
 
 

  
Abstract— This review gives an overall introduction to the 

artificial evolution mechanism. It presents the main strategies 
for robotic controller design. It gives a review of the pertinent 
literature, focusing on approaches that use neural networks, 
evolutionary computing, and fuzzy logic. Various applications 
of artificial evolution in robotics are surveyed and classified. 
 

Index Terms— evolutionary algorithms, fuzzy logic, neural 
networks, robot navigation. 
 

I. INTRODUCTION 

arly robots were nothing more than clever mechanical   
devices that performed simple pick-and-place 

operations. Nowadays robots are becoming more and more 
sophisticated and diversified so as to meet the ever-
changing user requirements. The robots are developed to 
perform more precise industrial operations, such as 
welding, spray painting, and simple parts assembly. 

 However, such operations do not really require the 
robot to have intelligence and behave like human beings 
since the robots are simply programmed to perform a series 
of repetitive tasks. If anything interferes with the 
prespecified task, the robot cannot work properly anymore, 
since it is not capable of sensing its external environment 
and figuring out what to do independently. 

 Modern robots are required to carry out work in 
unstructured dynamic human environments. In the recent 
decades, the application of artificial evolution to 
autonomous mobile robots to enable them to adapt their 
behaviors to changes of the environments has attracted 
much attention. As a result, an infant research field called 
evolutionary robotics has been rapidly developed that is 
primarily concerned with the use of artificial evolution 
techniques for the automatic design of adaptive robots. As 
an innovative and effective solution to autonomous robot 
controller design, it can derive adaptive robotic controllers 
capable of elegantly dealing with continuous changes in 
unstructured environments in real time [1]. It has been 
shown in [2] that the robot behaviors could be achieved 
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more effectively by using simpler and more robust 
evolutionary approaches than the traditional 
decomposition/integration approach. 

Evolutionary robotics aims to develop a suitable control 
system of the robot through artificial evolution. Evolution 
and learning are two forms of biological adaptation that 
operate on different time scales. Evolution is capable of 
capturing slow environmental changes that might occur 
through several generations, whereas learning may produce 
adaptive changes in an individual during its lifetime. 
Recently, researchers have started using artificial evolution 
techniques, such as genetic algorithm (GA), fuzzy logic 
(FA) and learning technique, namely neural network (NN), 
to study the interaction between evolution and learning [3].  

Evolutionary robotics deals with this interaction. In 
behavior-based robotics, a task is divided into a number of 
basic behaviors by the designer and each basic behavior is 
implemented in a separate layer of the robot control system. 
The control system is built up incrementally layer by layer 
and each layer is responsible for a single basic behavior. 
The coordination mechanism of basic behaviors is usually 
designed through a trial and error process and the behaviors 
are coordinated by a central mechanism. It is important to 
note that the number of layers increases with the complexity 
of the problem and for a very complex task, it may go 
beyond the capability of the designer to define all the 
layers, their interrelationships and dependencies. Hence, 
there is a need for a technique by which the robot is able to 
acquire new behaviors automatically depending on the 
situations of changing environment. Evolutionary robotics 
may provide a feasible solution to the abovementioned 
problem. In evolutionary robotics, the designer plays a 
passive role and the basic behaviors emerge automatically 
through evolution due to the interactions between the robot 
and its environment. 

This review gives an overall introduction of the artificial 
evolution mechanism. It presents the main strategies for 
robotic controller design. Various applications of artificial 
evolution in robotics are surveyed and classified. 
Furthermore, in this review their specific merits and 
drawbacks in robotic controller design are discussed, as at 
present, there is little consensus among researchers as to the 
most appropriate artificial evolution approach for 
heterogeneous evolutionary systems. 

Main Strategies for Autonomous Robotic 
Controller Design 
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II. EVOLUTION MECHANISMS 
A robot is required to have intelligence and autonomous 

abilities when it works far from an operator and these are a 
large time delay or working in a world containing 
uncertainty. The robot collects or receives the necessary 
information concerning its external environment, and takes 
action in the environment. Both processes are usually 
designed by human operators, but ideally, the robot should 
perform the given task automatically without human 
assistance. Computational intelligence methods, including 
neural networks (NNs), fuzzy logic (FLs), evolutionary 
algorithms (EAs), reinforcement learning, expert systems 
and others, have been applied to realize intelligence in 
robotic systems.  

To realize an advanced intelligent system, a synthesized 
algorithm of various techniques such as NN, FL, and EC is 
required. Each technique plays a specific role in intelligence 
features. There are no complete techniques for realizing all 
features of intelligence. Therefore, it is necessary to 
integrate and combine several techniques to compensate for 
the disadvantages of each technique. The main 
characteristics of NN are to classify or recognize patterns, 
and to adapt itself to dynamic environments by learning, but 
the mapping structure of NN is a black box and is 
incomprehensible. On the other hand, FL has been applied 
to represent human linguistic rules and classify numerical 
information into symbolic classes. It also has a reasonable 
structure for inference, which is composed of if-then rules 
as in human knowledge [4]. 

However, FL does not fundamentally have a learning 
mechanism. Fuzzy-neural networks have been developed to 
overcome these disadvantages. In general, the neural 
network part is used for learning, while the fuzzy logic part 
is used for representing knowledge. Learning capabilities 
such as incremental learning, the back-propagation method, 
and the delta rule based on error functions are used in 
essential changes. EC can also tune NN and FL. However, 
evolution can be defined as a resultant or accidental change, 
not a necessary change, since EC cannot predict or estimate 
the effect of the change. To summarize, an intelligent 
system can quickly adapt to a dynamic environment via NN 
and FL using the back-propagation method or the delta rule, 
and furthermore, the structure of an intelligent system can 
evolve globally via EC according to its objectives. 
 

III. NEURAL NETWORKS 
 Many evolutionary approaches have been applied to the 
field of evolvable robotic controller design in the recent 
decades [5]-[7]. Some researchers used artificial Neural 
Networks (NN) as the basic building blocks for the control 
system due to their smooth search space. NNs can be 
envisaged as simple nodes connected together by 
directional interconnects along which signals flow. The 
nodes perform an input-output mapping that is usually some 
sort of sigmoid function.  

 An artificial NN is a collection of neurons connected 
by weighted links used to transmit signals. Input and output 
neurons exchange information with the external 
environment by receiving and broadcasting signals. In 
essence, a neural network can be regarded as a parallel 
computational control system since signals in it travel 
independently on weighted channels and neuron states can 
be updated in parallel. NN advantages include its learning 
and adaptation through efficient knowledge acquisition, 
domain free modeling, robustness to noise, and fault 
tolerance, etc. [8]. Also neural networks can easily exploit 
various forms of learning during life-time and this learning 
process may help and speed up the evolutionary process [9], 
[10]. Neural networks are resistant to noise that is 
massively present in robot/environment interactions. This 
fact also implies that the fitness landscape of neural 
networks is not very rugged because sharp changes of the 
network parameters do not normally imply big changes in 
the fitness level. On the contrary it has been shown that 
introducing noise in neural networks can have a beneficial 
effect on the course of the evolutionary process [11]. The 
primitive’s components manipulated by the evolutionary 
process should be at the lowest level possible in order to 
avoid undesirable choices made by the human designer 
[12]. Synaptic weights and nodes are low level primitive 
components. 

 The behaviors that evolutionary robotics is concerned 
with at present are low-level behaviors, tightly coupled with 
the environment through simple, precise feedback loops. 
Neural networks are suitable for this kind of applications so 
that the predominant class of systems for generating 
adaptive behaviors adopts neural networks [13]. The same 
encoding schemes can be used independently of the specific 
autonomous robot navigation system since different types 
of functions can be achieved with the same type of network 
structure by varying the properties and parameters of simple 
processing used. Other adaptive processes such as 
supervised and unsupervised learning can also be 
incorporated into NN to speed up the evolution process. 

 NNs have been widely used in the evolutionary 
robotics due to the aforementioned merits. For instance, 
locomotion-control module based on recurrent neural 
networks has been studied by Beer and Gallagher [14] for 
an insect-like agent. Parisi, Nolfi, and Cecconi [15] 
developed back propagation neural networks for agents 
collecting food in a simple cellular world. Cliff, Harvey, 
and Husbands [12] have integrated the incremental 
evolution into arbitrary recurrent neural networks for 
robotic controller design. Floreano and Mondada [16] 
presented an evolution system of a discrete-time recurrent 
neural network to create an emergent homing behavior.  

NN has also been used for Intelligent Autonomous 
Vehicles (IAV) design. The primary goal of IAV is related 
to the theory and applications of robotic systems capable of 
some degree of self-sufficiency. The focus is on the ability 
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to move and be self-sufficient in partially structured 
environments. IAV have many applications in a large 
variety of domains, from spatial exploration to handling 
material, and from military tasks to the handicapped help. 
The recent developments in autonomy requirements, 
intelligent components, multi-robot systems, and massively 
parallel computers have made the IAV very used in 
particular in planetary explorations, mine industry, and 
highways [17].  

To reach their targets without collisions with possibly 
encountered obstacles, IAV must have the capability to 
achieve target localization and obstacle avoidance 
behaviors. More, current IAV requirements with regard to 
these behaviors are real-time, autonomy and intelligence. 
Thus, to acquire these behaviors while answering IAV 
requirements, IAV must be endowed with recognition, 
learning, decision-making, and action capabilities. 

To achieve this goal, classical approaches rapidly have 
been replaced by current approaches in particular the 
Neural Networks (NN) based approaches. Indeed, the aim 
of NN is to bring the machine behavior near the human one 
in recognition, learning, decision-making, and action. In 
[17], a first current NN based navigation approaches in 
IAV, autonomy, and intelligence have been discussed. 

 However, neural networks also have certain 
drawbacks. For instance, a NN cannot explain its results 
explicitly and its training is usually time-consuming. 
Furthermore, the learning algorithm may not be able to 
guarantee the convergence to an optimal solution [8]. 

IV. EVOLUTIONARY ALGORITHMS 
 There are currently several flavors of evolutionary 
algorithms (EAs). Genetic Algorithms (GAs) [18] is the 
most commonly used one where genotypes typically are 
strings of binary. Genetic Programming (GP) [19] is an 
offshoot of GAs, where genotypes are normally computer 
programs. Other flavors such as Evolution Strategies (ES) 
are also used in evolutionary robotics (ER). Many concerns 
are shared among these approaches. 
 As a commonly used EA, GA has also been used in [10], 
[19] for generating robotic behaviors. Thompson [20] 
adopts the conventional GA as the training tool to derive 
the robot controllers in the hardware level. The encouraging 
experimental results justify the effectiveness of GA as a 
robust search algorithm even in hardware evolution. 
 Most applications nowadays use the orthodox GA, 
however, Species Adaptation GAs (SAGA) suggested by 
[21], [22] would be more suitable for certain robot 
evolution applications such as evolvable hardware based 
robotic evolutions. In SAGA, different structures are 
encoded with genotypes of different lengths, which offer a 
search space of open-ended dimensionality. Cyclic Genetic 
Algorithm (CGA) has also been introduced in [23] to 
evolve robotic controllers for cyclic behaviors. Also 
distributed genetic algorithms have been introduced into the 
evolutionary robotics field recently. For instance, in the 

spatially distributed GA, for each iteration a robot is 
randomly selected from a population distributed across a 
square grid. The robot is bred with one of its fittest 
neighbors and their offspring replaces one of the least fit 
neighbors such that the selection pressure keeps successful 
genes in the population. The distributed GA is usually 
robust and efficient in evolving capable robots. GA exhibits 
its advantages in deriving robust robotic behavior in 
conditions where large numbers of constraints and/or huge 
amounts of training data are required [24]. Furthermore, 
GA can be applied to a variety of research communities due 
to its gene representation. However, GA is computationally 
expensive [24]. Though GA is now widely used in the ER 
field, a variety of issues are still open in the GA-based ER.  
 For instance, the fitness function design is an important 
issue in GA-based evolution schemes [25]. The fitness 
function should present measurement of its ability to 
perform under all of the operating conditions. In fact, all 
these objectives can be fulfilled by setting an appropriate 
fitness function so as to derive the desired robotic 
performance exhibited during autonomous navigation. 
Therefore, the fitness function design needs to be 
investigated more carefully to make the robot evolve in a 
more effective way. Several experiments have also been 
performed where the robotic controllers were evolved 
through Genetic Programming (GP) [19], [26].  

V. FUZZY LOGIC 
 Fuzzy logic provides a flexible means to model the 
nonlinear relationship between input information and 
control output [27]. It incorporates heuristic control 
knowledge in the form of if-then rules, and is a convenient 
alternative when the system to be controlled cannot be 
precisely modeled [28], [29]. They have also shown a good 
degree of robustness in face of large variability and 
uncertainty in the parameters.  
 These characteristics make fuzzy control particularly 
suited to the needs of autonomous robot navigation [30]. 
Fuzzy logic has remarkable features that are particularly 
attractive to the hard problems posed by autonomous robot 
navigation. It allows us to model uncertainty and 
imprecision, to build robust controllers based on the 
heuristic and qualitative models, and to combine symbolic 
reasoning and numeric computation. Thus, fuzzy logic is an 
effective tool to represent real world environments. In 
evolutionary robotics, fuzzy logic has been used to design 
sensor interpretation systems since it is good at describing 
uncertain and imprecise information. 
 All the specific methods have their own strengths and 
drawbacks. Actually they are deeply interconnected and in 
many applications some of them have been combined 
together to derive the desired robotic controller in the most 
effective and efficient manner. For instance, Fuzzygenetic 
system [31] is a typical evolution mechanism in evolving 
adaptive robot controller. Arsene and Zalzala [32] 
controlled the autonomous robots by using fuzzy logic 
controllers tuned by GA. Pratihar, Deb, and Ghosh [33] 
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used fuzzy-GA to find obstacle-free paths for a mobile 
robot. Driscoll and Peters II [34] implemented a robotic 
evolution platform supporting both GA and NN. Xiao, et al. 
[35] designed autonomous robotic controller using DNA 
coded GA for fuzzy logic optimization. 
 Fuzzy control has shown to be a very useful tool in the 
field of autonomous mobile robotics, characterized by a 
high uncertainty in the knowledge about the environment 
where a robot evolves. The design of a fuzzy controller is 
generally made using expert knowledge about the task to be 
controlled. Expert knowledge is applied in order to decide 
the number of linguistic labels for each variable, to tune the 
membership functions, to select the most adequate linguistic 
values for the consequents, and to define the rules in the 
fuzzy knowledge base. This process is tedious and highly 
time-consuming [36]. 
 For this reason, automated learning techniques, such as 
evolutionary algorithms, have been employed for helping in 
some, or in all, of the tasks involved in the design process. In 
some of the approaches evolutionary algorithms are used just 
for tuning the membership functions. In others, the complete 
rule base is learned, starting from a hand designed data base 
(number and definition of the linguistic values and universe 
of discourse of the variables). But only in a few of them both 
the data base and the rule base are learned. 
 Mucientes, Moreno, Bugariın and Barro describe the 
learning of a fuzzy controller for the wall-following 
behavior in a mobile robot [36]. The learning methodology 
is characterized by three main points. First, learning has no 
restrictions neither in the number of membership functions, 
nor in their values. In the second place, the training set is 
composed of a set of examples uniformly distributed along 
the universe of discourse of the variables.  
 Fuzzy logic techniques are commonly used for navigation 
of different types of robot vehicles [38]. The popularity of 
fuzzy logic is based on the fact that it can cope with the 
uncertainty of the sensors and the environment really well. By 
using it, the robotic vehicles are able to move in known or 
unknown environments, using control laws that derive from a 
fuzzy rule base. This base is consisted from a set of 
predefined IF– THEN rules, which remains constant during 
the operation of the robot. These rules along with the 
membership functions of the fuzzy variables are usually 
designed ad hoc by human experts [37]. 
 Several researchers have used fuzzy logic for the 
navigation of mobile robots. In [39], a layer goal oriented 
motion planning strategy using fuzzy logic controllers has 
been offered, which uses sub-goals in order to move in a 
specific target point. Another approach is presented in [40], 
where the authors offer a control system consisting of fuzzy 
behaviors for the control of an indoor mobile robot. All the 
behaviors are implemented as Mamdani fuzzy controllers, 
except for one which is implemented as adaptive neuro-
fuzzy. In [41] a combined approach of fuzzy and 
electrostatic potential fields is presented that assures 
navigation and obstacle avoidance. The main drawback of 
these approaches is that the design of the fuzzy controllers 
relies mainly on the experience of the designer. In order to 

overcome this problem several researchers have suggested 
tuning the fuzzy logic controller based on learning methods 
[42] and evolutionary algorithms [43–48], in an attempt to 
improve the performance and the behavior of the control 
procedure. 
 In [43], a fuzzy logic controller for a Khepera robot in a 
simulated environment evolved using a genetic algorithm, 
and the behaviors of the evolved controller were analyzed 
with a state transition diagram. The robot produces 
emergent behaviors by the interaction of fuzzy rules that 
came out from the evolution process. In [44], the authors 
suggested a three step evolution process to self-organize a 
fuzzy logic controller. The procedure initially tunes the 
output term set and rule base, then the input membership 
functions, and in the third phase it tunes the output 
membership functions. Hargas et al. in [45], suggested a 
fuzzy-genetic technique for the on-line learning and 
adaptation of an intelligent robotic vehicle. In [46] the 
authors present a methodology for tuning the knowledge 
base of the fuzzy logic controller based on a compact 
scheme for the genetic representation of the fuzzy rule base. 
 In [47] the authors present a scheme for the evolution of 
the rule base of a fuzzy logic controller. The evolution takes 
place in simulated robots and the evolved controllers are 
tested on a Khepera mobile robot. Nanayakkara et al. in 
[48], present an evolutionary learning methodology using a 
multi objective fitness function that incorporates several 
linguistic features. The methodology is compared to the 
results derived from a conventional evolutionary algorithm. 
An attempt to formulate a way of picking the suitable 
function for a task was made by Nolfi and Floreano in [49]. 
They suggested the concept of “fitness space”, which 
provides a framework for the description and development 
of fitness functions for autonomous systems. 
 An important issue not addressed in the literature, is 
related to the selection of the fitness function parameters 
used in the evolution process of fuzzy logic controllers. The 
majority of the fitness functions used for controllers 
evolution are empirically selected and (most of times) task 
specified. This results to controllers which heavily depend 
on fitness function selection. 
 The experience in the design of the nonlinear position 
control confirmed the remarkable potential of fuzzy logic in 
the development of effective decision laws capable of 
overcoming the inherent limitations of model-based control 
strategies [50]. 

Lacevic and Velagic [50] focused on the design of the 
fuzzy logic-based position control of the mobile robot that 
both meets a good position tracking requirements and has 
practically achievable control efforts. 

With our previously designed CLF based controller a 
good tracking performance has been obtained. However, its 
significant shortcoming is unsatisfactory velocity/torque 
command values, particularly at the beginning of tracking. 
Control parameters of the CLF-based controller and the 
membership functions of the fuzzy position controller are 
evolved by the genetic algorithms. The advantage of the 
offered fuzzy controller lies in the fact that the velocity 
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commands (and consequently, the torque commands) 
cannot exceed certain limits. Consequently, this controller 
radically decreased the control velocities without major 
impact on the tracking performance. Finally, from the 
obtained simulation results, it can be concluded that the 
proposed fuzzy design achieves the desired results. The 
future work will investigate the stability analysis of the 
system when the proposed fuzzy logic-based position 
controller is used. 

VI. OTHER METHODS 
 Apart for the above commonly used methodologies, 
several other evolutionary approaches have also been tested 
in the ER field in recent years. For example, classifier 
systems have been used as an evolution mechanism to 
shape the robotic controllers [51], [52]. Grefenstette and 
Schultz used the SAMUEL classifier system to evolve anti-
collision navigation [53], [54]. Katagami and Yamada [55] 
suggested a learning method based on interactive classifier 
system for mobile robots which acquires autonomous 
behaviors from the interaction experiences with a human. 
Gruau and Quatramaran [56] developed robotic controllers 
for walking in the OCT-1 robot using cellular encoding. In 
the work of Berlanga et al. [57], the ES has been adopted to 
learn high-performance reactive behavior for navigation 
and collisions avoidance. Embodied evolution has been 
offered as a methodology for the automatic design of 
robotic controllers [58], which avoids the pitfalls of the 
simulate-and-transfer method. Most of the aforementioned 
ER approaches are essentially software based.  

Nowadays, hardware-based robotic controllers using 
artificial evolution as training tools are also being used. The 
development of evolvable hardware (EHW) has attracted 
much attention from the ER domain, which is a new set of 
integrated circuits able to reconfigure their architectures 
using artificial evolution techniques unlimited times. 
Higuchi, Iba, and Manderick [59] used off-line model-free 
and on-line model-based methods to derive robot 
controllers on the logic programmable device. Attempting 
to exploit the intrinsic properties of the hardware, 
Thompson [20] used a Dynamic State Machine (DSM) to 
control a Khepera robot to avoid obstacles in a simple 
environment. 

Tan, Wang, Lee and Vadakkepat in [60] discusses the 
application of evolvable hardware in evolutionary robotics, 
which is a new set of integrated circuits capable of 
reconfiguring its architecture using artificial evolution 
techniques. Hardware evolution dispenses with 
conventional hardware designs in solving complex 
problems in a variety of application areas, ranging from 
pattern recognition to autonomous robotics.  

VII. CONCLUSION 
 Free-navigating mobile robotic systems can be used to 

perform service tasks for a variety of applications such as 
transport, surveillance, firefighting, etc. For such robotic 
application systems, it is crucial to derive simple robotic 
behaviors that guarantee robust operation despite of the 
limited knowledge prior to system execution, e.g., 

designing anti-collision behavior that is effective in the 
presence of unknown obstacle shapes. In recent years, 
autonomous mobile service robots have been introduced 
into various non-industrial application domains including 
entertainment, security, surveillance, and healthcare. They 
can carry out cumbersome work due to their high 
availability, fast task execution, and cost-effectiveness. 

An autonomous mobile robot is essentially a 
computational system that acquires and analyzes sensory 
data or exterior stimuli and executes behaviors that may 
affect the external environment. It decides independently 
how to associate sensory data with its behaviors to achieve 
certain objectives.  

Such an autonomous system is able to handle uncertain 
problems as well as dynamically changing situations. 
Evolutionary robotics appears to be an effective approach to 
realizing this purpose. In this paper some applications of 
evolutionary approach in autonomous robotics are 
considered. A general survey is reported regarding the 
effectiveness of a variety of artificial evolution based 
strategies in robotics. Some questions need to be answered 
if evolutionary robotics is to progress beyond the proof-of-
concept stage. Furthermore, future prospects including 
combination of learning and evolution, inherent fault 
tolerance, hardware evolution, on-line evolution, and 
ubiquitous and collective robots are suggested. 
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