
ECONTECHMOD. AN INTERNATIONAL QUARTERLY JOURNAL – 2016. Vol. 5. No. 3, 211-216 

 

Optimization of linear functions on a cyclic permutation  

Based on the random search 

 

Igor Grebennik, Alexey Baranov, Olga Chorna, Elena Gorbacheva 

Kharkiv National University of Radioelectronics, email: igorgrebennik@gmail.com 

 
Received July 28.2016: accepted August 30.2016 

 

 
Abstract. For creating adequate mathematical models 

of combinatorial problems of constructing optimal cyclic 

routes, mathematical modeling and solving a number of 

planning and control tasks solutions of optimization 

problems on the set of cyclic permutations are required. 

Review of the publications on combinatorial 

optimization demonstrates that the optimization problem 

on the cyclic permutations have not been studied 

sufficiently. This paper is devoted to solving optimization 

problem of a linear function with linear constraints on the 

set of cyclic permutations. For solving problems of this 

class using of known methods, taking into account the 

properties of a combinatorial set of cyclic permutations, is 

proposed. For this purpose we propose a method based on 

the ideology of random search. Heuristic method based on 

the strategy of the branch and bound algorithm is 

proposed to solve auxiliary optimization problem of a 

linear function without constraints on the set of cyclic 

permutations. Since application of the branch and bound 

algorithm immediately leads to an exponential growth of 

the complexity with increasing the dimension of the 

problem a number of modifications are suggested. 

Modifications allow reducing computational expenses for 

solving higher dimension problems. The effectiveness of 

the proposed improvements is demonstrated by 

computational experiments. 

Key words: combinatorial optimization, linear 

function, cyclic permutations, random search, branch and 

bound algorithm, parallel computing. 

 

INTRODUCTION 

 

Necessity to solve a wide range of problems in a 

variety of scientific and applied problems caused the 

emergence and development of theory and methods for 

solving problems of linear optimization. Moreover, 

technology for solving linear programming problems 

plays a significant role in the creation of algorithms for 

solving mathematical programming problems of other 

types, such as combinatorial optimization problems [1, 2]. 

Mathematical models of many scientific and applied 

problems of design, planning, placement and control may 

be adequately represented on the basis of different models 

of combinatorial optimization [3-6].  In this case variables 

in these problems are considered as elements of classical 

combinatorial sets, such as permutations, combinations, 

arrangements and other [1, 2, 7-9]. 

Establishing additional constraints on the variables in 

the combinatorial optimization models leads to 

appearance of new classes of combinatorial optimization 

problems. Mathematical models of these new classes of 

combinatorial optimization problems could be described 

by subsets of classical combinatorial sets. One of such 

subsets is set of cyclic permutations [11-13]. 

There are two known groups of methods for solving 

combinatorial optimization problems – cutting methods 

and combinatorial methods [1, 2, 9, 12, 14-17]. One of the 

most powerful exact methods is combinatorial branch and 

bounds algorithm [1]. To solve combinatorial 

optimization problems of large dimension methods based 

on random search are often used [2, 18]. 

To improve the efficiency of the known methods of 

combinatorial optimization the properties of 

combinatorial sets, describing the admissible area of 

optimization problems should be used [12, 13, 20]. 

In this paper, for solving optimization problems on the 

set of cyclic permutations, an strategy based on the 

random search, cyclic properties of permutations and 

analytical solutions of systems of linear inequalities as the 

constraints on variables are used. 

The aim of the paper is elaboration of a strategy for 

solving optimization problems of linear functions on the 

set of cyclic permutations with linear constraints. 

 

ANALYSIS OF RECENT RESEARCH AND 

PUBLICATIONS 

 

Definition 1. A linear ordering of the elements from a 

certain generating set 1 2 nA {a ,a ,...,a }  is called a 

permutation  

  = 1 2( , ,..., )na a a  = 

1 2( ( ), ( ),..., ( ))na a a    = 
1 2

( , ,..., )
ni i ia a a  

1 2( , ,..., )np p p   

or, if it is necessary to stress the fact that it contains n  

elements, n -permutation [15-17]. 

We denote as nP  the set of permutations generated 

by the elements   1 2 ... na a a   . 

Consider a certain permutation 

 

 1 2( ( ), ( ),..., ( ))n na a a P       

 

and its element ( )i ja a  , , ni j J  . Then we can 

write down:  

2( ) ( ( )) ( )j i ia a a     . 
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Generally this formula can be represented in the 

following form:  

 

1 1( ) ( ( )) ( )k k k
j i ia a a      ,  

, ni j J  , k n . 

 

Thus [14], if for some 1l   we have ( )l
i ia a  , 

ni J  and all the elements 

2 1, ( ), ( ),..., ( )l
i i i ia a a a   

 are different, the 

sequence 
2 1( , ( ), ( ),..., ( ))l

i i i ia a a a   
 is called an 

l  length cycle. 

Definition 2. A cyclic permutation is such a 

permutation   from n  elements that contains a single n  

length cycle, i. e. ( )n
i ia a  , ni J   [14]. We 

denote such permutations as C . 

Denote 
C
nP  as set of cyclic permutations without 

repetitions generated by n  elements 1 2 ... na a a    

[14-17]. Permutation set nP  and set of cyclic 

permutations 
C
nP  are Euclidean combinatorial sets, or e-

sets [7, 8]. 

Investigate following combinatorial optimization 

problem: minimize the linear function with linear 

constraints on the set of cyclic permutations: 

1

( ) min
n

i i
i

L x p


  ;  (1) 

Cp d ;   (2) 

C
np P ,   (3) 

 

where: [ ]ji m nC C  , 
nd R , i R  , 0ip  ; 

C
nP  — as set of cyclic permutations without repetitions 

generated by n  real’s. 

Let us fulfill the enclosure mapping of the 

permutations set nP  and cyclic permutations 
C
nP  to the 

arithmetic Euclidian space 
nR . According to [7, 8] the 

given mapping (which is called immersion) can be 

represented in the following form: 

 

: nf P R , 1 2( , ,..., )np p p p P   , 

1 2( ) ( , ,..., ) n
nx f x x x E R    , i ix p , 

ni J . 

 

As a result of the immersion f  we have one-to-one 

correspondence between each set nP , 
C
nP  and  

 

nE R : ( )n nE f P , ( )C C
n nE f P . 

 

Formulate optimization problem equivalent to the 

problem (1)-(3) using immersion sets nP , 
C
nP  into 

Euclidian space: 

1

( ) min
n

i i
i

L x x


  ;  (4) 

Cx d ;   (5) 

C n
nx E R  ,   (6) 

 

where: [ ]ji m nC C  , 
nd R , i R  , 0ix  ; 

C
nE  – immerse of the cyclic permutations in Euclidean 

space. 

 

OBJECTIVES 

 

The solution of the problem (4)–(6) is the goal of this 

work. For reaching this goal the approach based on the 

random search is used. Properties of permutations 

immersed in Euclidean space and analytic solution of 

systems of linear inequalities, describing the task 

constraints are taken into account. Similar approach 

earlier was used for optimization of linear function on the 

set of permutations nP  with linear constraints [12]. 

Modification of this approach will solve problem 

(4)–(6) on the set of cyclic permutations. Consider a 

permutation polyhedron nП  generated by a set 

1 2 ... na a a   , n nvert П E  is the set of its 

vertexes.  

Since any cyclic permutation belongs to the set of 

permutations nP ,  

 

1 2( ( ), ( ),..., ( ))C n na a a P      

 

all cyclic permutations are vertexes of the permutation 

polyhedron nП . 

Follow the work [12], build n -dimension simplex 

n
nT R [18], inclusive polyhedron nП . The system of 

inequalities 1 1C x d  defines simplex nT , where 1C  – 

matrix of coefficients ( 1)n n  , 
1

1
nd R  . Since the 

simplex nT  contains a polyhedron nП  adding linear 

inequalities that describe simplex to the constraints (5), all 

feasible solutions are not changed. System of linear 

inequalities 
0 0W x v  combines constraints (5) with 

inequalities  
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1 1C x d , 

where: 
0 0[w ]ijW   – ( 1)m n n   -matrix, 

0 1m nv R   . As a result equivalent optimization 

problem is constructed: 

1

( ) min
n

i i
i

L x x


  ;  (7) 

0 0W x v ;   (8) 

0ix  ;   (9) 

C n
nx E R  .   (10) 

 

Consider solution strategy for problem (7)–(10) [12]. 

In accordance with random search solving process 

contains M  series with m  tests in each series. 

In each test solution of the system of linear 

inequalities is founded. According to [20], general 

formula of non-negative solutions of the system (8)–(9) 

is: 

 

1 2
1 2

1 2
1 1 2 1 1

...

...

l
l

l
N N l N

z z z
z

z z z

  

    

  


  
, 

 

where: 
1 2, ,..., lz z z  – fundamental solutions of the 

following auxiliary system of linear inequalities: 

 

0 0
1 0

0

n

i

W x v x

x


  


 

;  (11) 

 

where: 
1 2
1 1 1, ,..., ln n nz z z    – their last coordinates, 

1 2, ,..., l    – arbitrary real numbers satisfying the 

condition: 

 

1 2
1 1 2 1 1... 0l
n n l nz z z        . 

 

Next random real numbers 1 2, ,..., l   , satisfying 

the condition:  

 

1 2
1 1 2 1 1... 0l
n n l nz z z         

will be generated. Thus will be constructed solution ( )z i  

of the system (11). The nearest to the ( )z i  point of 
C
nE  

could be found using: 

 

2
arg min ( )

C
n

i
x E

x x z i


  . (12) 

 

If 
C

i nx E  isn’t solution of the system (11), next test 

begins. 

In other way we compare ix  to the previous 

approximations to problem (7)-(10) solution and if ix  

give better value of objective function it will became a 

new approximation to solution of (7)-(10). 

Let ix x . We assume x  current approximation to 

solution, and 

1

( )
n

i i
i

L x x


  – upper bound of 

solution (7)–(10). Add to the system (8) linear inequality: 

 

1 1 2 2 ... n nx x x d      , (13) 

 

 

where: 

1

n

i i
i

d x


 . 

The result will be 
1 1W x v  – system of linear 

inequalities In 
1 1W x v  there will be inequality with 

left part, identical to (13): 

1 1 2 2 ... n nx x x d      . Compare d  и d . If 

d d , replace old inequality with the new (13) one in 

system 
1 1W x v . It leads to reducing the area restricted 

with system 
1 1W x v . Let d d . Continue the 

process. 

 

AUXILIARY PROBLEM 

 

Optimization problem (12) is considered as auxiliary 

problem. 

For the set of permutation solution of this problem is 

an absolute minimum of linear function [7]: 

* * * *
1 2

1

( , ,..., ) arg min
n

n

n j j
x E j

x x x x c x
 

   , (14) 

where: 
1

jc R , nj J  , 
*

im ix a , ni J  , and 

sequence 1 2{ , ,..., }nm m m  such that 

1 2
...

nm m mc c c   . 

Since set of cyclic permutation is subset of set of 

permutations for each 
C
nx E  problem (12) can be 

reduced to problem of linear function optimization. 

For combinatorial set of cyclic permutations: 

 

1

min ( )
C
n

n

j j
x E j

x z i
 

 
 
 
 
  
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couldn’t be found using simple elements ordering, so we 

offer to solve this problem using branch and bound 

algorithm [13]. 

Evaluation and branching rules are the main 

components of branch and bound algorithm [1]. 

In this algorithm branching rule is based on fixing 

various free generating elements relative the coefficient of 

the objective function, corresponding to a given level of 

the tree. 

Evaluation of each node of the tree is sum of 

multiplication of fixed generating elements by the 

corresponding coefficients of the objective function and 

multiplication of free generating elements by the 

coefficients of the objective function according to (14). 

The exact solution of the original problem can be 

obtained using this algorithm. But since solving problem 

(7)-(10) requires solving auxiliary problem (12) many 

times for each test in all series the heuristic approach 

based on branch and bound algorithm was proposed. This 

approach called up for saving computing resources. 

Heuristic solving process consists of two stages. First 

stage – branch and bound algorithm of finding solution 

till a user-specified level k . Second stage – final 

construction of cyclic permutation by random fixing of 

remaining free generating elements. 

Resulting heuristic solution depends on problem 

dimension n , user-specified level k  and on coefficients 

of the objective function. For example, if user-specified 

level k  almost equal to n , heuristic solution could be 

equal to exact solution. With decreasing k  the 

probability of coincidence of heuristic and exact solutions 

decreases too. 

 

PARALLEL COMPUTING 

 

Described strategy for optimization of linear function 

with linear constraints on the set of cyclic permutations 

demonstrates good results with relatively small problem 

dimensions. But increasing n  significantly increases time 

of solving the problem. Features of the strategy give an 

opportunity for parallel computing. 

Solving problem (7)-(10) could be accelerated by 

parallel solving auxiliary problems for all random 

generated points in one series. In this case number of tests 

in one series could be equal to the number of processors. 

Thus, strategy of solving problem (7)-(10) using 

parallel computing consists in such steps: 

1) constructing simplex including permutation 

polyhedron; 

2) forming system of constraints; 

3) generating number of random points inside solution 

area; 

4) parallel finding nearest vertexes of permutation 

polyhedron for each random point using branch and 

bound algorithm or its modification; 

5) selection of the best obtained solution; 

6) updating the system of constraints. 

For evaluating the efficiency of parallel computing 

Amdahl's and Gustafson's laws are used. They allow to 

calculate maximum possible acceleration of the parallel 

computing of the program in comparison with the serial 

[21]. 

Let S be acceleration which may be obtained. An 

estimate for it according to Amdahl's law is: 

 

1

(1 )
S

f
f

p






, 

where: f  – the proportion of consecutive operations, p  

– number of processors. 

Also f  can be calculated as a percentage of code that 

couldn’t be parallelized. In this case, estimation of S  

could be less accurate but its calculation is significantly 

simplified. 

Analysis of proposed solutions strategy shows that in 

our case f  is approximately 75%. 

The acceleration S : 

1 1
1,23

(1 0,75) 0,75 0,0625
0,75

4

S   
 



. 

 

MAIN RESULTS OF THE RESEARCH 

 

Described method of optimization of linear functions 

on the cyclic permutations with linear constraints 

implemented in software. Coefficients of the objective 

function and coefficients of constraints were generated 

randomly. Experiments were carried out in two stages. 

First stage was dedicated to solving of the problems with 

dimension of 8 and less variables. These problems were 

solved with proposed modification of the random search 

method. The results compared with exact solution 

obtained by exhaustive search. The coefficients of the 

objective function generated in the interval [10; 100]. 

To find the solutions 5 series were used, each series 

consisted of 10 experimental points. Relative error was 

calculated for the problems, where approximate solutions 

was not equal to exact solution. The results are shown in 

Table 1. 

 

Table 1. 

Dimen

sion 

The 

number of 

matching 

solutions 

The 

number is 

not 

matched 

solutions 

Relative 

error 

The 

average 

time to 

solve, s. 

3 10 0 0 0,14 

4 5 5 0,077 0,269 

5 3 7 0,128 0,439 

6 4 6 0,072 0,734 

7 3 7 0,084 1,527 

8 0 10 0,134 3,402 

 

Second stage was dedicated to solving the problems 

with larger dimensions. For these problems two estimates 

[13] for the lower estimate of minimum were calculated: 

1
Est Rnd

E
Rnd


 ,
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2

Est Rnd
E

Est


 ,  

where: Est  – minimum of objective function on cyclic 

permutations without linear constraints; Rnd  – the 

solution by random search problem. The results are 

shown in Table 2. 

For the problems with dimension 15 and more 

auxiliary problem (8) was solved heuristically. For each 

dimension of the problem tree level k  is specified.  

To solve the problems, presented in Tables 1 and 2 

used 5 series, each consisted of 10 experimental points. It 

means that for solving each of the problems 50 auxiliary 

problems were solved. 

 

Table 2. 

Dime

nsion 
k
 

Number 

of tasks 

Average 

estimate 

1E  

Average 

estimate 

2E  

The 

average 

time to 

solve, s. 

15 10 10 0,256 0,255 18,19 

20 15 10 0,127 0,122 225,9 

25 15 3 1,716 0,44 809,17 

 

To reduce the time and technical resources, were 

conducted experiments with 2 series, each consisted of 15 

experimental points. The results are shown in Table 3. 

 

Table 3. 

Dimen

sion 
k  

Number 

of tasks 

Average 

estimate 

1E  

Average 

estimate 

2E  

The average 

time to 

solve, s. 

25 15 7 0,1652 0,203 821,14 

30 15 3 0,227 0,308 1805,86 

35 15 1 0,219 0,2819 11215,516 

40 20 1 0,305 0,379 33112,95 

 

Experiments to evaluate efficiency of the parallel 

computing of problem (4)-(7) were conducted. The real 

acceleration of the parallel algorithm is the ratio of the 

execution time of sequential algorithm to the time of 

parallel algorithm execution: 1

p

T
S

T
 , where 1T  – 

runtime of sequential algorithm, pT  – runtime using p  

processors. 

To evaluate the scalability of the parallel algorithm the 

concept of the coefficient of efficiency of parallelization 

is used: 
S

E
p

 . 

Table 4. 

Dimen

sion 

The time 

to solve, 

1T , s. 

The time 

to solve 

4pT T

, s. 

1

p

T
S

T
  

S
E

p
  

15 493,7 281,5 1,75 0,4375 

20 4782,9 3297,5 1,45 0,3625 

25 62559,9 31688,3 1,97 0,4925 

Note, that actual acceleration obtained by using 

parallel computing, more than the theoretical evaluation 

by Amdahl's Law. This is associated with inexact rough 

estimate of f . 

 

CONCLUSIONS 

 

This paper suggests a strategy for solving a 

combinatorial optimization problems with linear objective 

function and linear constraints on the set of cyclic 

permutations. This strategy is based on the random 

search, cyclic properties of permutations and analytical 

solutions of systems of linear inequalities as the 

constraints on variables. 

The solving the auxiliary problem of combinatorial 

optimization on the set of cyclic permutations without 

restriction performed using the branch and bound method. 

It should be noted that the use of branch and bound 

algorithm leads to an exponential increase in the 

complexity of solution with increasing dimension of the 

problem. Moreover, rule of branching and the rule of 

estimates calculating significantly depend on the 

complexity of solving process. The following 

modifications of the method are proposed to decrease the 

complexity: 

1. heuristic method for solving the auxiliary 

problem; 

2. modification with the parallel computing for the 

auxiliary problem. 

These modifications allow reducing the computational 

expences for large-scale problems. The effectiveness of 

the proposed improvements is confirmed by 

computational experiments. 
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