
Abstract—The paper studies the influence of signal 
quantization levels number on accuracy of the results of spectral 
analysis. The overflow effect (signal threshold clipping due to 
shortage of the quantizing device bits) is also considered. 
A formula is derived for transforming a real number to its 
nearest quantization level. Numerical modeling of the quantized 
realizations of harmonic signal (pure one and mixed with noise) 
as well as its Fourier transform’s basis functions is performed to 
construct characteristics – dependencies between program-
assigned signal parameters and those measured in the course of 
digital processing under various quantization and clipping 
conditions. 

Index Terms—Analog-to-digital conversion, discrete and fast 
Fourier transform, level quantization, threshold clipping.  

I. INTRODUCTION

EVEL quantization is an inherent procedure of digital 
signal processing (DSP). Besides, discrete variability is 

the basis of most physical and biological world, and of various 
mathematical constructions (energy levels in quantum 
mechanics, DNA encoding, Boolean algebra, Walsh functions, 
etc.). Yet, wherever the reality idealization is based on the 
description of continually changing values, level quantization 
is considered as a distorting phenomenon. This is also true of 
spectral analysis based on discrete Fourier transform (DFT) 
method, where the transformed series of numbers, which are 
supposed to be continual in theory, are level quantized in 
practice.  

Level quantization takes place not only during signal 
acquisition – when it undergoes analog-to-digital conversion 
(ADC), but also during its further processing by a computing 
device with finite number of memory cells’ and processor 
registers’ bits. In the latter case it is convenient to study, as an 
example, the level quantization of basis functions (sines and 
cosines) of DFT calculated in a direct (but slow) way, and by a 
rather sophisticated in mathematical description method of fast 
Fourier transform (FFT), having multiple versions of its 
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implementation algorithms [1]. These versions (data 
decimation in time or frequency domain with their prior or 
post processing by the “butterfly” scheme, etc.) “shuffle” 
differently the interim results and are not commutative in their 
ultimate calculation with the level quantization operation. 

Level quantization is often accompanied by clipping the 
signal on thresholds established, e.g., for protection against 
overload. 

Questions about the effects of these and other ways of 
signal restriction on the accuracy of the Fourier transform are 
relevant to the metrology of spectral analysis as a means of 
measuring the amplitude-phase-frequency characteristics of 
oscillatory processes of different nature. Answers to those 
questions will allow manufacturers and customers of 
microelectronic devices to coordinate more precisely the 
actual performance of the industry’s products with features 
envisaged during their design stage. 

Level quantization of the signal has been subject of a large 
number of works – from the earliest to the present time of 
DSP development history [2]–[7]. However, effects related to 
it cannot be considered to have been fully studied. For 
instance, well-known manuals on theory and practice of signal 
processing [2]–[4] confine themselves to describing the 
quantization phenomenon and rationale of probability 
distributions of the rounding noise (error), in particular the 
assumption of its uniform distribution. Among the quoted (by 
no means complete) list of the literature the papers [5]–[7] can 
be highlighted where quantization effects are studied as 
applied to one of the vast areas of DSP – digital filtering.

As for another major DSP area – discrete spectral analysis, 
one can feel a noticeable lack of references here, and the 
present work is aimed, if not to fill this gap, but to 
demonstrate a possible research direction of the problem, 
which occupies a prominent place among other problems of 
measurements and signal processing. 

I. MATHEMATICAL BACKGROUND

Let us consider an analog signal s(t) describing a physical 
process, and its digital realization sn of duration T s and length 
of N samples, obtained (starting at a time moment t0) with 
sampling frequency F Hz. The signal is assumed to be clipped 
on constant thresholds A and B:
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Before digital processing, such a signal undergoes level 
quantization, which can be represented as a chain of operators 
affecting sn and transforming it into a quantized number 

nn ss QPP 1
_

.          (2) 

At first, the sample sn, possessing a physical dimension of
process s(t), is affected by scaling (calibration) operator P,
which transforms it into a dimensionless number contained in 
the range with fixed integer boundaries LA=PA and LB=PB

corresponding to the thresholds A and B. The operation of this 
is linear 

DCsss nnn P ,       (3) 

with the coefficient C and the displacement D, equal  

)/()(;)/()( ABALBLDABLLC BAAB . (4) 

Then quantization operator Q itself comes into effect and 
rounds up the scaling result to the nearest integer number: 

]2/1[ nnn sss Q .       (5) 

Finally, the obtained integer (5) is descaled, i. ., returned to 
the original physical dimension by applying the inverse 
operator P:
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Thus, we arrive at the function, depending on the single 
variable sn and four parameters A, B, LA, LB:
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Real ADC devices contain an even number of quantization 
levels L=2l, where l is the number of binary digits. The levels 
are numbered from LA = –L/2 to LB =L/2–1. Of interest is an 
odd number of levels L with the boundaries LA = –(L–1)/2, 
LB =(L–1)/2. Both cases of L are easy to combine:  

2;]2/)1[(,]2/[ LLLLL BA .   (8) 

It turns out that formula (7) is invariant under the 
displacement by an integer constant L , i.e., it does not change 
when replacing LA and LB by LA+L  and LB+L . In particular, 
we can set LA=0, LB=L–1 in (7) and simplify it: 
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Considering now an important case of threshold symmetry 
B= –A>0 and normalizing the signal per that threshold 
( n=sn /B), we obtain a formula of quantization and clipping  
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which depends on a single variable n and contains a single 
parameter – the number of quantization levels L.

Formula (10) looks most simply for the cases of two-level 
(L=2) and three-level (L=3) quantization  
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Note that the quantization function q is properly defined on 
clipping thresholds (equal to 1): putting n = 1 in (10) we 
get n = 1= q( 1). But for an even L the zero value of n

shifts: 
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An important property of the q( ) function lies in the fact 
that an integer constant K can be moved beyond the brackets: 

2mod)(,)0()()( KKLJKJqJqKq .(13)

If K is even or L is odd, then J=0 and q( ) becomes periodical. 
Difficulties of further research lie in the fact that it is 

impossible to obtain an analytical expression for the Fourier 
transform of any type of quantized signal, except for the trivial 
s(t)=const.

The exact formulas for the spectra of the amplitudes and 
phases are derived for time-limited pure harmonic signal 
under the assumption of continuity of its samples [8]. They are 
the basis of special methods of spectral analysis that increase 
accuracy of estimating harmonic oscillation’s parameters, and 
are applied in the present paper. Here, despite the fact that the 
quantized signal can be described by means of piecewise 
constant function (10), to define the coordinates of those 
constants’ boundaries on the horizontal axis seems to be not 
possible. Hence the impossibility of the DFT calculated sum 
fragmentation. Therefore, the only way to study the problem is 
numerical simulation. A shortcoming of this approach is the 
need to consider a lot of special cases, whose classification is 
unlikely to be carried out comprehensively. 

II. DESCRIPTION OF NUMERICAL EXPERIMENTS 

Numerical experiments to determine the influence of level 
quantization and threshold clipping on the accuracy of spectral 
analysis were performed using the dynamic measurements 
digital signal processing program quatrix.exe® [9], in which 
the procedures described by formulas (1)–(10) were included. 

As a model of physical process (1) the analog harmonic 
signal of frequency f0, amplitude a0, and initial phase 0 mixed 
with noise and observed in a window with initial time t0= –T/2 
was taken:  
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Harmonic signal, by virtue of the superposition principle 
(the linearity of Fourier transform), serves as a structural 
component of various types of dynamic processes (vibration, 
pulsation, etc.). Therefore, the results obtained in a study of 
this model can be rightfully extended to the complex physical 
processes that have polyharmonic nature and occur in reality.  

The noise in model (14) was formed by the software 
generator of uniformly distributed pseudorandom numbers, 
r =random, so that the noise component’s samples 

10;)12()( 0 rrbtrr nn      (15) 

varied within limits b0, whereas the harmonic component 
was between a0. Hence, samples sn were limited and 
normalized per threshold B =1+ b0 so that for a0>1 signal 
clipping was imitated. 

The objective of each experiment was to build 
characteristics, that is a plot of a harmonic signal’s parameter 
under measurement depending on the threshold or the number 
of quantization levels of either the signal or the basis functions 
of DFT or FFT when that parameter is fixed as a given 
constant in the model (14). Effect of quantization or clipping 
was assessed by comparing the experimentally measured 
signal parameters – frequency f, amplitude a, and phase  with 
the program-assigned values f0, a0, 0.

Signal parameters were estimated on the basis of processing 
the results of discrete Fourier transform  
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that calculates the spectral function Sm of the integer frequency 
variable (bin) m.

The first half of samples Sm (hermitic conjugate with the 
second one) is used (assuming N to be an even number) to 
establish both the spectra of amplitudes Am and phases m

2/,...,,...,1,0;arg|,|2 0 NmmSSA mmmm   (17) 

of the signal’s digital realization sn on the frequencies fm=m/T.
Here the bin m0 is singled out, which is the address of the 
maximum peak in the amplitude spectrum searched by sorting 
out and comparing components of the array of numbers Am.

A. Frequency measurement  

It is clear that m0 is a rough estimate of the process (14) 
harmonic component’s dimensionless frequency f0T=m0+ 0.

Fractional adjustment 0 is estimated by formula 

)/()( 11110 0000 mmmm AAAAµ ,    (18) 

possessing, as was shown in [8], good accuracy for moderate 
noise level b0 and for m0 location sufficiently distanced from 
spectrum edges m=0 and m=N/2.  

This formula, in which the nearest (left and right) neighbors 

of the amplitude spectrum maximum peak are presented, was 
used to measure frequencies with accuracy exceeding the 
spectral resolution.  

B.  Amplitude measurement 

The main problem that arises when evaluating the 
amplitude is its lowering at non-integer value of the 
dimensionless frequency f0T (maximum peak of amplitude 
spectrum turns out to be a0sin( 0)/( 0) instead of a0). This 
phenomenon accompanied by the appearance of false sidelobe 
components, is known in the literature as a leakage effect (see, 
e.g., [2], [4]). There is no leakage at 0=0, and the leakage is 
maximum at 0=1/2 (in the latter case, the peak amplitude 
is ~64% of the harmonic oscillation’s amplitude’s true value). 

To smooth the leakage effect, focusing method proposed in 
[8] was applied. The essence of the method consists in 
summing the square of amplitude spectrum maximum peak 
with squares of the related sidelobe components, and taking 
the square root a of that sum for evaluation of the oscillation’s 
amplitude a0.

C. Phase measurement  

To assess phase 0, alternating method [8] was applied, 
which eliminates phase distortion – its false shift in the 0

taking place in the traditional spectral analysis (provided in 
time window 0 t < T alleged “by default”). The essence of the 
alternating method (provided in time window –T/2 t < T/2) is 
to swap the first (0  n<N/2) and second (N/2 n<N) halves of 
the signal’s digital realization sn before performing DFT. And 
then the phase 0 is estimated with accuracy 0/N as the value 
of phase m at the address m0 of the amplitude spectrum peak. 

The results of phase measurements were outputted in 
degrees (within ± 180°). 

III. SIGNAL QUANTIZATION AND CLIPPING RESEARCH RESULTS

Digital realizations of process (14) with duration of T=1 s 
and length of N samples were formed with sampling frequency 
F Hz, so that the spectral resolution F/N=1/T was 1 Hz and the 
dimensionless frequency f0T coincided with the dimensioned 
one f0.

A. Appearance of the oscillograms and spectrograms  

Prior to discussing the results, it is of interest to regard the 
external look of examined signals and their amplitude spectra. 

Fig. 1a indicates the first half of the oscillogram drawn with 
points and the amplitude spectrum of pure harmonic signal 
(a0=1 V, b0=0) of a semi-whole dimensionless frequency 
256.5 drawn with solid line. The realization length is N=2048 
samples, and the number of quantization levels is L=4096, 
which is typical of 12-digit ADC-board often used in practice. 

With this number of levels accepted to be “infinite”, as is 
shown in further analysis, the samples of signal can be 
considered as continuum numbers and both direct and fast 
Fourier transform methods – as identical in terms of their 
precision. 
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Fig. 1.  Waveform and amplitude spectrum of a sinusoid under various 
conditions of quantization and clipping: a – large, b – small number of signal 
quantization levels without clipping; c – signal clipping with a large number 
of its quantization levels 

The same signal quantized with a small number of levels 
L=16 is shown in Fig. 1b, and in Fig. 1c – with L=4096 levels, 
but clipped on amplitude (a0=1.5).  

A comparison of these illustrations shows how little the 
amplitude spectrum view is affected by the strong oscillogram 
view change. Spectrum distortion is more noticeable in case of 
the signal clipping, which is proved by the harmonic occurring 
at frequency 767.5 Hz. 

Such a weak effect of level quantization on the amplitude 
spectrum (inadequate degree of waveform distortion) is 
certainly a positive fact, and at the same times an unexpected 
paradox.  

B.  Amplitude-frequency characteristics  

Fig. 2 shows amplitude-frequency characteristics obtained 
for a short length N=32 of the signal’s digital realization. 
Measurements were made at a constant phase 0=90 .

Fig. 2.  Amplitude-frequency characteristics of pure harmonic signal for 
different number L of its quantization levels 

Variable for each of the specified quantization levels L was 
the dimensionless signal frequency f0T=m0+ 0 incrementing 
by step 1/8 from spectrum origin to Nyquist frequency N/2. 
Amplitude was built depending on it: the orange line – using 
focusing method, the blue line – without adjustment (peak 
value of amplitude spectrum at the address m0). Green circles 
show measured signal frequencies adjusted according to (18). 

Amplitude measurement result close to the ideal one a =1 is 
ensured for L 8 through focusing application. Amplitude 
oscillations calculated without adjustments are explained by 
leakage lowering it at semi-whole frequencies to ~64% of a0.

The frequency  measurement  plot  practically  coincides 
with the program-assigned line, except in the spectrum central 
zone for two-level quantization and at the spectrum edges for 
any number of quantization levels. In the latter case, the so-
called edge effect holds for the amplitude, being smoothed 
only if L=2.  

An extremely small number of levels (L<8) raises the 
amplitude measurement result (by 20–30 %), practically not 
touching the nature of genuine spectral deficiencies (leakage 
and edge effects).  

12 R&I, 2010, N4



C.  Phase characteristics of quantization 

Fig. 3 shows phase characteristics of harmonic signal – 
results of phase measurement depending on the number of 
quantization levels L.

Fig. 3.  Phase characteristics of pure harmonic signal with N=32 and 2048 
realization length measured in the absence and with the utmost leakage effect 

Characteristics were taken in the spectrum center (on bin 
m0=N/4) with constant phase 0 taken from the row 0 , 30 ,

45 , 60 , 90 . Using this sign symmetry to analyze the 
leakage effect for 0 0 0=1/2 was set, and for 0 0 – 0=0. 
The signal’s realization length was assigned to be large 
(N=2048, thick line and points) and small (N=32, thin line).  

Results of phase measurement for long and short 
realizations are the same when there is no leakage (as it is 
evident for the curves in the lower part of the figure). It is 
surprising that distortion is either totally absent (for phases 0 ,
–45 ), or for small L it is large and can have either “sawtooth” 
behavior (for phases –30 , –60 ) or appear only when the 
number of quantization levels is even (for phase –90 ).

If leakage is present (see the upper part of the figure), phase 
distortion depends on realization’s length. It is minor for 
N=2048 and proportional to the phase itself for N=32.  

In any case the phase measurement result can be considered 
to be approaching the asymptotic limit value for L>64.

D.  Noise influence 

To assess the effect of noise the harmonic signal was mixed 
with uniformly distributed noise of the same intensity 
(b0=a0 =1), so that the ideal result of amplitude measurement 
was a=0.5. In the characteristics in Fig. 4 N =512, 0=0, 
f0T =128. 

Fig. 4.  Amplitude a (solid curve) and the phase  (points) of harmonic signal 
mixed with noise depending both on the number of quantization levels L

A strong (twofold) overestimation of the amplitude 
(focused) is observed only for two-level quantization. For L>2
the noise-caused scattering of both phase (by several degrees) 
and amplitude (by some percentage) is not sensitive to 
quantization.  

It can be argued that the noise is a distorting factor which is 
almost independent of the quantization (as well as of leakage, 
anyway). 

E.  Signal clipping 

To research the signal threshold clipping effect, 
characteristics given in Fig. 5 were taken.  

Fig. 5.  Amplitude a and phase  of a pure harmonic signal depending on the 
signal clipping threshold 

 The variable on X-axis is “overload factor” – parameter a0

of model (14) showing how many times the signal amplitude 
is larger than unity threshold in (10). Y-axes feature amplitude 
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a and phase  of the pure harmonic signal with length of 
N=512 samples and of frequency 128+ 0, where 0 adopted 
values 0 and ½ corresponding to the minimum and maximum 
leakage effects. In each case a large (L=4096, thin line) and a 
small (L=4, points) number of quantization levels were taken. 
Phase 0 was set to vary linearly: from –60  to +60 .

The experimental results radically differ for different cases 
of 0. Paradoxically, for the maximum leakage phase 
measurements fit perfectly on program-assigned line, whereas 
in the absence of leakage, they are “ragged,” piecewise 
constant, differing for small values of a0 by cases of L (this 
difference is also clearly seen for amplitude measurements).  

As for the amplitude, clipping leads to its overestimation of 
about 30 %. The clipped signal with unlimited growth of a0

approximates the signal with 2–3 quantization levels. 

IV. FOURIER TRANSFORM’S BASIS FUNCTIONS 

QUANTIZATION RESEARCH RESULTS

We simulated and compared three situations related to the 
Fourier transform’s basis functions level quantization.  

In the first of them samples of signal (14) with amplitude 
a0=1, equal to threshold B=1 (which ensures absence of signal 
clipping), were quantized. The second situation was created by 
quantization of the DFT (16) basis functions’ samples during 
the cycles passing on m and n in the course of their direct 
calculation, and in the third situation the FFT sines and 
cosines table’s entries during their preliminary calculation 
were quantized. 

As trigonometric functions vary within limits 1,
quantization in the two latter cases, according to (10), was also 
carried out without threshold clipping.  

A.  Appearance of the spectrograms  

In Fig. 6 signal is almost continual – it has L=4096 
quantization levels, but both the samples of DFT and FFT 
basis functions have only L=8 levels. 

Fig. 6.  Amplitude spectrum of a sinusoid with L=8 quantization levels of both 
DFT and FFT basis functions 

We see a generally weak, but noticeable difference in the 
peak amplitude of the DFT and FFT spectra from each other, 
which already indicates the impact of quantization on the 
metrological properties of fast computational algorithms.  

B.  Frequency characteristics of the quantization  

Fig. 7 shows the frequency characteristics plotted in the 
absence of leakage and when it has the maximum effect. 

Fig. 7.  The results of measuring an integer and a half-integer frequency 
of sine wave depending on the number of quantization levels of signal and 
basis functions of DFT and FFT 

In the first case (f0T=64) the ideal outcome measure f = f0

is obtained at the two phase values ( 0=0 0= beginning 
from number of quantization levels L=3 (both for signal and 
for basis functions of the Fourier transform).  

In the second case (f0T=64.5, 0=0 ) the value of fT varies 
between the nearest bins 64 and 65 giving them “equal 
preference” for the direct method of calculating the spectral 
function (16), which is a more plausible outcome compared to 
the fast method.  

C. Amplitude characteristics of the quantization 

Fig. 8 shows the amplitude characteristics obtained for 

0=0  on the integer and half-integral signal frequency. 

Fig. 8.  The amplitude of the integer and half-integer frequency sine wave 
depending on the number of quantization levels of signal and basis functions 
of DFT and FFT 
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It is evident that the behavior of curves in all the three 
quantization modes depends strongly on the leakage effect. 
Closer to each other are results given by quantization of signal 
and DFT basis functions. However, the quantization of the 
FFT basis functions increases the existing error of the 
amplitude a.

D.  Phase characteristics of the quantization  

Fig. 9 shows the results of measuring the zero initial phase 

0=0 of a harmonic signal obtained in the absence of leakage 
and when it has the maximum effect.  

Fig. 9.  Measurements of zero-phase of an integer and a half-integer frequency 
sine wave depending on the number of quantization levels of signal and basis 
functions of DFT and FFT 

Just as in the measurement of the amplitude, closer results 
are obtained by quantization of signal and DFT basis 
functions.  

However, the quantization of the FFT basis functions 
significantly increases the error in phase  that indicates the 
downside of fast algorithm application for small L.

V. CONCLUSION 

Level quantization, which dramatically changes the signal 
appearance, has little effect on the precision of spectral 
analysis results. Frequencies of process harmonics are 
determined with a sufficient accuracy for L>2 signal 
quantization levels, amplitudes  – for L>8 levels, and phases – 
for L>64 levels. The amplitude and phase spectra distortions 
are more noticeable in case of the signal clipping. 

Level quantization of discrete Fourier transform’s basis 
functions produces by means of the fast calculation method a 
markedly greater error of spectral estimates of the parameters   
of the harmonic components of the varying process  

as compared to the direct calculation method. Therefore, FFT 
and other fast algorithms of digital signal processing, 
implemented in microelectronic devices with a small number 
of memory cells’ bits, should undergo metrological 
certification as a means of measuring the parameters of 
processes. 

In those DSP areas where spectral analysis methods can be 
applied, processing a large amounts of data from many 
sources (sensors) of data acquisition (aviation engines stand 
testing, meteorology, monitoring of environment and 
engineering facilities of great length: railways, oil and gas 
pipelines, etc.) can be carried out with multiple data 
contraction by selecting a small number of quantization levels 
for the signals. This justifies demand for designing, producing 
and purchasing electronic and computing devices with a small 
number of bits of data provided.

The proposed method of investigating the effects of 
quantization and clipping can be used in various fields of 
digital signal processing and related disciplines (wavelet 
analysis, sequential analysis, etc.). 
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