
A generalized algebraic approach to finding 
rough set approximations and generating     
logic rules 

D. Sitnikov1, O. Ryabov2, O. Titova1 & O. Romanenko1 
1Kharkov State Academy of Culture, Ukraine 
2National Institute of Advanced Industrial Science and Technology, 
Japan 

Abstract 

The rough set concept is a relatively new mathematical approach to vagueness 
and uncertainty in data. The rough set theory is a well-understood formal 
framework for building data mining models in the form of logic rules, on the 
basis of which it is possible to issue predictions that allow the classification of 
new cases. The indiscernibility relation and approximations based on this 
relation form the mathematical basis of the rough set theory. The classical 
topological definitions of rough approximations are based on this relation. 
Unlike the classical approaches it is possible to define rough approximations in 
an algebraic way. This paper represents a generalization of the algebraic 
approach suggested by the authors earlier. We use a set of discrete characteristic 
functions taking on values from finite sets (not necessarily Boolean values) and 
operations on them including comparison and Boolean operations, which we call 
the approximation language. We use the terms “exact upper approximation” and 
“exact lower approximation” to stress the fact that there can exist a variety of 
approximations but it is always possible to select the approximations that cannot 
be improved in the terms of the approximation language. We consider the 
process of generating logic rules based on the exact approximations in the case 
of arbitrary discrete characteristic functions taking on values from finite sets. 
Logic rules are naturally obtained from predicate formulae for the exact 
approximations. The introduced approach allows the generation of logic rules 
quickly and efficiently since only comparison operations with discrete values 
and Boolean operations with binary values are used to produce logic formulae.  

 © 2007 WIT Press
 www.witpress.com, ISSN 1743-3517 (on-line) 
WIT Transactions on Information and Communication Technologies, Vol 38,

Data Mining VIII: Data, Text and Web Mining and their Business Applications  3

doi:10.2495/DATA070011



1 Introduction 

Data mining has to deal with making decisions under uncertain conditions. It 
often happens that many rows in a database can be interpreted as the indication 
of the fact that a new case (for example, whether or not a patient has a disease) 
should be classified as positive (the patient does have the disease). Nevertheless, 
many other rows state that patients with the same symptoms do not have the 
disease. Which decision should be taken when the database contains 
contradictory information? In order to enable the analyst to make decisions in 
situations where no conclusion can be drawn with a probability of 100%, various 
mathematical theories have been developed. 
     The rough set concept is a relatively new mathematical approach to vagueness 
and uncertainty in data [1, 2]. The indiscernibility relation and approximations 
based on this relation form the mathematical basis of the rough set theory. 
Classical definitions of lower and upper approximations were originally 
introduced to describe some topological properties of rough sets [3]. These 
definitions were proposed with reference to an indiscernibility relation, which 
was assumed to be an equivalence relation. Various generalized definitions of 
rough approximations have been developed, the majority of them dealing with 
more general types of relations [4]. In particular, some authors considered a 
tolerance relation (reflexive and symmetric) as a basis for approximations, which 
allowed them to express weaker forms of indiscernibility [5]. In some papers 
researchers proposed interesting definitions of rough approximations based on a 
similarity relation [6]. 
     The authors of the above papers follow the classical topological way of 
defining ambiguity concepts. They start from introducing an indiscernibility 
relation, define some special properties for it and then lower and upper 
approximations appear in a natural way. Unlike these papers we suggested a 
different method for treating ambiguity concepts. In our previous paper [7] we 
considered an approach that did not require introducing any indiscernibility 
relation but used only predicates in terms of which an arbitrary set of objects 
could be described. We defined lower and upper approximations for sets of 
objects in an algebraic way using Boolean operations. Those new definitions 
were compared to the classical ones (which use an equivalence relation) and 
were shown to be more general in the sense that the classical definitions can be 
deduced from them if we put some restrictions on our model. We stressed that 
using binary codes allows us to quickly calculate the approximations of a set in 
accordance with the new definitions and generate logic rules based on the 
approximations. 
     In this paper we generalize the above approach. Now we do not suppose that 
object features must be Boolean. We consider arbitrary discrete values of 
information features. It turns out that in this general case the main results of the 
suggested algebraic approach remain true. 
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2 An algebraic definition of rough approximations 

The classical rough sets theory deals with the “indiscernibility” concept. This 
concept considers some elements of a set, which cannot be “discerned” in terms 
of some relation (it normally can be an equivalence or tolerance relation). We 
would like to consider the ambiguity concept in a different way. We suppose that 
the available information on the elements of a set is represented with the help of 
their “properties”. Such an approach allows us to consider any relations defined 
on the set as properties of elements, pairs of elements, ordered sets of elements 
etc. On can apply various operations to these relations and, as a result, obtain 
new relations. In fact, any information on the elements of the set can be 
represented in the form of a relation. Sometimes one can precisely express a 
given relation in terms of the available relations but often it is not possible to do 
it and one has to consider approximations to the relation being described. 
     A new algebraic approach to defining rough set approximations has been 
developed by the authors in [7]. Suppose we are given a finite nonempty set of 
objects U={a1, a2, …, an}, called universe. Consider also a set of unary predicates 
(functions that take on their values from the set {0,1}) defined on U: 
 

P1(t), P2 (t), …, Pk(t),                                            (1) 
 
which we call coordinates. 
    The predicates P1, P2, …, Pk can be interpreted as characteristic functions for 
some properties of objects of the universe. In this case an object ai has the 
property Pj if and only if Pj (ai) = 1. 
     Following the basic concepts of the rough set theory we should describe an 
arbitrary set X ⊆ U in terms of the coordinates. Since there exists a one-to-one 
correspondence between all the predicates defined on U and all the subsets of U, 
instead of a set X ⊆ U we can consider a predicate X(t) that equals 1 if and only 
if t∈X. Thus we should give a description of an arbitrary predicate X(t) in terms 
of the predicates P1, P2, …, Pk.  
     Also in [7] we have introduced the concept of the approximation language 
consisting of unary predicates P1, P2, …, Pk and Boolean operations: conjunction 
(&), disjunction (V) and negation (¬). It was stressed that in the general case the 
approximation language can include other types of predicates and operations.  
      We have considered the set Φ of all possible formulae constructed with the 
help of the Boolean operations conjunction (&), disjunction (V) and negation (¬) 
applied to the predicates P1, P2, …, Pk. For example: (P1& P2 & ¬P3)V P4, (P1 V 
(P2 & ¬P3)) & P4, ¬ (P1& P2 & … & P4) etc. On calculating all the formulae 
belonging to Φ , we will obviously obtain a set of predicates, which we will 
denote Λ. We noted that different formulae (not necessarily equivalent ones) can 
correspond to the same predicate.  
     In accordance with the above approach, if the predicate X(t) belongs to Λ, it 
means that X(t) can be expressed in terms of the coordinates and the set X 
corresponding to the predicate X(t) can be called crisp with respect to the 
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coordinates. If the predicate X(t) does not belong to Λ, this predicate cannot be 
expressed in terms of the coordinates and we should describe it approximately.  
     Also from the viewpoint of the suggested approach in [7] we have introduced 
definitions for upper and lower approximations of X(t) and the concepts of the 
exact lower and upper approximations: 
1. If A(t) ∈ Λ and ∀t ∈ U A(t) → X(t) then we say that A(t) is a lower 
approximation for X(t). 
2. If B(t) ∈ Λ and ∀t ∈ U X(t) → B(t) then we say that B(t) is an upper 
approximation for X(t). 
3. If a predicate I*(t) is a lower approximation for the predicate X(t) 
and for any lower approximation A(t) of this predicate ∀t ∈ U A(t) → I*(t) then 
we say that I*(t) is an exact lower approximation for X(t). 
4. If a predicate I*(t) is an upper approximation for the predicate X(t) 
and for any upper approximation B(t) of this predicate ∀t ∈ U I*(t) → B(t) then 
we say that I*(t) is an exact upper approximation for X(t). 
     We should stress that the characteristic functions P1, P2, …, Pk, which were 
used for describing object properties in [7] could take on only two values: 1 and 
0. Any object either had a given property or did not have it. 
     Let us now consider a more general case where characteristic functions 
describing object properties can take on values from any finite set. For example, 
for the function P1 denoting the property “colour” the following can be said: 
P1(ai)=1 means that the object ai is red, P1(ai)=2 means that the object is orange, 
P1(ai)=3 means that it is yellow etc. In this case such functions can be described 
with the help of finite predicates: )a(P i

w
k = 1 means that the value of the 

property Pk for the object ai is w, otherwise this finite predicate equals zero. Thus 
these finite predicates implement the comparison operation that compares values 
of discrete characteristic functions. The following conditions are satisfied for 
such predicates:  
1. For any object ai the property Pk necessarily takes on at least one value w from 
the set of possible values: w∈W, W={1,2,...,m}. Thus the following identity is 
true: 

1)a(P...)a(P)a(P i
m
ki

2
ki

1
k ≡∨∨∨ .                           (2) 

2. For any object ai a property Pk cannot take on two different values from the set 
of possible values. Thus the following identity is true: 

0)a(P&)a(P i
r
ki

w
k ≡  (w∈W, r∈W, w≠r).                          (3) 

Taking into account the above considerations we can define the new 
approximation language as one consisting of the set of discrete characteristic 
functions and the set of operations including Boolean ones and the comparison 
operator that gives 1 if two discrete values are equal and 0 if they are different.  

3 Properties of the approximations 

In [7] we have proven some properties of upper and lower approximations in 
case the functions describing object features are binary. The same properties 
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remain true also in case the characteristic functions take on values from finite 
sets: 
1. The set of lower approximations is not empty for any X(t). This follows from 
the fact that the predicate 0 = )rw(,P&P r

k
w
k ≠  is always a lower approximation 

for X(t). 
2. The set of upper approximations is not empty for any X(t). This statement is 
true since the predicate 1 = m

k
2
k

1
k P...PP ∨∨∨  is always an upper approximation 

for X(t). 
3. For any predicate X(t) there cannot exist more than one exact lower 
approximation.  
4. For any predicate X(t) there exists at least one exact lower approximation.  
5. For any predicate X(t) there exists the only exact lower approximation.  
6. For any predicate X(t) there cannot exist more than one exact upper 
approximation.  
7. For any predicate X(t) there exists at least one exact upper approximation.  
8. For any predicate X(t) there exists the only exact upper approximation. It 
follows from properties 6 and 7. 
     The proof of the properties 3 to 7 is the same as in [7]. 

4 Calculating the exact approximations with the help of 
discrete characteristic functions 

Let us consider now a method for finding the exact upper and lower 
approximations in case object properties are described with the help of non-
binary values. Verifying all possible predicate formulae to calculate exact 
approximations is a time consuming procedure. Nevertheless, there exists a way 
of obtaining the approximations for a predicate that allows us to quickly write 
down necessary formulae. Consider Table 1. 
 

Table 1. 
 

 a1 a2 … an 

P1 δ11 δ12 … δ1n 

P2 δ21 δ22 … δ2n 

… … … … … 

Pk δk1 δk2 … δkn 

X λ1 λ2 … λn 
 
Here δ1j∈{0,1..m1}, δ2j∈{0,1..m2},...δkj∈{0,1..mk}, λj∈{0,1}, if δij=w then 
Pi(aj)=w, if λj = 1 then X(aj) = 1, if λj = 0 then X(aj) = 0. 
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     Suppose that the predicate X should be described in terms of the coordinates 
P1, P2, …, Pk, which are now arbitrary discrete characteristic functions. Let us 
find the exact upper approximation for X. For this purpose consider the columns 
of the table that contain 1 for the predicate X and write down the corresponding 
predicate disjunctive normal form. A simple example is given below. 
     Suppose that the characteristic functions P1, P2, P3 describing features of the 
objects a1, a2,..., a5 can take on values from the set {0,1,2} as in Table 2. 
 

Table 2. 
 

 a1 a2 a3 a4 a5 

P1 1 0 2 0 0 

P2 0 2 1 0 2 

P3 0 2 0 1 2 

X 0 1 0 1 0 
 
     For this example we will get the following formula: 
 

)P&P&P()P&P&P(I 1
3

0
2

0
1

2
3

2
2

0
1

* ∨=           (4) 
 
Consider now the columns that contain 0 for the predicate X and write down the 
corresponding conjunctive normal form. For this example: 
 

)PPP(&)PPP(&)PPP(I 2
3

2
2

0
1

0
3

1
2

2
1

0
3

0
2

1
1* ¬∨¬∨¬¬∨¬∨¬¬∨¬∨¬=  (5) 

 
Formulae (4) and (5) produce results in Table 3. 
 

Table 3. 
 

 a1 a2 a3 a4 a5 

P1 1 0 2 0 0 

P2 0 2 1 0 2 

P3 0 2 0 1 2 

X 0 1 0 1 0 

I* 0 1 0 1 1 

I* 0 0 0 1 0 
 
     In the general case the predicates I* and I* can be represented as follows: 
 

 © 2007 WIT Press
 www.witpress.com, ISSN 1743-3517 (on-line) 
WIT Transactions on Information and Communication Technologies, Vol 38,

8  Data Mining VIII: Data, Text and Web Mining and their Business Applications



)P&...&P&P&(

...)P&...&P&P&()P&...&P&P&(I

nnn2n1

2k22121k2111

k21n

k212k211*
δδδ

δδδδδδ

λ∨

∨λ∨λ=
       (6) 

 

)P...PP(&

...&)P...PP(&)P...PP(I

nnn2n1

2k22121k2111

k21n

k212k211*
δδδ

δδδδδδ

¬∨∨¬∨¬∨λ

¬∨∨¬∨¬∨λ¬∨∨¬∨¬∨λ=
 (7) 

 

where ij
kPδ =1 if Pk(ai)= δij, otherwise ij

kPδ =0, and ¬ ij
kPδ =0 if Pk(ai)=δij, 

otherwise ¬ n
kPα =1 for any predicate P.  

     Let us show that the predicates I* and I* are the exact upper and lower 
approximations. It is obvious that the predicate I* is an upper approximation for 
the predicate X in terms of definition 2. If one removes from formula (6) any 
conjunction where λi=1, the resulting formula will not be an upper 
approximation, as the predicate I* will have 0 in a column where X has 1. (We 
suppose here that in case there are several conjunctions identical to the one 
removed all of them should be removed). For example if one removes the 
conjunction )P&P&P( 2

3
2
2

0
1  from formula (4), then I*(a2) becomes 0 whereas 

X(a2) = 1. It means that the approximation I* cannot be improved and, therefore, 
I* is the exact upper approximation. The predicate I* is obviously a lower 
approximation for X in terms of definition 1. If one removes from formula (7) 
any disjunction where λi=0, the resulting formula will not be a lower 
approximation as the predicate I* will have 1 in a column where X has 0. (We 
suppose that if there are several disjunctions identical to the one removed all of 
them should be removed). For example if one removes the disjunction 

)PPP( 0
3

0
2

1
1 ¬∨¬∨¬  from formula (5), then I*(a1) = 1 whereas X(a1) = 0. It means 

that the approximation I* cannot be improved and, therefore, I* is the exact lower 
approximation.  

5 Approximation-based logic rules 

Consider an example of generating logic rules with the help of formulae (4) and 
(5). Following traditional rough set concepts we can say that rules based on the 
exact upper approximation may exist in the data set, and rules based on the exact 
lower approximation must exist in the data. Transform the expression on the 
right side of formula (5) to get: 
 

)PPP(&)PPP(&)PPP(I 2
3

2
2

0
1

0
3

1
2

2
1

0
3

0
2

1
1* ¬∨¬∨¬¬∨¬∨¬¬∨¬∨¬=  

 
     We can now formulate the following exact rules: 
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A. An element belongs to the set X if 
a) property P1 is not equal to 1 or P2 and P3 are not  equal to 0  

AND  
b) property P1 is not equal to 2 or property P2 is not equal to 1 or property P3 
is not equal to 0 

AND  
c) property P1 is not equal to 0 or property P2 is not equal to 2 or property P3 
is not equal to 2. 

This rule says that if all of the conditions a), b) and c) hold, an element 
belongs to the set X. 

Since each of the functions Pk (in this case P1, P2, P3) takes on at least one 
value from the set of possible values, n

k
1i

k
1i

k
2
k

1
k

i
k P...PP...PPP ∨∨∨∨∨∨=¬ +−  

and we can use this property to transform the above equation. After some simple 
transformations we can obtain the following formula: 

).P&P()P&P(

)P&P()P&P()P&P()P&P()P&P()P&P(PI
0
3

2
2

2
2

2
3

0
3

0
1

2
2

0
1

1
2

2
1

2
3

2
1

0
2

1
1

2
3

1
1

1
3*

∨¬∨

∨¬∨¬∨∨¬∨∨=  

We can avoid using the negation operation and deduce the following exact 
rules from the above formula: 
B. An element belongs to the set X if 
a) property P3 is equal to 1 
OR 
b) property P1 is equal to 1 and P3 is equal to 2  
OR 
c) property P1 is equal to 1 and P2 is equal to 1 or 2 
OR 
d) property P1 is equal to 2 and P3 is equal to 2 
OR 
e) property P1 is equal to 2 and P2 is equal to 0 or 2 
OR 
f) property P1 is equal to 0 and P2 is equal to 0 or 1 
OR 
g) property P1 is equal to 0 and P3 is equal to 0 
OR 
h) property P2 is equal to 0 or 1 and P3 is equal to 2 
OR 
i) property P2 is equal to 2 and P3 is equal to 0 

 
     This rule says that if one of the conditions a), b), c), d), e), f), g), h) or i) 
holds, an element belongs to the set X. 
     Formula (4) for the exact upper approximation allows us to formulate the 
following approximate rules: 
C. An element may belong to the set X if  
P1 is equal to 0 AND P2 is equal to 2 AND property P3 is equal to 3 for this 
element 
D. An element may belong to the set X if 
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P1 is equal to 3 AND P2 is equal to 0 AND property P3 is equal to 0 for this 
element 
     We have shown that logic rules that allow answering questions on whether or 
not an element belongs to a given set can be deduced from the available 
information on properties of elements by using comparison and Boolean 
operations. Since such calculations are very quick the resulting rules can be 
efficiently obtained even for great numbers of elements and characteristic 
functions. 

6 Conclusions and discussion 

In this paper a generalized algebraic approach to defining rough set 
approximations has been considered. The main idea of this approach is to 
describe a concept in terms of other concepts in an algebraic way, i.e. to find 
formulae that represent the most exact approximations of the concept under 
analysis. This paper represents a generalization of the approach suggested by the 
authors earlier where object features could take on only Boolean values. Now we 
have shown that the main idea of the algebraic approach holds also in the case 
where object properties can take on arbitrary values from finite sets. Logic rules 
generated with the help of the exact approximations can be used to classify new 
elements, i.e. to define whether or not an element belongs to a set, which is a 
classical problem of Data Mining. The proposed approach considers only 
comparison and Boolean operations, which makes the process of extracting logic 
rules very quick from the computational viewpoint. It should be noted that 
transformations of the finite predicate formulae for the exact approximations can 
be performed in a variety of ways and, therefore, it would be interesting to be 
able to find most simple and informative resulting rules. 
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