
Models and Methods for Verification and
Diagnosis of SoC HDL-code

Vladimir Hahanov, Senior Member, IEEE , Wajeb Gharibi, Eugenia Litvinova, Member, IEEE,
Svetlana Chumachenko, Member, IEEE

Abstract — Xor-metrix for object relations in a vector logic
space and a structural testing model are proposed. Assertion-
based models and methods for the verification and diagnosis of
HDL-code functional failures, which make possible to reduce
considerably time-to-market of software and hardware, are
developed. An architectural model of multimatrix reduced
logical instruction set processor for embedded diagnosing is
offered.

I. INTRODUCTION

ecent trends in creating new communications,
computing and information services, useful to the

human, are development of dedicated gadgets, which have
important advantages over PCs and laptops: power
consumption, compactness, weight, cost, functionality, and
friendliness of interface. Practically the top ten dedicated
products 2010 (Apple iPad, Samsung Galaxy S, Apple
MacBook Air, Logitech Revue, Google Nexus One (HTC
Desire), Apple iPhone 4, Apple TV, Toshiba Libretto
W100, Microsoft Kinect, Nook Color) is realized as digital
systems-on-chips. By 2012 the mobile and wireless
communication market will move to 20 nm (results of the
January 2011 Technology Forum of Common Platform
Alliance). Further development of the technologies by year:
2014 – 14 nm, 2016 – 11 nm. In 2015 more than 55% of
mobile phones will be smartphones, tablet PCs will replace
laptops and netbooks. Superfones (Nexus-1, Google) will
unite all devices and services. The transition from the
computing platform to mobile devices with small size
results in considerable reduction in power consumption
worldwide. The next computerization wave, entitled
"Internet of things", is being accelerated. It will lead to

Manuscript received December 3, 2010.
Vladimir Hahanov is with the Kharkov National University of

Radioelectronics, Ukraine, 61166, Kharkov, Lenin Prosp., 14, room 321
(corresponding author to provide phone: (057)7021326; fax:
(057)7021326; e-mail: hahanov@ kture.kharkov.ua).

Wajeb Gharibi is with Jazan University, P. O. Box 4425 Arrawabi, Unit
#1, Jazan 82822-6694, KSA. Mobile: +966 508 2232 64, E-mail:
gharibi@jazanu.edu.sa, gharibiw@hotmail.comz

Eugenia Litvinova is with the Kharkov National University of
Radioelectronics, Ukraine, 61166, Kharkov, Lenin Prosp., 14, room 378
(phone: (057)7021326; fax: (057)7021326; e-mail: ri@ kture.kharkov.ua).

Chumachenko Svetlana is with the Kharkov National University of
Radioelectronics, Ukraine, 61166, Kharkov, Lenin Prosp., 14, room 321
(phone: (057)7021326; fax: (057)7021326; e-mail: ri@ kture.kharkov.ua).

widespread sensor networks, including their integration into
the human body. The world market of the above devices
and gadgets today involves about 3 billion products. For
their effective designing, manufacturing and exploitation
the new technologies and Infrastructures IP are created. One
of the possible steps in this direction is represented below in

the form of verification technology vT : tM is metrics and

model for testing, cH is HDL-code of a design, tG is

synthesis of software transaction graph, }M,M{ sf

determine creating two verification models for HDL-code
(functional failure table and software activation matrix),

}D,D,D{ mrc determine developing three methods for

diagnosing the functional failures (for analyzing rows,
columns and whole matrix), which use the assertion engine
(assertion is a logical statement for detecting the semantic

errors in software), mP is architecture of multimatrix
processor for parallel analyzing tabular data, R is
implementation of models, methods and tools in the system
Riviera, Aldec Inc.:

.RP

DM

D

D
M

GHMT m

ms

r

c
f

tctv

The objective of the research is to reduce time-to-market
and improve the quality of digital systems-on-chips by
developing the assertion-based infrastructure, models and
methods for verification and diagnosis HDL-code. The
information, needed for detecting failures at the functional
blocks, is formed during simulation (execution) of software
code. Design effectiveness for digital product is determined
as the average and normalized in the range [0,1] integral
criterion:

.)HH/(HH);HH/(]Hk)-[(1T

;)P1(1Y1L

;)P1(Y,])HTL(
3

1
[min)H,T,L(FE

asaass

k)-(1n)k1(

n

The criterion takes into account the following: the error
level L, the verification time T, software-hardware
redundancy, determined by the assertion engine and
Infrastructure IP tools H. The parameter L, as a complement
of the parameter Y (yield), depends on the testability k of a

R

36 R&I, 2010, N4

design, the probability P of existence of faulty components,
and the quantity of undetected errors n. The time of
verification is determined by the testability of a design k
[3,4], multiplied by the structural complexity of hardware-
software functionality, divided by the total complexity of a
design in code lines. The software-hardware redundancy
depends on the complexity of assertion code and other
costs, divided by the total design complexity. At that
software or hardware redundancy has to provide the
specified diagnosis depth for functional errors and time-to-
market, defined by customer.

The problems are: 1) Creation of a metrics and structural-
analytical model for testing digital systems-on-chips. 2)
Improvement of the models and methods for detecting
functional failures, based on assertion engine, to increase
the speed of HDL-code verification and diagnosis. 3)
Development of the architectural model of multimatrix
processor for diagnosing.

References are: 1. Models of the problems for technical
diagnosis are presented in [1-6]. 2. Diagnosis and
verification of digital systems-on-chips are described in [9-
17, 22-15]. 3. Hardware and matrix processors for
increasing the speed of testing are proposed in [18-21].

II. A MODEL FOR TESTING AND VERIFICATION

The effective process models and methods for diagnosing
the functional failures in software and/or hardware are
offered. The register or matrix (tabular) data structures,
focused to parallel execution of logic operations, are used
for detecting the faulty components.

The problem of synthesis or analysis of system
components can be formulated in the form of interaction
(symmetrical difference is an analog of xor-operation on the
Boolean) of its model F, input stimuli T and responses L in
a cybernetic space:

LTFL)T,f(F, .

A cyberspace is a set of information processes and
occurrences, which use computer systems and networks as a
carrier. Particularly, a space component is represented by k-
dimensional (tuple) vector

{0,1}ja,)ka,...,ja,...,2a,1(aa in a binary

alphabet. Zero-vector is k-dimensional tuple, all coordinates

of which are equal to zero: k1,j0,ja .

 Metrics of cybernetic (binary) space is defined by a

single equality that forms zero-vector for xor-sum of the

distances id between nonzero and finite quantity of points,

closed in a cycle:

0.di
n

1i
The Hamming distance between two objects (vectors) a

and b is determined as derived vector:

j
k

1j
ji ba)ba,(dd . Otherwise: the metrics of a

vector logic binary space is xor-sum of the distances (it is
equal to zero) between finite quantity of graph points
(nodes), closed in a cycle. The sum of n-dimensional binary
vectors, specifying the coordinates of cycle points, is equal
to zero-vector. This metrics definition uses relations that
allow reducing the axiom system from three up to one and
extending it on any constructions of n-dimensional
cyberspace. The classical metrics definition for
determining interaction of one, two and three points in
vector logic space is a particular case of -metrics when

1,2,3i respectively:

).c,a(d)c,b(d)b,a(d0ddd
);a,b(d)b,a(d0dd

;ba0d
M

321
21

1

The metrics of cybernetic multiple-valued space,

where each coordinate of vector (object) is determined in
the alphabet that is the Boolean on universe of primitives by

the power p: p
mr21j 2m,},...,,...,,{a , is the

symmetric difference (it is equal to -vector by all
coordinates) of the distances between finite quantity of
points, closed in a cycle:

i
n

1i
d . (1)

Equality empty vector the symmetric difference of
coordinatewise set-theory interaction (1) emphasizes the
equivalence of the components (distances), which form the
equation with a single coordinate operation j1,iji, dd ,

used, for instance, in four-digit Cantor’s model. It is defined
by the corresponding -table:

x10
x01x
10x1
01x0

x10

x10x
111
000
x10

x10
xxxxx
1x1x1
0xx00

x10

x01a~
x10a (2)

The truth tables for other basic set-theory operations are
represented in (2). A number of primitive symbols, formed
closed alphabet relative to the set-theory coordinate
operations, can be increased. At that the power of alphabet

(Boolean) is determined by the expression p2m , where
p is a number of primitive symbols. This metrics is not only
of theoretical interest, but has a practical focus on
generalization and classification of technical diagnosis
problems by creating a model for xor-relations on the set of
four main components. The procedures of test synthesis,
fault simulation and detection can be reduced to xor-
relations on a full interaction graph (Fig. 1) for four nodes
(functionality, unit, test, faults) L}T,,U,F{G .

R&I, 2010, N4 37

Fig. 1. Graph of interaction between technical diagnosis components

The graph creates four basic triangles, which form 12
triads of relations for the problems of technical diagnosis:

LFU)12

UFL)11

ULF)10

FTU)9

UTF)8

UFT)7

LTU)6

UTL)5

ULT)4

FTL)3

LTF)2

LFT)1
0ULF0UFT0ULT0LFT

Insertion of the node U in the graph of interaction
between technical diagnosis components extends the
functionality of the model; new properties of the resulting
system appear. Introduction the new node in the structure
has to have strong arguments of its advisability. Concerning
the graph, represented in Fig. 1, all problems can be
classified into groups as follows.

Group 1 involves the theoretical experiments (on the
functionality model), without the device: 1) test synthesis
by using the functionality model for a specified fault list; 2)
development of the functionality model, based on a given
test and fault list; 3) fault simulation for functionality by
using given test.

Group 2 – real experiments (by device) without
functionality model: 4) test synthesis by physical fault
simulation in the device; 5) fault list generation for the
device by means of diagnostic experiment; 6) test and faults
verification by means of the experiment on a real device.

Group 3 – test experiments (verification) without faults:
7) test synthesis by means of comparing the model
simulation results and real device; 8) functionality synthesis
by using a real device and a given test; 9) verification of test
and functionality model by using the real device with
existing faults.

Group 4 – experiments during operation with real inputs:
10) check of correct behavior of a real device on the
existing or specified faults; 11) test the device on the
existing model in the operation; 12) verification of the
functionality and fault list relative to the behavior of a real
device.

The most popular problems of the above list are: 1, 3, 5,
8, 9. Another classification of the problem types can be
introduced. It allows defining by the graph

L)T,,U,F(G all the conceptual solutions of target

problems: test synthesis, functionality model definition,
fault model generation and designing of a device:

L.FU)12

F;TU)11

L;TU)10

U;FL)9

U;TL)8

F;TL)7

U;TF)6

;LUF)5

L;TF)4

;UFT)3

;LUT)2

L;FT)1

All constructions, used in a relationship, have the
remarkable property of reversibility. Component, calculated
using the other two, can be used as an argument to
determine any of the two original ones. Thereby, transitive
reversibility of each relation triad on complete graph is
occur, when by using any two components it is always
possible to restore or to determine the third one. At that the
format for each component must be identical in structure
and dimension (vectors, matrices). Fault diagnosis methods,
based on the proposed metrics and testing models, are
considered in more detail below.

III. MODEL FOR DETECTING FUNCTIONAL FAILURES IN

SOFTWARE

The space equation 0ULTF0U)L,T,f(F,

is used. It is transformed to the form U)T()FT(L .

Fault (functional failures) diagnosis is reduced to
comparison of simulation)FT(and full-scale)UT(
results, which generates a functional failure list L, detected
in the diagnosed unit. Model-formula for searching the
functionally faulty block iF is reduced to solving by

determining xor-interaction between three components:

.0)]UT()FT[(FL i

p

1i
ii

An analytic model for verification of HDL-code by using
temporal assertion engine (additional observation lines) is
focused to achievement the specified diagnosis depth and
presented as follows:

}.L,...,L,...,L,{LL};T,...,T,...,T,{TT
};S,...,S,...,S,{SS};S,...,S,...,S,{SS

};B,...,B,...,B,{BB};A,...,A,...,A,{AA
);B,T(fS;SB)*A(F,)L,T,S,B,A,F(fM

ni21ki21

ipiji21iimi21
ni21ni21 (3)

Here SB)*A(F is functionality, represented by

Code-Flow Transaction Graph – CFTG (Fig. 2);
}S,...,S,...,S,{SS mi21 are nodes or states of software

when simulating test segments. Otherwise the graph can be
considered as ABC-graph – Assertion Based Coverage
Graph. Each state }S,...,S,...,S,{SS ipiji21ii is

determined by the values of design essential variables
(Boolean, register variables, memory). The oriented graph
arcs are represented by a set of software blocks

i
n

1i
i

n

1i
ni21 B;BB),B,...,B,...,B,(BB ,

where the assertion }A,...,A,...,A,{AAA ni21i can

be put in correspondence to each of them. Each arc iB – a

38 R&I, 2010, N4

sequence of code statements – determines the state of the
node)B,T(fS ii depending on the test

}T,...,T,...,T,{TT ki21 . The assertion monitor, uniting

the assertions of node incoming arcs

iniji21ii A...A...AA)A(S can be put in

correspondence to each node. A node can have more than
one incoming (outcoming) arc. A set of functionally faulty
blocks is represented by the list

}L,...,L,...,L,{LL ni21 .

.BBBBBBBBBBBB

BBBBBBBBBBBB

B)BBBB)BBBB((

B)B)BBBB(BBB(B

141282141062141041

13115113117213931

141282106241

13115172931

Fig. 2. Example of ABC-graph for HDL-code

The model for HDL-code, represented in the form of
ABC-graph, describes not only software structure, but test
slices of the functional coverage, generated by using
software blocks, incoming to the given node. The last one
defines the relation between achieved on the test variable
space and potential one, which forms the functional
coverage as the power of state i-th graph node

p
i

r
i cardC/cardCQ . In the aggregate all nodes have to

be full coverage of the state space of software variables,
which determines the test quality, equal to 1 (100%):

1Ccard/CcardQ
m

1i

p
i

m

1i

r
i . Furthermore, the

assertion engine C,A that exists in the graph allows
monitoring arcs (code-coverage)

}A,...,A,...,A,{AA ni21 and nodes (functional

coverage) }C,...,C,...,C,{CC mi21 . The assertions on

arcs are designed for diagnosis of the functional failures in
software blocks. The assertions on graph nodes carry
information about the quality of test (assertion) for their
improvement or complement. The Code-Flow Transaction
Graph makes possible the following: 1) use the testability
design to estimate the software quality; 2) estimate the costs
for creating tests, diagnosing and correcting the functional

failures; 3) optimize test synthesis by means of solving the
coverage problem by the minimum set of activated paths of
all arcs (nodes). For instance, the minimum test for the
above mentioned ABC-graph has six segments, which
activate all existent paths:

.SSSSSSSSSSSSSSS

SSSSSSSSSSSSSSST

986209752098420

975109841097310

Tests can be associated with the following program block
activization matrix:

1.1...1.....1.T
.1.1...1....1.T
1...1...1...1.T
.1.1.....1...1T
1...1.....1..1T
.1...1.....1.1T

BBBBBBBBBBBBBBB

6
5
4
3
2
1

1413121110987654321ji

The activization matrix shows the fact of
indistinguishability of the functional failures on a test in the
blocks 3 and 9, 8 and 12, which constitute two equivalence
classes if there is one assertion (monitor) in the node 9. To
resolve this indistinguishability it is necessary to create two
additional monitors in the nodes 3 and 6. As a result, three
assertions in the nodes)A,A,A(A 963 allow

distinguishing all the blocks of software code. Thus, the
graph enables not only to synthesize the optimal test, but
also to determine the minimum number of assertion
monitors in the nodes to search faulty blocks with a given
diagnosis depth.

Increasing the number of assertion monitors leads to
modification of an activization table. Otherwise, on a given
test and the assertion engine it is necessary to solve
uniquely the diagnosis problem for functional failures of the
software code with the depth up to a software module. At
that the number of assertions and test segments to be
minimum acceptable for the code identification of all the
blocks:

cardBlogcardAcardTBlogAT 22 .

Initially, the number of monitors-assertions is equal to the
number of test segments. The activization table for software
modules makes it possible to identify code blocks with
functional failures by the generalized output response vector
(assertion monitoring)

)1B(j,BTV},1,0{V),V,...,V,...,V,V(V ijjiiini21

The vector coordinate 1BTV jii identifies the

nonpassage of the test segment on a subset of activated
modules. In accordance with the vector V, defined on the
activization table subject to the above rule for calculating its
coordinates:

R&I, 2010, N4 39

11.1...1.....1.T
0.1.1...1....1.T
11...1...1...1.T
0.1.1.....1...1T
11...1.....1..1T
0.1...1.....1.1T
VBBBBBBBBBBBBBBB

6
5
4
3
2
1

1413121110987654321ji

a logical function of software functional failures can be
constructed, which is simplified using the coordinates of the
output response vector V:

.B...BBB...BBBB

)BBBB(

)BBBB()BBBB(

)BBBB0(

)BBBB0()BBBB0(B

)010101(}T,V{

);BBBBT()BBBBT(

)BBBBT()BBBBT(

)BBBBT()BBBBT(B

1412632421

141282

141062141041

141282

141062141041

14128261311725

14106241311513

1410412139311

After transformation the conjunctive normal form (CNF)
to disjunctive normal form the obtained terms include all
possible solutions in the form of unit coordinate coverage
for the output response vector by single or multiple software
functional failures. Choosing the best solution is made by
determining DNF term of the minimum length.

In this example, the optimal solution is a term containing
a single block 14BB , which covers three units in the

output response vector)010101(V . This fact is also

evident from comparison of the last two columns of the
activation matrix B.

IV. A METHOD FOR VECTOR LOGIC ANALYZING COLUMNS

Methods for detecting the functional failures (FF) in the
statement blocks use previously generated functional failure
table][BB ij , where a row is relation between a test

segment and subset of activated (on this segment) software
blocks)B,...,B,...,B,(BT iniji2i1i . A column forms

the relation between software block and test segments
)T,...,T,...,T,(TB pjij2j1jj , which activate it.

Otherwise, a column is an assertion vector, detecting the
functional failure in corresponding block. On simulation

stage the response)m,...,m,...,m,(mm pi21 of the

assertion engine on a test is identified by means of
generating each bit

{0,1}A,)A...A...AA(m iki21i as

response of assertions on the test segment iT . Searching

FF’s is based on the definition of xor-operation between the
vector of assertion states and columns of the functional
failure table)B...B...BB(m nj21 . The

solution is determined by the vector jB with minimum

quantity of 1 coordinates, which determine the functionally
faulty software blocks, checked by the test segments.
Diagnosis by the functional failure table on the basis of the
response {0,1}m),m,...,m,...,m,(mm ini21 is reduced to

the methods for vector logic analyzing columns or rows.
The first one is based on use vector xor-operation

between m-response of the functionality on the test,
formally considered as an input vector-column, and
columns of the fault detection table

)B...B...BB(m mj21 . To determine the

interaction quality of vectors)Bm(Q jj and to choose

the best solution the columns with minimal quantity of 1’s
for resultant vector are identified. They forms the
functionally faulty blocks, checked by test patterns. The
analytic model for solving the diagnosis problem and
obtaining the list of functionally faulty software blocks is
represented in the following form:

min).0()mB(BLL
k

1i
i

k

1i
ijj

n

1j
 (4)

Here an output response vector is input one for
subsequent analyzing of the functional failure table

)L,B,A(f)B,A(fm * . (5)

And it is a result of test experiment – comparison of the
functional (output states) for model under test)B,A(f and

unit under test)L,B,A(f * with the faults L on the test

patterns A. In second case if a set of faults 1L , it means
existence of equivalent functional failures on given test and
assertion engine.

A process model for searching the best solution with
minimum quantity of 1 coordinates from 2 or more
alternatives is shown in Fig. 3. It involves the following
operations: 1) Initially, in all coordinates (the worst
solution) of the vector Q, where the best solution is stored, 1
values are entered; and simultaneously left slc operation
with compaction of 1’s is performed for given vector iQ .

2) Comparing of two vectors is performed: Q and the next
estimation iQ from the solution list. 3) Vector operation

And)QQ(i is performed. The result is compared with

vector Q, which allows changing it, if the vector iQ has less

quantity of 1 values. 4) The procedure for searching the best
solution is repeated by n times.

40 R&I, 2010, N4

Y.QYQQ

);Q)QQ((Y

));Q)QQ(((Q))Q)QQ(((QQ

i

i

iii

Fig. 3. Process-decision model

An advantage of the method for vector logic analyzing
columns is the choice of the best solution from all possible
single and multiple faults. Actually, such single functional
failures are included in the fault list, which when logical
multiplying them by output response vector give a result in
the form of vector-column. Disjunction of all columns,
generating a solution, is equal to the output response vector

m)BB(j
r

1j
.

An example for analyzing the functional failure table
FFT of the module Row_buffer (Fig. 4) is represented
below.

000011110000T
010101010000T
001000001000T
000011101000T
010101000100T
100010100100T
100010100010T
110101000001T
001011110000T
010101001000T
101011100100T
110101000010T
101010100001T

mm
D

B

D

B

D

B

R

B

R

B

C

B

L

B

L

B

L

B

L

B
Test

13
12
11
10
9
8
7
6
5
4
3
2
1

21
3

10

2

9

1

8

2

7

1

6

1

5

4

4

3

3

2

2

1

1

Fig. 4. Row_buffer transaction graph and table FFT

On the basis of the diagnosis procedure (4) and tables
FFT (see Fig. 3) the faulty components can be determined
by analysis of FFT columns. Here the vectors 21 m,m
define the diagnosis results, performed by the procedure (5).
The diagnosis result for single and multiple functional
failures is following:

.52,0)1
4

1

13

4
(

3

1
)]LL(,m[Q;1)D,m(Q

;LLBB)B(m)m(L

;DB)B(m)m(L

21221

2121j

10

1j
22

m

29j

10

1j
11

s

In the first case, the diagnosis is defined as a single faulty
module 2D that present in the transactional graph; the

solution quality is equal to 1. In the second case, the
diagnosis procedure detects two faulty modules 21 LL ,

the quality estimation of which is not the optimal.
Nevertheless, the solution is the best among all the possible,
which is maximally approximate to the output response
vector by the membership criterion)]LL(,m[Q 212 .

The computational complexity of the method for analyzing
columns is determined by the following dependence:

.n4nn3Z;n4nn3Z r222c Here, the first

estimate takes into account the implementation of
coordinate operations on the matrix of the dimension nn .
The second estimate determines the computational
complexity of the register parallel operations to compute
quality criteria and process the matrix, respectively.

V. METHOD FOR VECTOR LOGIC ANALYSIS OF ROWS

The method is designed for determination of fault or
functional failure (FF) location in software code and
consists of two procedures: 1) determining the logical
product of the conjunction of lines, marked by unit values
of the vector)1m(T ii , by the negation of disjunction of

zero rows)0m(T ii for single faulty modules; 2)

determining the logical product of disjunction of unit lines
by the negation of the disjunction of zero rows for multiple
faulty modules:

);T()T(L

);T()T(L

i
0m

i
1m

m

i
0m

i
1m

s

ii

ii (6)

The formulas are interesting, because they are not related
to the diagnosis quality criteria and operate only two
components: FFT table and output response vector.
Performing the diagnosis procedure by the formulae (4) for
the output response vector)0100100101010(m1 ,

specified in the last table FFT, forms the result:

21
s D)T,m(L , which is not worse than previously

obtained by the method for analyzing columns. For the
output response vector)0000011100111(m2 the

diagnosis result is: 212
m LL)T,m(L . Computational

complexity of the method for analyzing rows is determined

R&I, 2010, N4 41

by the following dependence: .nZ;nZ r2c The first

estimate is designed to count the number of coordinate
operations, the second one determines the computational
complexity of processing, based on the register parallel
operations. The proposed methods for diagnosing functional
failures in software and hardware are the most important
components of the Infrastructure IP.

Formulae (6) can be modified if the following
designations are introduced:

);T(c);T(b);T(a i
1m

i
0m

i
1m iii

);1b(a)ba(aababaLs

);1b(c)bc(ccbcbcLm

0ba)1b(c)bc(ccbcbcbc

);1b(a)ba(aabababa
L

Any right side expression of the equations can be used to
detect functional failure in the software or hardware. The
difference lies in the presence or absence of inversion,
which is replaced by xor-operation, more preferable for
diagnosis and pattern recognition. In this case, the process
model for diagnosing single (using a-component) or
multiple (b-component) faults (functional failures) based on
analyzing the table FFT has an effective vector-oriented
computing technology:

)ca)(1b(L ,

embedded Infrastructure IP of software/hardware.
According to set theory, this means determining the result
of set-theory subtraction)b\c()b\a(b\)ca(L
in the algebra-logic vector space. For such operations the
multimatrix processor is needed, which is strictly focused
on the parallel execution of several logic operations on data
matrices.

VI. MATRIX METHOD FOR DETECTING THE FUNCTIONAL

FAILURES IN SOFTWARE

Further to the software transaction graph (3) a method for
diagnosing functional failures in software uses the triad of
matrices of the same format:

.baba;m1,j;n1,i

],[LL],[AA],[BB

{0,1};}L,A,{BABLABL

0,LABM

ijijij

ijijijijijij

Here matrices form: B – block activization on test
segments during simulation; A – activity of assertions,
corresponding to blocks, on test segments and during
simulation; L – faulty blocks, obtained as result of xor-
operation on two above matrices. Coordinate-wise
analyzing the matrices uses binary xor-operation, such as
(see Table I).

Obtained result ABL in the form of L-matrix

)}{0,1B(T][Lij , all coordinated of which are equal

to zero, indicates absence functional failures in software
relatively the proposed verification plan in the format (test –
functional blocks – activization)}{0,1B(T][Bij ,

test – assertions – response)}{0,1A(T][Aij .

Another model experiment indicates presence the functional
failures }B,B,B,B,B{L 65321 in software code (see

Table II).
Here are the results of vector operations on all rows of

two tables iL =11101100 and iA =11011111. Logical

conjunction of them with the preliminary inversion of the
first vector gives the coordinates of blocks with functional
failures, marked by units. In this example, the vector forms
only one block (00100000)&(11101100)=(00100000).

 Tables I, II

........T

........T

........T

........T

........T

........T

........T

........T

BBBBBBBBL

...111..T

..11..1.T

11.....1T

1...1.1.T

..1..1.1T

111.....T

...1.11.T

.1..1..1T

AAAAAAAAA

...111..T

..11..1.T

11.....1T

1...1.1.T

..1..1.1T

111.....T

...1.11.T

.1..1..1T

BBBBBBBBB

8

7

6

5

4

3

2

1

87654321ji

8

7

6

5

4

3

2

1

87654321ji

8

7

6

5

4

3

2

1

87654321ji

00110111L

.....1..T

........T

........T

........T

..1..1.1T

........T

...1.11.T

........T

BBBBBBBBL

11111011A

...110..T

..11..1.T

11.....1T

1...1.1.T

..0..0.0T

111.....T

...0.00.T

.1..1..1T

AAAAAAAAA

...111..T

..11..1.T

11.....1T

1...1.1.T

..1..1.1T

111.....T

...1.11.T

.1..1..1T

BBBBBBBBB

i

8

7

6

5

4

3

2

1

87654321ji

i

8

7

6

5

4

3

2

1

87654321ji

8

7

6

5

4

3

2

1

87654321ji

42 R&I, 2010, N4

What is the reason for the reduction of faulty blocks? If
to assume that in compliance with the verification plan the
verification of the first block has to detect faults on first and
sixth test, which is not satisfied, so block 1 can be excluded
from the fault list. Similarly, modules 2, 5, 6 can be
excluded. Then the corrected result will have only one
block with the functional failures: }B{L 3 . The

procedure for refining the diagnosis result can also be
formalized in the following form:

m1,j,BLBBL jjjj . If the comparison

result is negative 0LB jj , it means the code is

incorrect, assertion or test failed, including functional
coverage. For the diagnosis code in accordance with the
process model of the form

)L()A()B(LA)B(T)L(B, i
n,1i

i
n,1i

,

it is necessary to consider the following items:
1. Coverage is any metric for choosing test and

determining its confidence. Code coverage is test metric,
focused on the confirmation of execution of all code lines.
Decomposition of software code into blocks is performed

BBB,BB}B,B{B tststs . Each

block belongs to one of two types: the sequence of
statements without a branch or time delay circuit

}B,B{B ts
i . Location of assertion monitors is carried

out for block activity on test at the beginning of the branch
or in the first timer cycle of a time delay circuit. In the
modeling process assertions form an activization matrix for
software blocks on each test segment

}1,0{BTB jiij . If the block is active (assertion

passed) on the test (testbench), matrix coordinate is equal to
1, otherwise – 0Bij . Testbench is input conditions for

testing the HDL-code and corresponding output responses,
which define transformations of the device under test in the
functional subspace.

2. Functional coverage is test metric that ensures the
accessability of all essential states in the software variable
and function definition space. Decomposition of software
functionality in control and transaction graphs is performed:

FFF,FF}F,F{F tctctc . This makes

it possible to considerably reduce the dimension of
coverage problem that defines the domain for the control
variable and data flow. Test generation and the subsequent
coverage driven verification use the above mentioned
graphs with constraints, taken from the specification.
Synthesized test for the control graph allows activation of
all logic and arithmetic variables involved in initiation of
software transaction. Way of variable activation or test
synthesis consists of pseudo-random or deterministic
(algorithmic) generating test inputs, as well as hand-writing
input stimuli. Forms of coverage definition are an

abbreviated truth table, Boolean equation, binary decision
diagrams, the flowgraph. Test for the second graph handles
data flows, which at the system level not always have to be
checked because of the absence of faults, such as short
circuits between the variables or constant faults in them.
Transaction graph can be used to create a verification plan
for essential interface parameters of software. To do this it
is necessary to use interface assertions operating by global
variables.

2. Assertion matrix for software blocks has a form similar
to the structure of block activation][AA ij . Here format

of assertion as logic statement, using the essential variables
of software block }1,0{Af(X) ij , responses for

running the corresponding activated on the test module
1Bij . Several statements can be in the block, separated

to increase the diagnosis depth or united by function or. In
last case assertion responses for correct functioning of the
block. Assertion has two values: 1 – block operates fault-
free, 0 – there are functional failures. Assertions are
represented by two hierarchy levels: interface and block

ones }A,A{A bi . The first ones are focused on testing

the essential parameters of the specifications, which are
common for the software and external for it. Second ones
are built into software block, which don’t have branches.
Power of commands or code lines – up to 20 – is
determined by the number of statements to be placed on the
screen. Such block can contain time or event delay
statements.

VII. IMPLEMENTATION OF MODELS AND METHODS IN THE

VERIFICATION SYSTEM

Practical implementation of models and verification
methods is integrated into the simulation environment
Riviera of Aldec Inc., Fig. 5. New assertion and diagnosis
modules, added in the system, improved the existing
verification process, which allowed 15% reduction the
design time of digital product.

Fig. 5. Implementation of results in the system Riviera

Actually, application of assertions makes possible to
decrease the length of test-bench code and considerably
reduce (3) the design time (Fig. 6), which is the most
expensive. Assertion engine allows increasing the diagnosis

R&I, 2010, N4 43

depth of functional failures in software blocks up to level
10-20 HDL-code statements.

Time-to-market comparison

0,00

5,00

10,00

15,00

20,00

25,00

30,00

0,112 0,207 0,315 0,389 0,504 0,620 0,731 0,824 0,931 1,015

Design capacity (MGates)

T
im

e
-t

o
-m

a
rk

e
t

 (
K

M
e

n
/H

o
u

r)

Design + Classic Testbench

Design + Stimulus + Assertions

Fig. 6. Comparative analysis of verification methods

Due to the interaction of simulation tools and assertion
engine, automatically placed inside the HDL-code, an
access of diagnosis tools to the values of all internal signals
is appeared. This allows quickly identifying the location and
type of the functional failure, as well as reducing the time of
error detection in the evolution of product with top-down
design. Application of assertion for 50 real-life designs
(from 5 thousand up to 5 million gates) allowed obtaining
hundreds of dedicated solutions, included in the verification
template library VTL, which generalizes the most popular
on the market EDA (Electronic Design Automation)
temporal verification limitations for the broad class of
digital products. Software implementation of the proposed
system for analyzing assertions and diagnosing HDL-code
is part of a multifunctional integrated environment Aldec
Riviera for simulation and verification of HDL-models.

High performance and technological combination of
assertion analysis system and HDL-simulator of Aldec
company is largely achieved through integration with the
internal simulator components, including HDL-language
compilers. Processing the results of the assertion analysis
system is provided by a set of visual tools of Riviera
environment to facilitate the diagnosis and removal of
functional failures. The assertion analysis model can also be
implemented in hardware with certain constraints on a
subset of the supported language structures. Products
Riviera including the components of assertion temporal
verification, which allow improving the design quality for
3-5%, currently, occupies a leading position in the world IT
market with the number of installations of 5,000 a year in
200 companies and universities in more than 20 countries
on the world.

VIII. MULTIMATRIX PROCESSOR OF BINARY OPERATIONS

AND VERIFICATION INFRASTRUCTURE

To implement effective computational processes by time
and cost of associated with the diagnosis of functional
failures it is necessary processor of the simple architecture
with minimum instruction set, where the operands are not
only Boolean variables, but also more complex structures

such as registers and matrices. Such processor should
execute in parallel mode operations over all bits of the
regular operands, not requiring special compilers for
paralleling computing processes.

Multimatrix processor (MMP) is a minimum architecture
of instruction primitives, where each of them focused on the
parallel execution of only one operation (and, or, xor, slc)
over the corresponding matrix (two-dimensional data array).
The number of command-oriented matrix primitives creates
a system – a heterogeneous multimatrix processor of binary
operations with buffer M, Fig. 7.

Fig. 7. Multimatrix processor of binary operations

The standard blocks are shown here: data DM and
program PM memory, control unit CU, interface I-face and
infrastructure I-IP, as well as multimatrix processor,
including 4 memory blocks with embedded operations (A –
and, B – xor, C – or, D – slc – shift left crowding) and
buffer memory M. Multimatrix processor (MMP) is focused
on parallel execution one of four instructions (ISA –
Instruction Set Architecture) for processing matrices of
binary data of the same dimension

D}C,B,slc}{A,xor,or,{and,MM and saving the

result in the buffer M. Feature of MMP is that each
instruction has data matrix for parallel processing (not
matrix cell has instruction set of 4 operations) to simplify
the control structure and device in whole. The complexity
of MMP is focused on data structures, matrix memory has a
single hardware embedded instruction that enables to
implement primitive control system for parallel computing
(SIMD – Single Instruction Multiple Data). Proposed MMP
architecture is adapted to execution of logic instructions by
the operands of register level. MMP prototype is integrated
in the hardware acceleration board for simulation and
verification HES™, Aldec Inc.

On the basis of multimatrix (register) processor an
infrastructure for verification HDL-code (Fig. 8) is
developed. It is modification of I-IP standard IEEE 1500
SECT [3, 4, 11, 14]. There are 4 process models: testing on
the simulation stage, diagnosis of functional failures,
diagnosis optimization, repairing.

1. Process model for testing involves HDL-model,
assertion engine, testbench and coverage. Last one estimates
test quality for all design states. In simulating the

44 R&I, 2010, N4

activization matrix B for software blocks and assertion
response matrix A on test segments are generated. Matrix
A can be transformed to assertion state vector m by
application of the function Or to vector-columns of A-
matrix.

.)AT(AAm

F);(TB

c
j

m

1j

Fig. 8. Verification infrastructure for HDL-code

2. The last two components are used in the second
process model for diagnosing blocks of HDL-code.
Diagnosis is fault vector, which forms a subset of blocks

dm with functional failures. At that the errors can be in

testbench and in assertion statements, which
are designed for testing and monitoring
software blocks. If exact identification of the
block is absent when comparing the
columns of activization matrix and assertion
responses, triple diagnosis uncertainty

}A,T,{BD ijij arises.

3. The third block solves the problem of
minimizing the number of blocks, in which
functional failures can be, up to one of them. At that a block
activization matrix and the diagnosis dm , obtained in the

previous process model, are used.
4. Correction of functional failures is focused on manual

searching errors in a software block, presented by the vector

bm . Automated correcting errors in the block is possible, if

there is a library of diversion software modules of the
similar functionality in the verification infrastructure.

The proposed infrastructure is one of steps towards the
creation of verification automaton for software blocks. An
example of diagnosing the functional failure, based on using
the activization matrix, is represented below. The vector of
assertion responses is obtained from the matrix

}passed0,failed1{A ji by disjunctive union of

rows content:

.....1..T

........T

........T

........T

..1..1.1T

........T

...1.11.T

........T
AAAAAAAAA

1T
.T
.T
.T
1T
.T
1T
.T

mT

Am

8
7
6
5
4
3
2
1

87654321ji

8
7
6
5
4
3
2
1

ji
m

1j
i

Subsequent implementation of xor-operation between the
assertion vector and activization matrix columns allows
obtaining the best solution, which is determined by the
minimum code distance

min)0()mB(BLL
n

1i
i

n

1i
ijj :

66424044)B(A,d
111...11T
..11..1.T
11.....1T
1...1.1.T
11.11.1.T
111.....T
111.1..1T
.1..1..1T

BBBBBBBBL

1T
.T
.T
.T
1T
.T
1T
.T
mT

...111..T

..11..1.T
11.....1T
1...1.1.T
..1..1.1T
111.....T
...1.11.T
.1..1..1T

BBBBBBBBB

j
8
7
6
5
4
3
2
1

87654321ji

8
7
6
5
4
3
2
1

8
7
6
5
4
3
2
1

87654321ji

Diagnosis is block 3 has functional failures, because three
assertions are failed on the test segments 2,4 and 8, which in
this combination activate only block number 3. If assertion
matrix (not vector) is used for diagnosing, searching for
faulty blocks is the following:

 Diagnosis is similar to the previous one: block 3 has
functional failures, because the code distance is equal to
zero only for the column number 3.

IX. CONCLUSION

The following results are proposed in the paper:
1. A structural model for relations on the set of four main

components of technical diagnosis (functionality, unit, test
and faults), which is characterized by complete xor-
interaction of all the graph nodes and transitive reversibility
of each relation triad that allows defining and classifying
the ways of solving practical problems, including test
synthesis, fault simulation and fault detection.

2. A new model of software in the form of Code-Flow
Transaction Graph, as well as a new matrix method for
diagnosing functional failures, which are characterized by
adaptability of data preparation when detecting faulty

33223022)B(A,d

...11...T

..11..1.T

11.....1T

1...1.1.T

........T

111.....T

........T

.1..1..1T

BBBBBBBBL

.....1..T

........T

........T

........T

..1..1.1T

........T

...1.11.T

........T

AAAAAAAAA

...111..T

..11..1.T

11.....1T

1...1.1.T

..1..1.1T

111.....T

...1.11.T

.1..1..1T

BBBBBBBBB

j

8

7

6

5

4

3

2

1

87654321ji

8

7

6

5

4

3

2

1

87654321ji

8

7

6

5

4

3

2

1

87654321ji

R&I, 2010, N4 45

blocks, are proposed. They allow considerably reducing the
design time of digital systems on chips.

3. Methods for searching functional failures, which differ
in parallel execution of vector operations on the rows of a
functional failure table, are improved. They allow
substantially (x10) increasing the performance of
computational procedures associated with diagnosis and
repair of software and hardware.

4. The architecture of multimatrix processor, focused to
increasing the speed of embedded diagnosis of functional
failures in the software or hardware product, which differs
using parallel logic vector operations and, or, xor, slc that
enables to increase considerably (x10) the speed of
diagnosing single and/or multiple faults (functional
failures).

5. The infrastructure for verification and diagnosis of
HDL-code for design digital systems-on-chips, which
involves four process models for testing, diagnosing,
optimization and correcting errors, closed in a cycle, that
makes it possible to reduce the time of code debugging,
when creating a design.

6. Practical implementation of models and verification
methods is integrated into the simulating environment
Riviera of Aldec Inc. New assertion and diagnosis modules
improved the existing verification process, which allowed
15% reduction in overall design time of digital products.

REFERENCES

[1] Technical diagnosis basics / Editor P.P. Parchomenko.- M.: Energy.–
1976.– 460 p.
[2] Parchomenko P.P., Sogomonyan E.S. Technical diagnosis basics
(Optimization of diagnosis algorithms, hardware tools) / Editor P.P.
Parchomenko.– M.: Energy.– 1981.– 320 p.
[3] Infrastructure for brain-like computing / M.F. Bondaryenko, O.A.
Guz, V.I. Hahanov, Yu.P. Shabanov-Kushnaryenko.– Kharkov: Novoye
Slovo.– 2010.– 160 p.
[4] Design and Verification of digital systems on chips / V.I. Hahanov,
I.V. Hahanova, E.I. Litvinova, . . Guz.– Kharkov: Novoye Slovo. –
2010. – 528 p.
[5] Semenets V.V., Hahanova I.V., Hahanov V.I. Design of digital
systems by using VHDL language.– Kharkov: KHNURE.– 2003.– 492 p.
[6] Hahanov V.I., Hahanova I.V. VHDL+Verilog = synthesis for
minutes. – Kharkov: KHNURE.– 2006.– 264 p.
[7] Hahanov V.I. Technical diagnosis of digital and microprocessor
structures: Manual.- K.: ISIO, 1995.- 242 p.
[8] Skobtsov Yu.A. Logic simulating and testing digital devices / Yu. .
Skobtsov, V.Yu. Skobtsov. –Donetsk: IPMM NSA of Ukraine, DonNTU.–
2005.– 436 p.

[9] IEEE Standard for Reduced-Pin and Enhanced-Functionality Test
Access Port and Boundary-Scan Architecture IEEE Std 1149.7-2009. – 985
p.
[10] Da Silva F., McLaurin T., Waayers T. The Core Test Wrapper
Handbook. Rationale and Application of IEEE Std. 1500™. –Springer.–
2006.– XXIX.– 276 p.
[11] Marinissen E.J., Yervant Zorian. Guest Editors' Introduction: The
Status of IEEE Std 1500.–IEEE Design & Test of Computers.– 2009.–
No26(1).– P.6-7.
[12] IEEE Std 1800-2009 IEEE Standard for System Verilog-Unified
Hardware Design, Specification, and Verification Language.
http://ieeexplore.ieee.org/servlet/opac?punumber= 5354133
[13] Marinissen E.J. Testing TSV-based three-dimensional stacked ICs //
DATE 2010.– 2010.– P.1689-1694.
[14] Benso A., Di Carlo S., Prinetto P., Zorian Y. IEEE Standard 1500
Compliance Verification for Embedded Cores // IEEE Trans. VLSI Syst.–
2008.– No 16(4).– P. 397-407.
[15] Ubar R., Kostin S., Raik J. Embedded diagnosis in digital systems //
26th International Conference “Microelectronics”, MIEL 2008. – 2008.– P.
421-424.
[16] Elm M., Wunderlich H.-J. Scan Chain Organization for Embedded
Diagnosis // Design, Automation and Test in Europe, DATE '08.– 2008.–
P. 468–473.
[17] Bulent I. Dervisoglu. A Unified DFT Architecture for Use with IEEE
1149.1 and VSIA/IEEE P1500 Compliant Test Access Controllers.
Proceedings of the Design Automation Conference. – 2001. – P. 53-58.
[18] Chenlong Hu, Ping Yang, Ying Xiao, Shaoxiong Zhou. Hardware
design and realization of matrix converter based on DSP & CPLD // 3rd
International Conference Power Electronics Systems and Applications.–
2009.– P. 1-5.
[19] Dave N., Fleming K., Myron King, Pellauer M., Vijayaraghavan M.
Hardware Acceleration of Matrix Multiplication on a Xilinx FPGA // 5th
IEEE/ACM International Conference Formal Methods and Models for
Codesign.– 2007.– P.97-100.
[20] Loucks W.M., Snelgrove M., Zaky S.G. A Vector Processor Based
on One-BitMicroprocessors // IEEE Micro.–Volume 2, Issue 1.– 1982.– P.
53-62.
[21] Hilewitz Y., Lauradoux C., Lee R.B. Bit matrix multiplication in
commodity processors // International Conference Application-Specific
Systems, Architectures and Processors.– 2008.– P. 7-12.
[22] Soon, J.L.K.; Low Ching Ling; DEV. Design explorer for
verification. Integrated Circuits, ISIC '09. Proceedings of the 2009 12th
International Symposium: 2009, Page(s): 413 – 416.
[23] Rafe, V.; Rafeh, R.; Azizi, S.; Miralvand, M.R.Z.; Verification and
Validation of Activity Diagrams Using Graph Transformation. Computer
Technology and Development, 2009. ICCTD '09. 2009 , Page(s): 201-205.
[24] Xiaoxi Xu; Cheng-Chew Lim; Using Transfer-Resource Graph for
Software-Based Verification of System-on-Chip. Computer-Aided Design
of Integrated Circuits and Systems, IEEE Transactions on Volume: 27,
Issue: 7. 2008, Page(s): 1315 – 1328.
[25] Zhongjun Du; Zhengjun Dang; A New Algorithm Based Graph-
Search for Workflow Verification. Information Engineering and Computer
Science (ICIECS), 2010 2nd International Conference: 2010, Page(s): 1–3.
[26] Gorbatov V. ., Gorbatov .V., Gorbatova M.V. Discrete
mathematics.– : High School, 2006.– 448 p.

46 R&I, 2010, N4

