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Abstract. The paper presents a stochastic model of a 

quasi-stationary non-isothermal mode of transport and 

distribution of natural gas in gas transportation systems 

with multilinear linear sections of pipeline and a lot of 

craft compressor stations. A method for calculating the 

statistical properties of the dependent variables of the 

model from the statistical properties of the independent 

variables. 
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INTRODUCTION 

 

At present, considerable experience has been gained 

in mathematical modeling and optimization of transport 

and distribution modes of natural gas in gas transportation 

systems (GTS) [1, 2, 3]. However, the optimal solutions 

obtained with their help correspond to absolutely accurate 

values of all parameters of mathematical models of 

technological equipment GTS and absolutely exact, the 

values of the boundary conditions and are, as a rule, on 

the boundary of the admissible region. In practice, this 

leads to the fact that even minor variations in the 

parameters of models or boundary conditions lead not 

only to a significant change in the optimal solution, but 

also to its derivation from the permissible region. 

Naturally, such "optimal" solutions are unacceptable in 

the operational dispatch management of the operating 

modes of the GTS. 

In this article we give a general stochastic model of 

quasi-stationary non-isothermal mode of transport and 

distribution of natural gas in the GTS with multithread 

linear sections (MLS) and multi-station compressor 

stations (CS). This model explicitly takes into account 

both the internal uncertainty of the technological elements 

parameters of the GTS, and external uncertainty 

parameters of the natural gas consumption processes by 

various categories of consumers. We consider the method 

of constructing the equivalent deterministic of stochastic 

model of a quasi-stationary non-isothermal mode of 

transport and distribution of natural gas in the GTS and 

the approximate solutions obtained by system of 

nonlinear and linear algebraic equations defined on a 

graph reflecting the structure of the GTS; and the method 

for calculating the statistical properties of the model's 

dependent variables from the statistical properties of the 

independent variables. 

THE ANALYSIS OF RECENT RESEARCHES AND 

PUBLICATIONS 

 

Fundamental studies of models and methods for 

calculating the pipeline systems operation modes are 

presented in [1, 2, 3]. In recent years, a large number of 

articles are devoted to the actual problem of stochastic 

modeling of pipeline systems operation modes [4-8]. The 

second pressing problem that considered in the articles is 

the problem of pipeline systems optimal control [9-15]. 

Solution of the problem of analysis and optimization 

the actual of gas transportation systems (GTS) operation 

modes is associated with the development of 

mathematical models that more adequately and in a wider 

range describe the actual modes in the GTS. One such 

model is a quasi-stationary non-isothermal mode of 

transport and distribution of natural gas in gas 

transportation systems with multithread linear sections 

(MLS), and many craft compressor stations (CS) [16-21]. 

 

MATHEMATICAL MODELING OF STOCHASTIC 

QUASI-STATIONARY MODE OF NATURAL GAS 

TRANSPORTATION IN  GTS 

 

To build a general stochastic model of a quasi-

stationary non-isothermal mode of transport and 

distribution of natural gas in the GTS with MLS and 

many CS will use the results obtained in [1]: stochastic 

models of the quasi-stationary mode of transport of 

natural gas pipeline and the stochastic model mode gas-

pumping unit (GPU). As a model of the structure of the 

GTS will use oriented connected graph ( , )G V E  [2], 

which is supplemented by a zero vertex and dummy arcs 

connecting this vertex with all inputs and outputs of the 

GTS, where: V  ( V m ) - a set of vertices, E - the set 

of arcs ( E n ). Choose a tree graph ( , )G V E so that its 

branches have become real and fake parts of the arc 

corresponding to the input of GTS. Then the set of arcs of 

the graph E represented as a union of disjoint subsets of 

the following: the real sections M ; fictitious sections on 

the network inputs L ; fictitious sections on the network 

output K , fictitious sections, connecting the input of the 

active elements with the zero point (fictitious additional 

network input) T ; real tree branches 1M ; real tree 

branches, which correspond to passive 11M  and active 

12M  elements; real chords of the graph 2M ; real chords 
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of the graph which correspond to passive 21M  and active 

22M  elements; fictitious branches of a tree, which 

correspond to inputs 1L ; branches of a tree on the inputs 

of the network with a preset flow 11L , pressure 12L  and 

temperature 13L ; chords of the graph, which correspond to 

inputs 2L ; chords of the graph of the network inputs with 

the preset flow 21L , pressure 22L , temperature 23L ; 

fictitious chords which correspond to outputs 

2 2( )K K K ; fictitious chords on the outputs of the 

network with a preset flow 21K  pressure 22K , 

temperature 23K ; fictitious chords of the graph, 

corresponding to fictitious additional network input (arcs 

connecting the input of the active elements with the zero 

point) with a preset flow 21T . The quantity is considered 

preset if it is a normally distributed random variable with 

known expectation and variance.  

We introduce the following notation: the number of 

nodes, in which pressure is preset 

12 22 12 22m1= L L K K   , number of branches, in 

which flow is preset 11 21 11 21n1= L L K K   , the 

number of nodes, in which temperature is preset – the 

number of branches with active elements – 

12 22g1= M M . 

Given quantities are random variables with normal 

distribution law and represented by their mathematical 

expectations and variances. 

Then the stochastic model of quasi-stationary non-

isothermal mode of transport and distribution of natural 

gas in the GTS can be represented as the following 
expressions: 

 

11 12

2

2 2

1 1

2

2

21

( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

2 ( )

( )
( ) 1 ( ) 0, ,

4 ( )

i si
ir r r ri i i ri i

ii M i M

i
i si

i

b Р
f M q b q b c q

c

b
a Р r M

c



 
       




 



 

   
        

   

  
     
 

  

 
 (1) 

11

12

2 2

2 2

1

2 2

1

( ) ( ) ( )
( ) ( ) ( ) 1 ( ) ( ) ( )

2 ( ) 4 ( )

( ) ( ) ( )
( ) ( ) ( ) 1

2 ( ) 4 ( )

r rsr
r rr r sr ri i i

r r i M

i isi
i iri i s

i ii M

b Р b
f M c q a Р b q

c c

b Р b
b c q a Р

c c



  
      

 

  
  

 





   
            

   

   
          

   



 2

22( ) 0, ,i r M

 



  (2) 

11 12 11

12

2 2 2 2

1 1 1

2 2

2

1 21

( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( ) 1 ( ) 0, ,

2 ( ) 4 ( )

r fr ri fi ri fi ri i i

i L i L i M

i isi
i iri i si

i ii M

f M Р b P b P b q

b Р b
b c q a Р r L

c c


    

  
   

 



  




     



    
                   

  



 (3) 

11 12 11

12

2 2 2 2

1 1 1

2 2

2

1 22

( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( ) 1 ( ) 0, ,

2 ( ) 4 ( )

r fr ri fi ri fi ri i i

i L i L i M

i isi
i iri i si

i ii M

f M Р b P b P b q

b Р b
b c q a Р r L

c c


   

  
   

 

 

  




     



    
             

     

  



 (4) 

11 12 11

12

2 2 2 2

1 1 1

2 2

2

1 21

( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( ) 1 ( ) 0, ,

2 ( ) 4 ( )

r sr ri fi ri fi ri i i

i L i L i M

i isi
i iri i si

i ii M

f M Р b P b P b q

b Р b
b c q a Р r К

c c


    

  
   

 



  




    



    
            

     

  



 (5) 

11 12 11

12

2 2 2 2

1 1 1

2 2

2

1 22

( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( ) 1 ( ) 0, ,

2 ( ) 4 ( )

r sr ri fi ri fi ri i i

i L i L i M

i isi
i iri i si

i ii M

f M Р b P b P b q

b Р b
b c q a Р r К

c c


   

  
   

 

 

  




    



    
            

     

  



 (6) 



 THE STOCHASTIC MODEL OF QUASI-STATIONARY NON-ISOTHERMAL MODE …123 

11 12 11

12

2 2 2 2

1 1 1

2
~ 2

2

1 21

( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( ) 1 ( ) 0, ,

2 ( ) 4 ( )

i

r fr ri fi ri fi ri i i

i L i L i M

i si
i iri i si

i ii M

f M Р b P b P b q

b Р b
b c q a Р r T

c c


    

  
   

 



  




     



               
      

  



 (7) 

2 22 22 21 21

1 1( ) 0,r ri r ri r i

r M L K r L K

f M b q b q q


  

    

  
    

  
     (8) 

  ( )
( ) ( ) 0r L

r fr gr sr grf M Т Т Т Т е
 


  

     , 11 21r M M  ,  (9) 

 
( ) 1

( )( ) ( ) ( ) ( ) 0
r

r
r fr sr fr srf M Т Т P P

 

 


   

 
   

 
, 12 22r M M  , (10) 

( ) ( ) ( ) ( ) 0

r r

r r i i fi

i G i G

f M Т q q T


   
  

  
   

  
  , r V , (11) 

 ( )
( ) ( ( ) ) ( ) (1 ) 0r L

r ar gr sr gr rf M Т Т Т Т L e
 


            , 11 21r M M   (12) 

 2 2 2( ) ( ) ( ) ( ) 0rr sr fr rf M Р Р q


        ,  11 21r M M   (13) 

 
~ ~ ~

2 2 2( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0r rr sr fr sr r r rf M а Р Р b Р q c q


            ,  12 22r M M         (14) 

 

where: , , , ,si fi si fi rP P T T q      – marks the preset quantities; 

j
G

 , 
j

G
  – the set of elements on which the gas comes 

into the j -th node, and is bled from it, respectively; 

1rib  – сyclomatic matrix element, located at the 

intersection of the r-th row and the i-th column; 

( ), ( )si fiP P   – random variables, characterizing the 

pressure at the beginning and the end of the i-th arc;  

( ), ( )si fiT T   – random variables, characterizing the 

temperature at the beginning and the end of the i-th arc;  

( )iq   – random variable characterizing the commercial 

flow of i-th arc; 

( )i   – random variable characterizing the assessment 

ratio of hydraulic resistance of pipeline [22]: 
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( )  – random variable characterizing the assessment 

ratio of the relative density of natural gas in the air, 

( ), ( )
i ia aT Z   – random variable characterizing the 

estimation of the average temperature and average density 

of natural gas of i-th arc, ( )iE   – random variable 

characterizing the assessment of effectiveness ratio i-th 

pipeline; 

( )i   – random variable defined by the expression 

[22]: 
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( )
iTK   – random variable characterizing the estimate of 

the average values of the coefficient of heat transfer from 

the gas in the ground on the i-th section of the pipeline, 

( )B  – a random variable characterizing the estimate of 

the coefficient of the specific heat of natural gas; 

( ), ( ), ( )i i ia b c    – random variable characterizing 

the approximation estimates for the coefficients describe 

the degree of compression of GPU from the commercial 

flow for GPU-owned  i-th  arc: 
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0 0 0( ), ( ), ( )i i ia b c    and 
1 1 1( ), ( ), ( )i i ia b c    – random 

variables characterizing the estimates of coefficients of 

approximation polynomials of the compression degree 

GPA first and second degree, respectively, at 
0

1

d

n

n

 
 

 
, 

' ( )in   – random variables characterizing the above 

assessment of the relative speed drive of  i-th  GPA: 
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where: ( )i pol   – random variable characterizing the 

assessment polytropic efficiency in form of the following 

expression: 
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( )diQ   – random variable characterizing the performance 

evaluation of the reduced volume of i-th GPA by 

expression: 
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The stochastic model of quasi-stationary non-

isothermal mode of transport and distribution of natural 

gas in GTS (1)–(14) takes into account almost all sources 

of internal and external uncertainties operation modes  

and allows enough to adequately analyze and simulate a 

wide class of quasi-stationary modes of the GTS. Of 

greatest interest, this model is to optimize the planned 

modes GTS. In this case the optimal plan of GTS at a 

given time interval is represented as mathematical 

expectations and variances of parameters of flows of 

natural gas (pressure, flow, temperature) on the inputs and 

outputs of the GTS, expectations and variances of 

operational parameters (speed drives) GPU. To calculate 

the mathematical expectation of flow parameters of 

natural gas for each real portion, and at every entrance 

and exit of the GTS is necessary to construct a 

deterministic equivalent stochastic model of a quasi-

stationary non-isothermal mode of transport and 

distribution of natural gas in GTS (1)–(14). 

 

DEVELOPMENT OF THE STOCHASTIC MODEL 

FOR NATURAL GAS TRANSPORTATION AND 

DISTRIBUTION IN  GTS 

 

To build a deterministic equivalent stochastic model 

of a quasi-stationary non-isothermal mode of transport 

and distribution of natural gas in GTS  it is necessary to 

replace all the random quantities in the system of 

equations (1)–(14) by their assessments in the form of 

conditional expectations. Because of the nonlinearity of 

the system of equations (1)–(14), such replacement will 

result in the right side of this equations will take the form 

of non-zero residuals, the sign and magnitude of which, 

according to Jensen's inequality [3, 16], will determine by 

the degree of convexity (concavity) of implicit functions 

from the variables defining the system of equations (1)–

(14). As shown by our studies, the numerical value of 

these residuals is comparable with the magnitude of error 

in the numerical solution of equations (1)–(14). 

Therefore, without loss of generality, by residuals of the 

deterministic equivalent stochastic model of a quasi-

stationary non-isothermal mode of transportation and 

distribution of natural gas in (1)–(14) may be neglected. 

In work [3] was shown that in this case the 

deterministic equivalent stochastic model of a quasi-

stationary non-isothermal mode of transport and 

distribution of natural gas in the transmission system  

(1)–(14) will coincide with the steady-state model of the 

flow of gas pipeline networks with active elements, in 

which the boundary conditions and unknown parameters 

are represented by their conditional expectations. A 

numerical algorithm for solving systems of equations of 

the deterministic equivalent stochastic model of a quasi-

stationary non-isothermal mode of transport and 

distribution of natural gas transportation systems also is 

given in [3].  

The formulas given below are a deterministic analog 

of equations (1)-(14): 
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where the parameters marked feature of the above are 

estimates in the form of mathematical expectation of the 

random variables model presented in next section. 

 

ASSESSING THE RELATIONSHIP OF STATISTICAL 

PROPERTIES OF THE DEPENDENT AND THE 

INDEPENDENT VARIABLES IN THE STOCHASTIC 

MODEL 

 

Formal statement of the problem of assessing the 

statistical properties of the dependent variables in the 

stochastic model of the quasi-stationary non-isothermal 

natural gas transportation mode in the GTS, is the 

necessity to determine the numerical characteristics of 

random variables, which are the solution of the 

deterministic analogue of the functional relationships (1)–

(14) supplemented by equations (15)–(22): 
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where: N  – number of calculated parameters in the 

general case equal to (2 5 7 1 4 1 1 1)N n m g m n l      , 

and 2 ( 1 1 1 2)N m n l     – number of the preset 

parameters. 

Since the system (24) is given implicitly, and the 

conditions of the theorem "on the existence and 

differentiability of the implicit functions determined by a 

system of functional equations" [17, 18] hold, we assume 

that there exists a functional dependence between random 

variables that are system's dependent and independent 

parameters, which is defined by the model (1)–(22). 

As a result of applying the method of linearizing the 

function of several random variables [17, 18], as well as 

the subsequent applying the properties of the numerical 

characteristics of functions of random variables to the 

resulting expression, we obtain the following 

dependencies of the statistical characteristics (excluding 

random variables correlation): 
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where the parameters marked feature of the above are 

estimates in the form of mathematical expectation of the 

random variables model presented in next section. 

To determine the values of the expectations (25) we need 

to solve the system of equations (23), relative to the 

variables – the random varieties 
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at the point, corresponding to the expectations of gas flow 

parameters in the network.  

To find the variance (26) it is necessary to calculate 

the partial derivatives used in dependencies. Since the 

system (24) is implicit, and therefore it is impossible to 

find its general analytical solution, a method for 

calculating the partial derivatives for a system of 

implicitly defined functions follows.  
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Lets denote a couple more classes of functions, as the 

dependences (15) – (22) are included in the system (23) in 

exactly that form. 
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MODELING RESULTS 

 

Let us consider the following example. Well perform 

the hydraulic calculation for a section of the gas transport 

system in the form of a main gas pipeline, which includes 

compressor section with five gas pumping units. Figure 1 

shows the corresponding computational graph, consisting 

of 16 nodes and 21 branches, 5 of which are active (arcs  

14 – 18).  Length of pipes: 2L 102  km, 20L 34  km, 

3 19L 0.3   km,  the diameters 2 20d d 1.4   m, 

3 19d 1.02   m. 

 
Fig. 1. Graph of GTS fragment 

 

Suppose the maximum deviations of preset parameters 

are as follows: 

–  commercial flow – q qq*   , where Q 1%   – 

relative error in measuring commercial flow; 

–  for pressure – P PP *   , where P 1%   – 

relative error of pressure measurements; 

–  for temperature – T TT *   , where 

T 0.35%   – relative error of temperature 

measurements; 

–  for efficiency factor – E EE *   , where 

E 0.35%   – relative error of measurements; 

–  for the average coefficient of the gas – 

K KT T KT
*   , where 

KT
0.35%   – relative error 

of measurements. 

As the mathematical expectations of random variables 

at the inputs the following parameters: T1M 313K , 

P1M 8.3МПа , 3
q21M 102 mln м / day , were taken. 

Next, we determined 
3

q21  1.02  mln м / day  , 

P1   0.083 МПа  ,  T1  1.0955 K  , as a result of the 

calculations the expectations (13)–(16), were obtained, 

among which the study of random variables 16 16 1T , P , q  

is of a special interest. That is, the calculated parameters 

for nodes 1 and 16  in Fig. 1: T16M 283.425 K , 

P16M  6.07 МПа ,  
3

q1M 102 mln м / day . 
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To establish the dependence between the variances of 

random variables 16 16 1T , P , q  and variances 1 1 21T , P , q  of 

parameters we used the method presented in Section 3. 

Below are the charts of some of them– each such chart 

 

shows two dependencies: in the first case partial 

derivatives were calculated analytically (dashed line), as 

described in Section 4, while in the second case – 

numerically (solid line). 

 

 

 
 

 

Fig. 2. Dependence between the variances of output 

pressure 16P  and variances input pressure 1P  

 

 

 

Fig. 5. Dependence between the variances of output 

temperature 16T  and variances input pressure 1P  

 

 

 

Fig. 3. Dependence between the variances of output 

pressure 16P  and variances input temperature 1T  

 

 

 
Fig. 4. Dependence between the variances of output pressure 

16P  and variances output commercial flow 21q  

 

 

Fig. 6. Dependence between the variances of output 

temperature 16T  and variances input temperature 1T  

 

 

 

 
Fig. 7. Dependence between the variances of output 

temperature 16T  and variances input pressure 21q  
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Fig. 8. Dependence between the variances of input commercial flow 1q   

and variances output commercial flow 21q  

 

 

CONCLUSIONS 
 

1. This paper addresses the problem of mathematical 

modeling of stationary non-isothermal modes of the 

natural gas transportation with the multithread LS and 

multishop CS. The novelty of this work lies in the fact 

that for the first time the problem of mathematical 

modeling of stochastic quasi-stationary non-isothermal 

mode of natural gas transportation over the network with 

multithread LS and multishop CS, and the problem of 

assessing the relation between the statistical properties of 

the dependent and independent variables in presented 

model was solved.  

2. Practical significance is that these models provide 

upper and lower bounds for ranges of gas flow parameters 

at any GTS node for a given level of external stochastic 

disturbances.  
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