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Abstract— In this work, we obtain the dispersion relation for 
magnetophotonic one-dimensional crystal with a gyrotropic 
plasma layer in the analytical form. The numerical analysis of the 
dispersion relation for waves in the crystal at different 
parameters of the effective permittivity of the plasma layer is 
carried out. We predict the propagation of bulk fast and slow 
waves in such structures. The transmission and forbidden bands 
in the dispersion diagram for the bulk waves are presented in the 
area for surface plasma waves. 
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I.  INTRODUCTION 

Photonic crystals are widely used in different applications 
of modern science. The peculiarities of electromagnetic fields 
propagation in such structures are completely defined by the 
geometric sizes of the layers and by the frequency dependence 
of their material parameters. The properties of isotropic 
photonic crystals are well studied on the basis of obtained 
analytical dispersion equations both for TE and TM waves [1, 
2]. One of the most promising applications is related to the 
magnetophotonic crystal with the gyrotropy of one of the 
structure layers. For such structures, there is no analytical 
dispersion equation that could allow effective studying of their 
basic properties. Due to the gyrotropy, the material parameters 
are tensor quantities, that complexify significantly their 
analysis. Depending on the direction of the applied DC 
magnetic field, different phenomena can be observed in such 
gyromagnetic media, such as the Faraday effect, magnetic 
birefringence, rotation of the polarization plane, nonreciprocal 
effects for the direct and reverse waves, existence of the 
surface waves. 

Here we study the a one-dimensional magnetophotonic 
crystal in the presence of the external transvers DC magnetic 
field 

0 0 0
H z H
 

. One of the layers in each period of the 

crystal is a semiconductor which permittivity is a tensor, while 
the other layer is a magnetodielectric. 

II. MAIN PART 

The permittivity of the gyrotropic plasma in the 
semiconducting layer with the thickness a  is a tensor   of 

the standard type [3] (the magnetic field 
0

H


 is directed along 

the Oz  axis).  
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equation for the chosen polarization (TM waves) in two-

dimensional approximation 
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 is effective permittivity of plasma, 

g
  is the permeability of plasma. The magnetodielectric 

isotropic layer of thickness b  has constant permittivity and 

ba L  
Fig. 1. Schematics for the two-layer 
magnetophotonic crystal. 
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permeability parameters ,     (Fig. 1). 

Solution of the Helmholtz equation (2) for two layers of 
the periodical structure can be presented in the following 
form: 
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Here n  is the cell number, 2 2

2
k     and 

2 2
1 g

k      are the transverse wave numbers along 

the Ox axis,   is the longitudinal wave number along the 

layers, 
n

a , 
n

b , 
n

c , 
n

d  are the unknown amplitudes of waves 

in the layers. 
Using boundary conditions for the tangential components 

of the electromagnetic field on the interfaces of layers and the 
Bloch-Floquet theorem for periodic systems, we obtain the 
characteristic equation: 
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Using Eq. (3) we can analytically derive the equation for the 
Bloch wave number K(k, )  
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It worth noticing that, for photonic crystal with two 
dielectric layers in each period, i.e., for 

0 1
a

,  ,        , Eqs. (3) and (4) reduce to well known 

formulas [1, 2]. 

III. ANALYSIS OF THE RESULTS 

As an example, Figs. 2 and 3 show the dispersion 
diagrams calculated using Eqs. (3) and (4). The diagrams are 
plotted as a result of numerical computations of the projection 
of K(k, )  onto the surface k,  in the three-dimensional 

space of wave numbers. In the figures, the shaded regions 
represent the transmission bands, while the unshaded regions 
show the forbidden bands. To study the peculiarities of waves 
propagation in such structures, one should distinguish two 

cases for different values of the magnetic field 
0

H  

(
a
  parameter), when 0   and 0  . The analysis 

shows that the number of transmission and forbidden bands 
depends on the permittivity of each layer. There are two types 
of dispersion, which correspond to fast and slow (in 
comparison to the speed of light in the medium) waves. The 

fast waves exist in the regions 2 2k    and 2 2

g
k      

(in Figs. 2 and 3, these regions are confined by the lines 

k   and 
g

k   ) for corresponding layer, while 

slow waves are in the region where these inequalities have the 
opposite sign. Different combinations of these regimes are 
possible. The gyrotropy in one of the layers allows one to 
control the band width, its disposition, and the number of 
bands in the given frequency range by changing the value of 

the DC magnetic field. If 0  , the delayed surface wave 

exists, that propagates along the interface between two 
neighboring layers of crystal. We emphasize the very 
interesting feature of the considering waves. Namely, from the 
solution of the dispersion equation (4) and the spatial 
distribution of fields, we conclude that the direct 

( Re   ) and reverse ( Re   ) waves, which 

propagate along the layers (along Oy  axis), have equal 
modulus of the speed, but different transverse structure of the 
fields (along the Ox  axis). Some numerical computations of 
the dispersion are presented in Fig. 2 and Fig. 3. 

The dashed line k   in the Fig. 2 corresponds to the 

condition, when the phase velocity of the wave is equal to the 
speed of light in the free space. The region where the fast bulk 
waves exist is above this line, while the region where the slow 
waves exist is below this line. Fig. 2 and Fig. 3 are plotted for 

Fig. 2. Transmission (shaded) and forbidden 

(unshaded) bands in the plane ( k ,  ) for 0   
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the following parameters: 0 5a b .  , 1
g

   , 2  , 

6
g
  , dash-dotted and dotted lines are defined by the 

relations 2k   and 6k  , respectively. Fig. 2 

corresponds to the positive values of the effective permittivity, 

0  , of the plasma layer, while Fig. 3 corresponds to the 

negative values, 0  . The first panel in Fig. 2 corresponds 

to the absence of the gyrotropy in the layers ( 0
a
  ). The 

lines 2k   and 6k   define the phase velocities of 

the waves in two dielectric layers with 2   and 6
g
  . 

Both bulk and surface waves can be excited in the dielectric 
layers of the periodical structure. This case is described in 
detail in the works [1, 2]. For the crystal with the plasma layer 

(panel 2, 3
a
  ), the effective permittivity of the plasma 

layer   decreases when increasing  , which leads to the 

shrinking of the transmission bands with the simultaneous 
enlarging of the forbidden ones.  

The situation is different for the negative values of the 

effective permittivity 0   (Fig. 3). Fig. 3 shows two 

fragments, which correspond to two different values of the 
effective permittivity 

a
  of the gyrotropic layer. In the first 

case, 6 6
a

.  . There is only one transmission band. In the 

different regions of the transmission band, divided by the line 
k  , the fast and slow bulk waves can exist. In the region 

where the slow waves exist, their phase velocities are greater 

than the phase velocity  2v / k  in the dielectric layer 

(see the dash-dotted line).  

Increasing the DC magnetic field 
0

H  (increasing 
a
 ), the 

second transmission band appears. One of the transmission 
bands corresponds to the bulk waves (fast or slow), the other 
one corresponds to the surface slow waves (both the 

transmission bands are at 6v / k ). The field 
distribution of surface waves has the maximal amplitude on 
the interface between the regions. The analysis of the spatial 
field distributions over the Ox  axis (see Eq. (4)) for the direct, 

   , and the reverse,    , surface waves shows 

that their field structures are different. As is seen from Fig. 3, 

when increasing the parameter 
a
 , the region where the 

surface plasma waves exist is shrinking with the simultaneous 
shrinking of the region where the bulk waves can propagate.  

IV. CONCLUSION 

In this work we are solved the problem for the eigenwaves 
in the two-layer infinite periodic structure, which consists of 
dielectric layers and gyrotropic plasma layers. We are 
obtained analytically the elements of the transmission matrix 
taking into account the anisotropy of the gyrotropic plasma 
layer. The analysis of the transmission and forbidden bands in 
the dispersion diagram is carried out for different material 
parameters of the layers taking into consideration the 
gyrotropy. We are shown that the transmission bands for the 
surface plasma waves can exist. In addition, we are defined 
the dependence of the band width on the gyrotropy parameter 
of the plasma layer. 
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