 7664:2014) [2].
The hash function supports several modes, defined as Kupyna-n and the set of

ne@s|s12,..64}(1.1) |

The recommended modes are Kupyna-256, 384, 512.

The hash function pads the input message into my, ..., m, parts of | bits (512, 1024). The
computation consists of the compression function, which iteratively updates the previous block-
hash, and the reduction function to form the output.

he= IV
h=f(h_,,m),i=1,..t(12)
h=Q(h)

The compression function is the part which can be attacked. The standard [dstu] defines it as
f(hiop,m)=T"(h_yxor m)xor T*(m) xor h_,(1.3)

The reduction function takes the n most significant bits from the sum by modulo 2 of the
permuted last block hashes with non-processed one.

Q(h,)=trunc, (T (h,) xor h,)(1.4)

The latest step may be attacked by the collision search of a pair:

Q0 g
h=Q(h)

Where both n-most significant bits of the value are the same despite the hash values being
different.

It the current section we focus on the permutation steps security analysis. The construction of
both T-permutations is similar with Grostl hash.

In the «Analysis of the Kupyna-256 Hash Function» [4] paper authors performed cryptanalysis
on the Kupyna-256 permutation function.

They describe collision attacks on the round-reduced hash up to 5 rounds and collisions to the
compression function up to 7 rounds.

The compression function attack included semi-free-start collisions and based on the rebound
attack on Grgstl using SuperBox matching. [5,6]

Considering T* permutation has round constant adding with modulo 2%, the paper provides
modified attack rather than on Grostl.

The attack presumes finding the pairs of input value for T* and T

The results of rebound attacks are listed in table 1.1.

Table 1.1 Overview of collision attack on the compression function

rounds | Time complexity Memory complexity
6 270 270
7 2125 270

The collision attacks were performed on the Kupyna-256.
The attack on the reduced hash is a straight-forward rebound attack on the reduced Grostl-256. The
idea of attack is representation of the hash function with permutations without the left-
multiplication with 8X8 MDS matrix over GF 2° (so-called MixBytes step) and defining the
MixBytes™ inverse transformation. The hash function now has the following look (1.6).

o= MB™*(1V)

fi= T (MB(h") xor m)xor T"(m)xor (1.6
i=1,..,t

h=Q(MB(R))

The results for collision attacks on the reduced Kupina-256 listed in table 1.2.

Table 1.2 Overview of collision attack on the reduced hash function

rounds Time complexity | Memory complexity
4 267 259
5 2120 259

2 Merkle Signature Scheme

One of the most notable cons of OTS (one-time signatures) is the key management. The crypt-
system must guarantee the identity of the used key and its consistency. Few public keys are to be
used and their length should be rather short. To make such schemes feasible, an efficient key
management system must be used to reduce the number of keys and their size.

Ralph Merkle introduced in his research paper a new signature scheme for signing many
messages with one key. [7] The following scheme is based on the tree structure where all steps of
signature process can be observed as a tree traverse. In fig. 2.1 a such tree is listed.

e e v [rovien] o)

Figure 2.1 — Merkle tree scheme

The big advantage of Merkle Signature Scheme is the fact that many messages are signed with a
short number of keys. But the cost of such efficiency is inadequate. To generate a public key pub, 2"
OTS must be generated. If tree contains 2"** -1 nodes, the same number of hash function applying
must be performed to get a public key. It’s obvious that the size of the tree is limited with available
memory and runtime complexity.

The signature generation requires auth nodes to be computed. To reduce of such inter-state
nodes, some cache techniques must be applied. This increases the storage requirements.

Nevertheless, the verification time is quite fast comparing to the other steps.

The last researches were headed to build an algorithm to reduce the storage size and compute in
efficient time. This strategy was called Merkel Tree traversal.

The signature of the Merkle Signature Scheme consists of the ots sig’ and n nodes auth,
auth,,—;. If a 256-bit hash function is used, the signature size would be |sig|=|sig’|+n %256 bits.

To efficiently compute a node in tree a tree-hash algorithm is required. The main idea of it is
calculating the needed sub-tree from left to right only saving the needed nodes.

The classic traversal computes at O(2(H-1)) complexity and O(H*(H+1)) memory. But in [8] a
logarithm time and space algorithm was introduced by M.Szydlo. The main idea is reducing the
active tree-hash instances. The presented algorithm stores 3log(N) and computed in 2log(N), where
N — number of available signatures.

The further development brought the idea of storing such trees and computing them in hyper-
trees — trees with sub-tree nodes of the same height. This approach is a fractal presentation of
traversal.

A good value for h, in which the space requirements are minimal, would be h = logH =
loglogN. Using this parameter would result in a time and space bound of sigime= 2logN/loglogN and
Sigspace= 5/210g2N/loglogN.

In [9] improvements were proposed: using PRNG with seeds for private keys generation. This
idea supposes storing only seeds, relatively smaller to the private keys themselves.

The other idea is using many Merkle trees rather than a big one. The [9] lists the results of such
approach to sign a message on Pentium dual core 1.8GHz. The following result is shown in table
2.1 below.

Table 2.1 — Timing and memory results

Slgnatures Memupd memout memsign tkgen tsign t\/erify

240 3160 bytes 1640, 1860 723 m 26.1 ms 19.6 ms
bytes bytes

240 3200 bytes 1680, 2340 390 m 10.7 ms 10.6 ms
bytes bytes

280 7320 bytes 4320 3620 1063m 26.0ms 18.1 ms
bytes bytes

280 7500 bytes 4500 4240 592 m 10.1 ms 10.1 ms
bytes bytes

3 Merkle signature scheme cryptanalysis

The given section describes the security of the Merkle Signature Scheme. If an attacker has
message m and sig and wants to counterfeit a signature of the m", he has two cases.

The first presumes that attacker finds a valid sig 3 with a public key Y;™ and H(Y;") = H(Y;) = Ao.
The attacker can achieve this by finding a valid OTS of the message m™ with equal public keys, i.e
Yi" =Y;. When found, this would mean that OTS is broken. Therefore, breaking OTS means the
Merkle Signature Scheme also breaks. If this cannot be achieved, then the attack of a second
preimage can be performed, i.e. finding sig’a H(Yi") = H(Y), Yi #Yi.

Thus, the Merkle Signature Scheme is secure if the hash function in OTS is second preimage
resistant. As mentioned in section 1, the Kupyna hash has such characteristics. The possible attack
may occur only in case of a weak public key.

The other option is generation a valid sig’, with a public key Y; and A% = H(Yi") # H(Yi) = Ao,
In this case an auth path must be changed 4'n=An=pub with A'i=H(a'i—1||auth'i—1) i=1, ..., n t0
make a valid signature. If the attacker finds a single auth'’; so that H(A'i||auth"}) = Aix1=Ai+1, then a
valid auth. path is found.

Hence to counterfeit an attack auth'; must be found, so that H(A4'i||auth’)) = H(Ai||auth;). If the
hash function in OTS is not second image resistant, then the attack is possible.

So, the Merkle Tree is secure when OTS is secure and the hash function is second image
resistant.

The cryptographic hash function is secure when is second preimage and collision resistant. But
the Merkle Tree Scheme does not require it to be collision resistant. Thus, we can reduce the bit
level of security of second preimage resistant hash function in this scheme. Thus, more lightweight
hash functions can be used.

Conslusions

The modern national standard defines the modes of Kupyna-n hash function. Kupyna-256, 384,
512 modes have second preimage attack resistance and collisions resistance. Due to having the
structure like Grestl, the round attack to reduced hash can be performed. The listed above modes are
strong after the 7 rounds.

The Merkle trees were known since 80s, but improvements were published past few years.

Thus, making Merkle Signature Schemes an alternative to conventional existing schemes. The
message can be signed with reasonable time and one public key can be used for 2% signatures.

These schemes may utilize hash functions lighter than the existing standards with lesser bit-
security level.

Since Kupyna-n has varying security levels, the lesser level function can be used in OTS in
Merkle Signature Schemes due to the property of Merkle trees to be collision resistant.

Source lists:

1. Metrology and Certification of the Commonwealth of Independence States. GOST 34.311-95.
Information technology. Cryptographic Data Security. Hash function. Metrology and Certification
of the Commonwealth of Independence States. Minsk, 1995. (In Russian)

2. Roman Oliynykov, lvan Gorbenko, Oleksandr Kazymyrov, Victor Ruzhentsev, Oleksandr
Kuznetsov, Yurii Gorbenko, Oleksandr Dyrda, Viktor Dolgov, Andrii Pushkaryov, Ruslan
Mordvinov, Dmytro Kaidalov. A new encryption standard of Ukraine: The Kalyna block cipher.
Cryptology ePrint Archive. Report 2015/650, 2015. http://eprint.iacr.org/2015/650.pdf

3. Roman Oliynykov, Ivan Gorbenko, Oleksandr Kazymyrov, Victor Ruzhentsev, Oleksandr
Kuznetsov, Yurii Gorbenko, Artem Boiko, Oleksandr Dyrda, Viktor Dolgov, Andrii Pushkaryov. A
New Standard of Ukraine: The Kupyna Hash Function. Cryptology ePrint Archive. Report
2015/885, 2015. https://eprint.iacr.org/2015/885.pdf

4. Christoph Dobraunig, Maria Eichlseder, and Florian Mendel. Analysis of the Kupyna-256
Hash Function, Graz University of Technology, Austria, Cryptology ePrint Archive. Report
2015/956, 2015. https://eprint.iacr.org/2015/956.pdf

5. Mendel, F., Rechberger, C., Schlaffer, M., Thomsen, S.S.: Rebound attacks on the reduced
Grostl hash function. In: Pieprzyk, J. (ed.) Topics in Cryptology — CT-RSA 2010. LNCS, vol. 5985,
pp. 350-365. Springer (2010)

6. Jean, J., Naya-Plasencia, M., Peyrin, T.: Improved rebound attack on the finalist Grestl. In:
Canteaut, A. (ed.) Fast Software Encryption — FSE 2012. LNCS, vol. 7549, pp. 110-126. Springer
(2012)

7. Ralph Merkle. Secrecy, authentication and public key systems/ A certified digital
signature.Ph.D. dissertation, Dept. of Electrical Engineering, Stanford University, 1979.

8. Michael Szydlo. Merkle tree traversal in log space and time. Eurocrypt 2004, 2004.

9. Klintsevich, K. Okeya, C.Vuillaume, J. Buchmann, E.Dahmen. Merkle signatures with
virtually unlimited signature capacity. 5th International Conference on Applied Cryptography and
Network Security - ACNS07, 2007.

XHY im. B.H.Kapasina Haoitiuwna 0o peoxoneeii ()

http://eprint.iacr.org/2015/650.pdf
https://eprint.iacr.org/2015/885.pdf
https://eprint.iacr.org/2015/956.pdf

YK 004.056.55
Kpunrtoananu3 xem-¢pyHknuu KynuHa nmpu ucnojib3oBaHum y cxemax moamucu Mekpkiaa / E.I'. Kauxo, /1.K.
Tenesusiii // Beeykp. Mmexsen. Hayd.-TexH. ¢6. 2017. Bemr. 000. C. 00 — 00.

Crartps TmOCBSIIEHa aHANMH3y YpoBHA Oe3omacHocTnO xem-¢pyHkmmn Kymmaa JICTY 7564:2014 mpum
HCTIONB30BaHUM B cXeMmax moamucu Mepxia. Pobora ommcriBaeT BO3MOXKHBIE aTaKd HA X€MI, M MX TTOCIEACTBUS IS
CXeMBl TOAMHCH. Pe3ynpTaTH TOK3BIBAIOT IIEJIECOOOpPa3HOCTh HCIIONB30BAHMS XeIla B CXEMe, OCHOBaHHBIE Ha
pe3ynbTaTtax IpONU3BOJUTENLHOCTH, YPOBHS 0€30MaCHOCTH U CTOHKOCTH.

Kirouessle cioBa: [Ipo6nema o6xona nepesa, Cxemsl nepeBbeB Mepkiia, KynuHa, kpunroananu3, CxeMbl HOAMUCEH,
OUII.
Un.: 1, ®opwm.: 6, Tabmn.: 3, bubmuorp.: 9 Ha3s.

VK 004.056.55
Kpunroananiz rem-¢pynkuii Kynuna npm BuxopucTanhi y cxemax migmucy Mekpkiaa / O.I'. Kauxo, I.K.
Tenesuutii // Beeykp. Mixk-Bia. Hayk.-texH. 36. 2017. Bum. 000. C. 00—00.

CrarTs npucBsYeHa aHaJi3y piBHSA Oe3nekn xem-pynkuii Kymuaa JICTY 7564:2014 npu BUKOpUCTaHHI y cXxeMax
niamucy Mepkia. Pobota onmcye MOXKITUBI aTTaky Ha T, Ta iX HACHIAKHA y cXeMi miamucy. PesymbraTé moka3yrooTh
JOUITBHICTH BUKOPHCTAHHS T'eIly y CXeMi, 10 0a3y0Thcs Ha pe3ybTaTaX MOTY>KHOCTI, PIBHS O€3MEeKH Ta CTIHKOCTI.
Kimrouogi croa: IIpobiema o0xoxy nepesa, Cxemu nepeB Mepkia, Kynuna, kpunroanani3, Cxemi mignucy, ELII.

In.: 1, ®opwm.: 6, Tabda.: 3, Bibmiorp.: 9 Ha3B.

UDC 004.056.55
The Kupyna hash function cryptanalysis with Merkle Trees Signature schemes/ O.Kachko, D.Televnyi. // All-Urk.
Sci. Interdep. Mag. 2017. N 000. P. 00—00.

The paper is devoted to the security analysis of the Kupyna (DSTU 7564:2014) hash function applied in Merkle tree
signature schemes. The paper lists possible attacks on the hash, and their application for signature schemes. The results
show expediency of using the Kypuna hash in Merkel schemes based on the performance, security levels and strength
against known cryptanalytic attacks.

Key words: TREE TRAVERSAL PROBLEM, MERKLE TREE SCHEMES, KUPYNA, CRYPTANALISYS, DSA.
MSS.

Fig.: 1, Form.: 6, Tab.: 3, Ref.: 9 items.

KpaTxoe OMMUCAaHUC pa3aCiIOB

B nepBoMm paznene onucana xem-gyHkius KynuHa, ee cTykTypa U NpUBEICHBI UCCIIEIOBAHUS
BO3MOKHBIX KPUIITOAHAIUTUYECKUX aTTaK.

B Buay TOro, 4uro xem HMEET CTPYKTYPY CXOXYI C alropuTMoM [pocti, TO BO3MOXKHO
MpUMEHEHHE MOTU(MUITUPOBAHHBIX arTaku [poctia.

IMokazana wuzaes arrak Ha ocHoBe Rebound attack paynma, a Takke MOMCK KOJUTM3MH ISt
yceueHHo# ¢ynkuuu. IlpuBemeHsl pesynbrarbl arrak. Xenr-pyHkmms ycroiumBa k Rebound
aTTakam HadyMWHas ¢ 7-ro payHia,

[Tonck Komnmuzuii mpou3BoaniIs ¢ TOMOIIBIO aTTaKk Ha TAONHIy TIEPEMHOKEHUS TIOJIMHOMOB B
yceueHHor# xem GyHKiun. OyHKINUS YCTOMYMBA HAYMHAS C 6-TO payHa.

Kpome sTOro mpuBoauTcs cchlika Ha pabOThI, INle MOKa3aHO 4YTO (YHKIUS YCTOWYMBA K
HAXOXKJICHUIO BTPOTO MPpoodpasa.

Bo BTOpOM pasnene mpuBOIUTCS KpaTKOe OMHCAHUS CXeM moanucu Mekpkia, JOCTOMHCTBA U
Hepocratku. Omnucana nmpobiema 06xo/a [epeBa U MPUBEICHBI CCHUIKM Ha pabOoThl, pelarolue 3Ty
npobnemy. [IpuBeneHbl pe3ynbTarbl paOOTHI CXEMBI MPU HCIOIB30BAaHUHM (DpPAKTANIbHBIX THUIIEP-
JIEPEeBhEB. YKa3aHbl BPEMEHHBIC CIOKHOCTH M TpPEOOBaHHWS MaMSTH I KaXIOTO BapuUaHTa
anropuTMa.

B TPECTbEM pa3aciic IPUBOIAATCA BO3MOXHBIC BApPpHUAHTBI aTTAKW Ha TAaKHC CXCMBI. HepBHﬁ
BAapHUAHT ONHMCBIBACT CUTyallWIO, KOrda 3JIOYMBINIJICHHUK ITOAHWCKBIBACT cia0pIe KJIFO4H, IIpU
HCIIOJIb30BAHUHN KOTOPBIX IJIA (baJII)HII/IBOFO COO6IIIGHI/I$I TCHCPUPYIOCA MMpaBUJIbHAS ITOAIKUCE.

B JaHHOM cClIydac MoApasyMeBacTCs, 4YTO ObUIa B3JIOMaHa OTS, T.¢ B3JIOMaHa cxeMa. Takas
aTTaKa BO3MOXHa TOJIBKO IIpHU UCIIOJIb30BaHUH c1a0b0ro Kiroua JJIA onpeneneHHoﬁ XGHI'Q)YHKLII/II/I.

Bropas Bo3MokHasi aTTaka MOXKET ObITh IPOM3BECHA TOJIMEHHON ayTeHTU(PUKALIMOHHOTO ITyTH,
KOTOPBIM BEPHET IIPaBUIIBHYIO IIOAIHUCH.

Takum oOpazom Oe3zomacHocTh 3aBucHT OT OTS, W ee CTOWKOCTH TNPOTHB HAXOXKICHUS
npooOpasza. Kpome storo gepeBpsi Mepkiia He TpeOylOT BBICOKOM YCTOWYHMBOCTH K KOJITH3HUSM,
MOATOMY BO3MOXKHO HCIIOJIb30BaHUSI MEHbIIEro N-Dit ypoBeHs 3alIMIIEHHOCTH YCTOWYMBOW K
HaxoXeHHIo poodpasa hash function.

