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Abstract—The paper discusses the problem of determining
the eigenfrequencies of surface plasmons for metal nanowire over
the frequency spectrum of the scattered field. To determine the
eigenfrequencies a fractional-rational approximation of the
frequency spectrum based on continued fractions was used. Q-
factors for lower and higher modes of the localized surface
plasmons are investigated.
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I. INTRODUCTION

Recently, the study of surface plasmon of the nanoobjects is
an actual and important topic in nanoplasmonics [1, 2]. Various
devices and elements working on plasmons such as sensors
probe microdroplets [3], surface plasmon resonance sensor [4],
active waveguides [5] and smart phone platforms [6] have been
studied currently. The plasmonic properties of nanowires and
nanoparticles have recently been investigated using a variety of
methods. However, there is a lack of investigations in terms of
eigenfrequencies and Q-factor of plasmons. Many authors find
surface plasmons by investigating resonance peaks in
Scattering Cross Section (SCS). This study cannot be
considered as a complete one, because in this way only ‘bright’
plasmons can be seen, ’dark’ plasmons that do not couple
efficiently to incident wave cannot be discovered in such a
description. In paper [7] researchers developed nonquasistatical
expressions for the eigenvalues of surface plasmons that
includes finding of eigenfrequencies and Q-factor. Using this
approach all possible plasmons can be found and investigated,
including ‘dark’ and multipole ones.

Approximation of the frequency spectrum by a fractional-
rational model also makes it possible to determine the
eigenfrequency values. The use of the additive pole model for

these purposes also makes it possible to determine the
amplitude coefficient (residue) for each excited natural
oscillation. This allows us to estimate the contribution of each
natural oscillation of the surface plasmon (the brightness of the
plasmon) to the response in the form of the SCS frequency
spectrum.

To determine the eigenfrequency values a fractional-
rational approximation of the frequency spectrum based on
continued fractions [8-9] can be used. This approach has been
successfully applied in [10-11] to process the frequency
spectrum of various resonant structures.

The aim of this paper is to investigate the possibility of
applying a fractional-rational approximation to determining the
eigenfrequency and Q-factor of the localized surface plasmon
in a single metal nanowire.

II. STATEMENT OF THE PROBLEM AND METHOD OF SOLUTION

The problem of determining the eigenfrequencies of surface
plasmons of a metal nanowire with the radius a over the
frequency spectrum of the scattered field has been examined.
The frequency dependent plasma permittivity is described by
the Drude model
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where p represents the plasma frequency,  characterizes
decaying process. The field excited by a plane wave for the
considered object is represented in the form of the expansion
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where ck = is the wave number of free space, knk pp = is
wave number in the plasma determined by the value

ppn = ,  is the angle of incidence of a plane wave. The

coefficients of the expansion sA and sA are determined from
the boundary condition as
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Since under the condition 1>>ka the asymptotic
representation is valid
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then the field scattered by the metal nanowire in the domain
a> can be written as
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The far-field normalized by the field of an infinitely thin
wire will take the form
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where we used ( )2π~ += is
ss eAA for excluding the dependence

on the incidence angle of the exciting plane wave from the
expansion coefficients. Further consideration of the frequency
properties of the scattered field will be investigated for the case
 = . We will consider the frequency spectrum which are

defined as
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To determine the eigenfrequencies in the considered metal
wire, the approximation of the investigated spectrum by a
fractional-rational model
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is used. The parameters of this model are the values of the
poles { }Mppp ,,, 21 =p and zeros { }Mzzz ,,, 21 =z or
residues { }Mrrr ,,, 10 =r of spectrum. To solve the problem
of approximation of the resonant frequency response by a
fractional-rational function a continued fraction of the order

12 += ML is used. The values of the poles p and zeros z are
determined by the parameters of the continued fraction
approximating the considered spectrum [8-9].

For single-pole model ( ) ( )1101 prrH −+=  at
frequency 1Re p= when 00 →r , its frequency response
will be determined by the quantity 111 Im pjrR = . Therefore
as the amplitude coefficient for the eigenfrequency mp
( Mm ,,2,1 = ) we will use the normalized value of the
residue mmm pjrR Im= (’plasmon brightness’).

III. NUMERICAL RESULTS

In this examination for the convenience of analyzing the
eigenfrequencies following normalized values were used:

caw pp = is normalized plasma frequency,

ppwwf == is normalized frequency (where kaw = )
and caa p=' is normalized radius of wire. The real part of
the eigenfrequency will be denoted by 0w , imaginary part as
 and we will also normalize them to the plasma frequency.

The possibility of determining the eigenfrequencies of the
surface plasmon of a metal wire from the frequency spectrum
of the scattered field by means of its fractional-rational
approximation has been studied in several examples. Figure 1
shows the frequency spectrum of the scattered field for a single
metal wire with a normalized value of radius 1a' = (for the
case p ⋅= 001.0 ) and the result of its fractional-rational
approximation. The estimations of parameters of the model



(12) are present in the inset. The spectrum and fractional-
rational approximation agree with graphical accuracy, error of
approximation ( ) ( ) ( ) 22  HHH M−= was equal to
5.7∙10-14 %. Figure 2 shows the additive pole representation of
the considered frequency spectrum: components of the model
(12) are represented by separate lines of different colors.

Analysis of the presented results shows that this approach
can be successfully used for determination of the
eigenfrequencies of the lowest modes which in the spectrum
are initially represented by separate resonance peaks gradually
merging into one peak and have a nonzero amplitude
coefficient mmm prjR Im= (normalized value of residue).
The higher modes have practically zero amplitude and are
located nearer each other. Therefore it is difficult to determine
the eigenfrequencies for them by using of fractional-rational
approximation and their contribution to the total frequency
response does not make sense.

For a larger radius of wire the first components of the
spectrum are more separated from each other and have a larger
amplitude coefficient. Therefore the fractional-rational
approximation of their scattering frequency spectrum requires
the use of a larger order of model. Figure 3 reports the results
of a fractional-rational approximation of the frequency
scattering spectrum for a metal nanowire with a large radius
equal to 5a' .= Figure 4 shows the corresponding additive pole
representation of the spectrum (with an indication of the
contribution of each spectral component).
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Figure 1. Fractional-rational approximation of the frequency spectrum of
scattering of nanowire with radius a' = 1.
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Figure 2. The pole representation of the frequency spectrum of the scattering
of nanowire with radius a' = 1

We see that for the considered case the height of the pole
peaks increases and then as we approach the frequency of the
surface plasmon resonance for plane case 21SP ≈f is falls
sharply. Figure 5 shows the spectrum of the amplitude
coefficients of the expansion of the scattered field sA
(spectrum is represented by a dashed line). This spectrum has
the same characteristics. In this case the amplitude coefficients
of the expansion of the internal field of the wire sA
monotonically increase with increasing their number. Figure 6
presents their spectrum for wire with radius 5a' = .
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Figure 3. Fractional-rational approximation of the frequency spectrum of
scattering of nanowire with radius a' = 5.
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Figure 4. The pole representation of the frequency spectrum of the scattering
of nanowire with radius a' = 5
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Figure 5. The spectrum of the coefficients of the expansion for the scattered
field by nanowire with radius a' = 5
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Figure 6. The spectrum of the coefficients of the expansion for the internal
field of nanowire with radius a' = 5

When considering the values of the eigenfrequency of
surface plasmon in nanowire we compare them with the
eigenfrequency of the surface plasmon for a plane interface
which is defined as

 
22

1
2 2

2

SP





 j
p

p +−= . (13) 

Hence, the Q-factor of such surface plasmon can be defined as
2SP  pQ ≈ .

Figures 7-8 shows the dependence of the eigenfrequencies
on the mode number s for the three different values of radius
of the metal wire ' {0.5,1, 2}a = . A finite part of the graphs
corresponding to the large mode numbers is shown in the inset
with gray background. We see that regardless of the wire
radius the normalized value of the real part of the
eigenfrequency with increasing mode number tends to the
normalized value of the frequency of the surface plasmon

21SPSP ≈= pf  . The imaginary part of eigenfrequency
decreases to order pp  2Im SP = determined by the
coefficient of absorption in the medium 0.001 p = ⋅ .

With reducing the radius value the frequency of the lowest
mode tends to the limiting value SP 1 2f = and its losses
tend to the minimum reached level. In this case for losses
depending on the radius for a given number of mode reaches a
minimum. We see that an increase of the radius value of
nanowire leads to an increase in the depth of this minimum.

Figure 9 presents the dependence of the Q-factor of the
eigenoscillations of the considered metal wire against the
number of mode. We see that the lower modes have a low Q-
factor. With the growth of the mode number a rapid increase
in the Q-factor occurs to a practically constant level due to the
decrease of radiation losses (to the level of the intrinsic
(unloaded) Q-factor 0 SP 2pQ Q  = ≈ in this case equal to
707). We see that an increase of the radius of nanowire leads
to an increase of the number of mode which is required to
reach this level.
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number of mode.

2 4 6 8 10

0.05

0.1

0.15

0.2

0.25

s

 /
w p

4.86

4.88

4.9

4.92

4.94

4.96

4.98

x 10
-4

a ' = 0.5
a ' = 1
a ' = 2
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vs the number of mode.
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Figure 9. Dependence of the Q-factor of the eigenmodes vs the number of
mode.

If we assume approximately that the considered resonances
are determined only by the surface wave propagated along the
interface to the plasma (in this case along a circle of radius a),
then on the resonance frequency the condition sak =SRe
must be satisfied. Here
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is the propagation constant of the surface wave that are
propagating along the interface between two media with
permittivities 11 = and ( ) ( ) jpp −−= 221 . To
exclude the influence of the dispersion of the surface plasmon
against the dependence of the eigenfrequencies of the metal
wire on the mode number it is possible to use the velocity
(deceleration) factor
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In this case, the real part of the eigenfrequency can be
determined from the condition swn =0SRe . The dependence
of the normalized value of the real part of the eigenfrequency

S0S Renww = on the mode number s is shown in Figure 10. It
confirms that for large wire radius the linear dependence

sw =S is valid. As the radius decreases, this dependence
takes place up to some number maxs after which the values of

Sw practically cease to change and become equal maxs . In this
case, the value of maxs decreases in proportion to the decrease
in the wire radius a. For a' = 0.1, the value of maxs approaches
to 1. With a further decrease in the wire radius, the linear
dependence of sw =S ceases to be observed, in this case for
all mode numbers the equation 1constS <≈w becomes valid.
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IV. CONCLUSIONS

The problem of determining the eigenfrequencies of surface
plasmons for metal nanowire over the frequency spectrum of
the scattered field are studied. The realization of the fractional-
rational approximation of the frequency spectrum of the
scattered field of a metal wire on the basis of continued

fractions makes it possible to obtain correct estimates of the
complex eigenfrequency and Q-factor for our structure.
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