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MARKOVIAN APPROACH TO 
M AN-M ACHINE-ENVIRONM ENT SYSTEMS

Introduction

A Man-Machine- Environment systems (MME) includes such tow subsystems as "human" 
and "environment" that are o f random nature . This means that random phenomena that are taken 
into account, are subject to certain static patterns , which are not mandatory requirements.

The purpose of this work is to investigate the MME system as a kind o f Markovian process . 
The condition of static stability can be used in decision-making effective mathematical methods in 
the theory of random processes and , in particular, Markov processes application for the MME this 
approach is rarer new [1].

Despite the above-mentioned simplicity and clarity , the practical application of the theory of 
Markov chains requires knowledge o f some basic terms and provisions .

The ergodic chain can be regular or cyclic. Cyclic chains differ from the regular in that process 
o f transition after a certain number o f steps (cycles) will return in any state. Regular chains do not 
have this property. We can give the following classification of Markov processes (Fig. 1):

Homogeneous M arkov chain as the model of M M E-process

The main characteristics o f Markov chains are the probabilities

of states S .(k)at k-th step.

If the transition probabilities do not depend on step k, then Markov chain is called homogene­
ous. If at least one probability varies with the step k, the chain is called non-homogeneous. The 
transition probabilities are written in the form of a square matrix o f order n. The sum o f the ele­
ments for each row is 1.
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The presence o f the arrows in marked graphs with the corresponding transition probabilities 
from one state to another means that these probabilities are different from zero. Probability o f delay 
p u (i = 1,...,/?) can be obtained as

n
Pn - 1 ~ X Pj .0= * .-.« )

J=\J*\
Row vector o f probabilities o f states (P}(0 ),..., PM(o)) at t = 0, is called the vector of initial 

probability distribution .

The n-step transition probability
The probability for transition from state i to state j  after n steps is called "The n-step transi­

tion probability", and is denoted by the symbol ( d(m)) . It is defined the following relationship
ij

=P{*n+m = j \X m= i\ n> 0, 0 = 0 ,1 ,2 ,...

This matrix p W  is called the transition probability matrix after step n.

Chapman-Kolmogorov equations

If {Xn : n = 0,1,2, • ■ is the Markov , chain and the number o f states m is limited if  the transi­
tion probability matrix is P = ( p ) then :

m

уЫ
Where :

p T  = f t f t ,  = j \ x a = /})

Example (1) : for a crew of professional that fits some damage in the system in 3 steps
1- _  1-(P20+P2i+P23) 1-
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Let p01=0.5 , p21=0.5 , p20=0.5 , p30=0.5 , p32=0,5 , pl0=0.5 , pl2=0.5 , p23=0.5 , p31=0.5.
The eigenvalues o f this system we get from the following relation Det(P -  XI) -  0 it gives the

characteristic polynom ial:

X4 + 0.5X3 -  A,2 -  0.51 = 0

The eigenvalues and the appropriate vectors we get by using Mathematica 7:

A, = 1 The eigenvector is (1,1,1,1)
X2 =0 The eigenvector is (-1,1,1,1)
A3 =-1 The eigenvector is (-1/3,1,5/3,1)
M4 = -0.5 The eigenvector is (1,-2,1,1)

1 1 1 1 “

1 1 1 1  
1 1 1 1  
I I I I

Absorbing M arkov chains

A state Si o f a Markov chain is called absorbing if it is impossible to leave it (i.e., Pii = 1). A 
Markov chain is absorbing if it has at least one absorbing state, and if  from every state it is possible 
to go to an absorbing state (not necessarily in one step). And a state which is not absorbing is called 
transient.

So far, we have focused on regular Markov chains for which the transition matrix P is primi­
tive. Because permittivity requires P(i, i) < 1 for every state i, regular chains never get “stuck” in a 
particular state. However, other Markov chains may have one or more absorbing states. By defini­
tion, state i is absorbing when P(i, i) = 1 (and hence P(i, j) -  0 for all j * i). In turn, the chain itself 
is called an absorbing chain when it satisfies two conditions. First, the chain has at least one absorb­
ing state.

Second, it is possible to transition from each non-absorbing state to some absorbing state (per­
haps in multiple steps). Consequently, the chain is eventually “absorbed” into one o f these states. [4]

Example (2): represent the mortal case happened while fitting the damage of the MME -  sys­
tem

1/2

-fo i 0 0 Pm
0 1 -P 12 Pn 0

P20 0 !“ P20 0
0 0 0 P&X

lim  P n = — 
n—>00 4

Similarly to the example (1) we g e t , the eigenvalues and the appropriate vectors: 
A, = 1 The eigenvector is (1,1,1,1)
X2 =1/2 The eigenvector is (0,1,0,0)
X3 =1/2  The eigenvector is (0,1,2,0)
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Л4 -  1/2 The eigenvector is (4,1,2,0) 
Then :

P ”  =
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Example (3): shows the state o f operator's health. State "0" is mortal

31+ P 32)

We get as before:
/1, = 1 The eigenvector is (1,1,1,1)

A2—1/4 The eigenvector is (0,0,0,1)
23 = 1/4 The eigenvector is (0,0,4,1)
24= 1/4 The eigenvector is (0,16,-12,1)
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Model (1):
Let the person responsible for the impact (crash) react with the determined sequence of n tech­

nological operations, the duration o f which is exponentially distributed with parameter pi.
It is natural to consider the operations o f an emergency as the state space. SO is the state o f ex­

pected trouble-free operation of the system. The Kolmogorov equation for the probability of states 
in the natural condition o f normalization LP; (t) = 1 we construct in a standard way. The limit as t 
—* oo of the probability Pi exists, they are stationary and do not depend on the initial probability dis­
tribution.

When P’i (t) = 0 and SP, = 1, solving the resulting recurrence algebraic equations, we obtain, 
very similar to the classical formula of Erlang, the limiting state probabilities:

A
n 1 .»  . wFo _   5 Fj = _---------

( l+ S —)
P ; ( 1+1  A ) 

i=1 Pi

,/ = 1 ...n

Model (2):

With all the assumptions of the previous model, time and quality o f operations for emergency 
response depends on the human operator’s health, which, in turn, depends on the state of the system 
(and the harmful effects o f stress). We assume that the operator can be in two states o f health, and 
call them "healthy" and "sick", assuming the probability of recovery o f health in the process of liq­
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uidation of the accident is zero, and the probability of being sick during the i-th operation is bi. Af­
ter completing all the work (and before the time of the next emergency comes) the operator’s health 
is restored, or he is replaced. Then the transition probabilities for each pair o f neighboring states of 
the operator is biui and (1 -bi) p., . The state of the system, the intensity o f rehabilitation and the 
probabilities regarded to incomplete performance o f the operator, respectively, are ib, Ць and Pib- 

' From the recurrence relations obtained in the limiting case o f the corresponding equations of 
Kolmogorov [5], with the notation:

к- 1
В к П  0 ~ b j Ак = \ - В к \ T0 = ^ i = 0

7=1

b q = b \=v, / h b L 2= l ,А к /\.1к
о о

we get with к = 2 , n :

р  — ё± ’ р  =  if*____
* к'Ь 4 Щ  + Е2 )

р  _  в п+х у _ ___ ’ р* _ _____ 5_____
0  Л (Е ,+ 22) °’6 “ Л (2 ,+ Х 2) ° Л(ЪХ+Ъ2)

The probabilities Р* = Pi Pib, 1 -  Р*о and Роь are usually o f practical interest.
In conclusion, we note that the assumption under which the queuing system adequately simu­

lates our system is that the flow o f events is stationary. For very small 2c «  1 it is valid for the con­
sidered flow.

However, from the exponential distribution of lengths o f intervals between accidents follows 
that short intervals are most likely. Thus, the QS model is best suited for rescue teams, for which 
the disaster is a "steady state". Experiments in MathCAD for the case n= 3, 5, 10 (the number of 
operations in the processing chain to address the accident) and X- 0.3, 0.1, 0.05, = 0.8 for P(S0)
= 1 has confirmed that the settling time is 1 =5. In this case, an average time is less than the time of 
the system’s operation (1 / Д + n / №).

The above proposed model is naturally extended to the case o f other different disasters (Erlang 
flow and absorbing states), but now it becomes clear that the accident, and even more disasters have 
different distributions, i.e., power distribution. This leads to more sophisticated than QS mathemati­
cal models, which do not fit the classical theorem by Khintchin [5] on the convergence to a simple 
flow.
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