

Research in Digital Design and Test at Tallinn
University of Technology

Raimund Ubar, Gert Jervan, Artur Jutman, Jaan Raik, Peeter Ellervee, Margus Kruus

Abstract — An overview about the recent research results
at the Tallinn University of Technology in the field of digital
design and test is presented. The main topics discussed in the
paper cover digital design, verification, emulation,
dependability, fault simulation, and test generation. An
experimental research environment is described which consists
of prototype tools developed as a side-effect of our research
activities. This environment together with a set of dedicated e-
learning tools serves also for teaching purposes for the
disciplines of design and test of embedded systems.

1. INTRODUCTION
NCREASING complexity of electronic systems has made
testing and verification one of the most complicated and

time-consuming problems in system design and production.
The importance of design for testability is growing because
the expenses of testing are becoming the major components
of the design and manufacturing costs of new products. It is
estimated that more than 70% of the design cycle for
systems is spent on test and verification [1]. Nanometer
technologies are introducing new challenges making test
quality and dependability of systems a very fast moving
target [2]. Enhancing productivity and quality of test related
solutions is thus a key competitive aspect, both in terms of
time-to-market and end-product quality.

In this paper an overview about the recent results in the
field of digital test at Tallinn University of Technology
(TUT) is presented. One of the most important research
areas has been multi-level diagnostic modeling of digital
systems by Decision Diagrams (DD) [3]. Using DDs, a
hierarchical automated test program generator DECIDER
was developed which outpaces similar known academic
systems in the speed of test generation [4]. Commercial
tools of this type are missing today. A special class of
Binary DDs (BDD) called structurally synthesized BDDs
(SSBDD) has been developed [3] which allowed to
implement ultra-fast fault simulator for combinational
circuits [5]. Based on SSBDDs a defect-oriented test
generator DOT was developed which is unic with its ability
to prove redundancy of physical defects in digital circuits
[6].

Recent results of research in the field of reconfigurable
logic allowed to create a hardware accelerator to replace
traditional software simulators, which allowed to increase
the speed of fault simulation in digital circuits about 200

times [7]. Most of our current research is concentrated in
the hot problems of testing Network-on-Chips (NoC) [8].

A set of prototype tools, developed as a side-effect of our
research, together with dedicated set of tools targeted for e-
learning and created in frames of several EU projects, serve
now at TUT for teaching design and test, design for
testability and fault tolerance. The tools support lecture
courses by hands-on training opportunity.

In the following several most important research results
obtained in the recent years at TUT are presented. In
Section 2 the results in design verification are presented.
Section 3 describes simulation speed-up possibilities by
hardware emulation, whereas Section 4 presents new
software algorithmic possibilities to increase the speed of
fault simulation. In Section 5 a novel approach to defect-
oriented test generation is presented, and in Section 6 our
research on dependability issues is described. Finally, in
Section 7 an overview is given about the prototype tool
environment developed as a side-effect of our research.

2. HIGH-LEVEL DD-BASED VERIFICATION

With the increase in size and complexity of modern ICs, it
has become imperative to address critical verification issues
in the design cycle. The process of verifying correctness of
designs consumes between 60% and 80% of design effort
[9]. For every designer the number of verification engineers
may vary from 2 to 4 depending on the design complexity.
Moreover, validation is so complex that, even though it
consumes most of the computational resources and time, it
is still the weakest link in the design process. Ensuring
functional correctness is the most difficult part of designing
a hardware system [10].

 RTL (VHDL)

PSL Interface

Validation patterns

Stimuli &
Testbench
(VHDL)

 Design model

Properties, assertions

PSL

HLDD Interface

System
representation

HLDD
Model

Properties,
assertions

HLDD Simulation

Code Coverage
Analysis & Test
Generation

Dynamic Verification
Assertion Coverage

Property Checker
HLDD
Properties

Fig. 1. APRICOT verification flow

I

4 R&I, 2008, No 1

We have developed a new framework for digital systems
verification, called APRICOT (Assertions, PRopertIes,
COde coverage and Test generation) [11]. It includes
different tasks, such as assertion checking, code coverage
analysis, simulation, test generation and property checking.
APRICOT is easy to set up and use. The novelty of
APRICOT lies in a system representation model called
High-Level Decision Diagrams (HLDD). The framework
has interfaces to commonly used design formats such as
VHDL, SystemC, PSL and EDIF. Fig. 1 presents the
general structure of the APRICOT framework.

Decision Diagrams have been used in verification for
about two decades. Reduced Ordered BDDs [12] as
canonical forms of Boolean functions have their application
in equivalence checking and in symbolic model checking.
Additionally, a higher abstraction level DD representation,
called Assignment Decision Diagrams (ADD) [13], have
been successfully applied to, both, register-transfer level
(RTL) verification and test.

In this paper we consider a different decision diagram
representation, High-Level Decision Diagrams (HLDD)
that, unlike ADDs can be viewed as a generalization of
BDDs. HLDDs can be used for representing different
abstraction levels from RTL to behavioral. HLDDs have
proven to be an efficient model for simulation and diagnosis
since they provide for a fast evaluation by graph traversal
and for easy identification of cause-effect relationships [14].

2.1. Code Coverage Analysis

Code coverage provides insight into how thoroughly the
code of a design is exercised by a suite of simulations. Code
coverage analysis is a well-defined, well-scalable procedure
and, thus, applicable to large designs. The main limitation
of code coverage metrics lies in the fact that they only
measure the quality of the test case in stimulating the
implementation and do not necessarily prove its correctness
with respect to the specification.

We have shown how classical coverage metrics map to
HLDD constructs [15]. Covering all nodes in the HLDD
model corresponds to covering all statements in the
respective HDL. However, the opposite is not true. We
showed that HLDD node coverage is more stringent than
HDL statement coverage [15]. This is due to the fact that in
HLDDs diagrams are generated to each data variable
separately. Such partition on variables includes an
additional context to statement coverage. Similar to the
statement coverage, branch coverage has also very clear
representation in HLDD simulation. The ratio of every edge
activated in the HLDD simulation process constitutes to
branch coverage.

2.2. Assertion-Based Verification

Assertions have been found to be beneficial for solving a
wide range of tasks in systems design ranging from
modelling, verification to manufacturing test. In this paper,

we present an approach to checking PSL assertions using
HLDDs. Property Specification Language (PSL) is a
recently accepted IEEE standard language [16] that is
commonly used to express the assertions. Here, the
assertions are translated to HLDD graphs and integrated
into fast HLDD-based simulation. The structure of HLDD
design representation with a temporal extension proposed in
[17] allows straightforward and lossless translation of PSL
properties.

reqack: assert always (req -> next

k)

Label

Verification

When to
check

Property to be
checked

 An example PSL property reqack structure is shown in
Figure 2. Its possible timing diagram is also illustrated by
Figure 3a. It states that ack must become high next after req
being high. A system behaviour that activates reqack
property however obviously violating it is demonstrated in
Figure 3b. Figure 3c shows the case when the property was
not activated.

PASS

req

ack

a)

FAIL

req

ack

b

not activated

req

ack

c)

Let us consider an example PSL property P1.

P1: assert always !ready and (a=b)->next_e[1:3]ready

Assertion P1 states that whenever ‘ready’ is low and ‘a’
is equal to ‘b’ then during the next three cycles ready must
become true. The resulting HLDD graph describing this
property is shown in Fig. 4.

Figure6. HLDD for property P1

1 T

ready a=b ready∆t=∃{1,...,3}

„always !ready and (a=b) ->
next_e[1:3] ready“ P

tmin = 0; tmax = tend.

FAIL PASS CHK.

0

F F

T

Fig. 4. HLDD for property P1

Note that a HLDD representing assertions has always
exactly three terminal nodes labeled by constants:

Fig. 2. PSL property reqack

Fig. 3. Timing diagrams for the property reqack

R&I, 2008, No 1 5

• FAIL – assertion P has been simulated and does
not hold;

• PASS – the assertion has been simulated and
holds;

• CHECKING – P has been simulated and it does
not fail, nor does it pass non-vacuously.

It has been shown by experiments that HLDDs is an
efficient model for performing assertion checking [17].
2.3. Formal Verification

The formal methods to be included to the APRICOT
framework include high-level Automated Test Pattern
Generation (ATPG) [18] and formal property checking. The
latter is under development and will be reduced to using the
first one as a model-checking engine.

3. USING EMULATION FOR SIMULATION SPEED-UP
One of the main problems when designing modern on-

chip systems is to make sure that already the first version
of the chip is “alive”. That is, (1) all essential hardware
components are working, and (2) application software and
drivers are ready when the chip arrives from the factory
(see e.g. [19]). Software simulation is the simplest way to
check the functionality of a system and is typically the
first choice. Unfortunately, because of its slowness,
simulation does not guarantee that the results are available
when needed and different approaches are under
development to find possibilities for accelerating the
simulation process. A possible solution is to use emulation
(simulation in hardware) using reconfigurable logic like
FPGA-s (see e.g. [20]). To model a hardware module,
hardware description language (HDL) based simulation is
the choice of most engineers. Taking into account that a
model of the system may consist not only of HDL
modules at various levels of abstraction but also of
modules written in different HDL-s, a complicated
simulation environment is required to make sure that the
system is working as expected. [21].

Fault simulation is another widely used procedure in the
digital circuit design flow. Test generation, fault
diagnosis, test set compaction serve as examples of
application of fault-free/fault simulators. Accelerating
fault simulation would improve all the above-mentioned
applications.

The maximum gain in performance could be achieved
by moving all the required modules into hard-ware, i.e.,
emulating the test-bench in hardware. There exist several
approaches that confirm the usefulness of replacing
simulation with emulation (see, e.g., [19,20]). Difficulties
arise when the test-bench is so complex that major
modifications are needed for implementing in hardware –
test-benches are only models and are not meant to be
implemented in hardware. To test the idea of replacing
simulation with emulation, an environment was created

with the purpose to evaluate the feasibility of replacing
fault simulation with FPGA based emulation [7].

The availability of large FPGA-s doesn’t allow merely
implementation of the circuit under test along with fault
models but, additionally, to include test vector generation
and output response analysis circuits, which in this case
correspond to the test-bench, into a single reconfigurable
device. Here we relied on a well-known solution for BIST
– Linear Feedback Shift Register (LFSR) is used both for
input vector generation and output correctness analysis.
Automation of emulation environment generation was
rather easy because of the modular structure of the hard-
ware part. All commonly used modules are written in
VHDL that allows to parameterize design units (see
Fig.5). The abstraction level of VHDL modules
corresponds to register-transfer level thus allowing the use
of basically any FPGA mapping tool.

CUT

CUT-top

LFSR

LFSR

counters

FSM

Test-bench

FPGA

CUT-pkg

parameters

modified
netlist

generated

output
analysis

input
vectors

interface

Host PC

seed and
feedback
vectors

list of
detected /
undetected
faults

Fig. 5. Fault emulation environment structure

The proposed approach allows simulation speed-up of
40-500 times as compared to the software-based fault
simulation [7]. It should be noted that when taking into
account also synthesis time, the speed-up is much smaller
and therefore the most beneficial is to use scenarios where
the number of simulation runs is large, e.g., evaluation of
generator/analyzer structures for BIST.

Based on experiences with fault emulation, a more
elaborated emulation environment is under development.
The need for such an environment is based on the fact that
the whole description of a system almost always contains
modules described at different abstraction levels. Some of
these parts are never meant to be implemented in hardware,

6 R&I, 2008, No 1

e.g., test-benches and application software. The three
following levels can be outlined in the first order:
• Register-transfer level that is synthesizable and there-

fore directly implementable on FPGA.
• Behavioral (functional) level that is synthesizable by

high-level synthesis tools under certain circumstances.
• The rest, essentially software, has lost hardware related

issues from its abstraction and is therefore compilable
for the used processor (core).

buses

PC

SW

simulation

BL

modules

RTL

modules

FPGA

Fig. 6. Multi-module emulation environment

As a result, the needed complexity and performance of
the simulator will be reduced. Fig. 6 depicts the structure of
such emulation environment, consisting of multiple parallel
modules. Additional information about research challenges
and potential solutions, especially synchronization related,
can be found in [22,23].

4. SYSTEM LEVEL DESIGN OF DEPENDABLE REAL-TIME
SYSTEMS-ON-CHIP

The future on chip systems will resemble more computer
networks than traditional chips and the Network-on-Chip
(NoC) paradigm has been proposed. In addition, new
integration methodologies have enabled new 3D
architectures, where the dies are stacked into 3-dimensional
structures, thus providing even higher densities and
complexity.

As technologies advance and semiconductor process
dimensions shrink into the nanometer and subnanometer
range, a high degree of sensitivity to defects begins to
impact overall yield and quality [3]. It becomes very
expensive to obtain perfectly operational hardware and the
design processes have to be changed.

4.1. Our NoC platform

Our NoC platform is scalable packet switched
communication platform for single chip heterogeneous
systems. The hard guarantees are provided in Time Division
Multiple Access (TDMA) way.

The NoC topology is m x n (2D) mesh with bi-directional
links between the switches. Each switch is connected to 4
switches and to 1 resource. Every resource is connected to

switch via resource network interface (RNI). The NoC
platform uses a subset of OSI Reference Model layers:
physical, data link, network layer, transport layer and
application layer. A resource operates on all 5 layers while
switches operate on 4 lower layers. We use wormhole
switching with virtual channels and deterministic
dimension-ordered (XY) routing.

We concentrate on hard real-time data dominated event
triggered NoC systems. However, not all of the traffic must
be real-time.

4.2. System Specification & Design

In our approach the application is specified using C code.
Based on the input description we extract the Extended
Conditional Task Graph (ECTG). In NoC the
communication platform introduces communication latency
which depends not only on message size but also on
resource mapping and needs to be taken into account. Fig.
7.a depicts an example task graph which describes an
extract of a GSM decoder.

The ECTG describes the application tasks, their
dependencies and task parameters – for example Worst
Case Execution Time (WCET), task size etc. Additionally,
we need to have the system reliability requirements, how
many faults need to be tolerated, and describe the available
hardware resources. All the information above and the
ECTG itself are captured in XML file. An example of
captured information for a part of GSM Decoder can be
seen on Fig. 7b.

Once we have the refined task graph, system architecture
and dependability description we need to produce a
schedule which meets the application deadlines and
dependability requirements. During the whole process we
take into consideration also possible task mapping. For
example – data intensive tasks could be mapped to the same
resource or nearby resources to compensate network
latency. The exact scheduling algorithms are known to be
NP-hard problems. Therefore, different heuristics are used
for calculating near-optimal schedules with reasonable time.
Fig. 7.c depicts an example of scheduling Figure 1a task
graph on multi-processor system.

4.3. Dependability analysis

Reliability improvement techniques have been
extensively studied in various systems, either in bus based
embedded, macro distributed systems or cover lower layers
of NoC. Our objective is to extend those techniques to the
system level, to provide design support at early stages of the
design flow. The application should be able to tolerate
transient or intermittent faults. Permanent faults can be
handled by re-scheduling and re-mapping the application on
a NoC. During the scheduling process we have from one
hand the list of tasks with Worst Case Execution Times and
on another hand the dependability requirements.

This is a design area where do not exist any integrated
system level design methodology with dependability

R&I, 2008, No 1 7

requirements. One of the objectives is also to extend the
existing system level design tasks into the new design

paradigms, such as NoC-based systems and 3D
architectures.

Fig. 7. Scheduling and mapping

5. ULTRA-FAST FAULT SIMULATION
Fault simulation is a well investigated research field, and

a lot of methods have been proposed during the last
decades, like parallel fault simulation, deductive fault
analysis, critical path tracing. The main problem of very
powerful critical path method is related to handling of
reconvergent fan-outs. It can “process” by a single
simulation run all the faults in the circuit, however it works
exactly only in the fan-out free circuits. A modified rule
based critical path technique that is linear time, exact, and
complete was proposed in [24]. However, the rule based
strategy does not allow simultaneous parallel analysis of
many patterns beyond the fan-out free regions.

In [25] we proposed a new concept of parallel critical
path tracing throughout the whole circuit.

Differently from the known critical path tracing
approaches, a method is proposed to create ordered
topological model for parallel fault backtracing. The model
is based on the full Boolean differential, which allows
generalization of the parallel critical path fault tracing
beyond the reconvergent fan-out stems (see Fig.8). The
method is based on the following theorem [25].

Theorem: If a stuck-at fault is detected by a test pattern
at the output y of a subcircuit (see in Fig. 8) represented by
a Boolean function y = F(x1, …, xi, xj,… xn), then the fault
at the fan-out stem x which converges in y at the inputs x1,
…, xi, is also detected iff

 1),...,),(),...,((1
1 =

∂
∂

⊕
∂
∂

⊕⊕=
∂
∂

nj
i

i xx
x
x

x
x
x

xFy
x
y (1)

From the formula (1), a method results for generalizing
the parallel exact critical path tracing beyond the fan-out
free regions. All the calculations in (1) can be carried out
in parallel because they are Boolean operations. Further
details about the solution for nested reconvergencies can
be found in [15].

y

x1
xi

x

xj
xn

f1(x,X1)

fi(x,Xi) F

X1

Xi

Fig. 8. Reconvergent FFR in a circuit

A topological pre-analysis is carried out to generate an
efficient optimized model for backtracing of faults to
minimize the repeated calculations because of the
reconvergent fan-outs. The algorithm is equivalent to exact
critical path tracing, while the backtracing is organized in
parallel for groups of test patterns. To achieve high
simulation speed, the network of macros rather than gates is
used. To make it possible to rise from the lower gate level
to the higher macro level, the macros are modeled by
structurally synthesized BDDs. A special calculation
method was developed to handle the SSBDDs in parallel for
groups of test patterns [25].

The proposed exact parallel path tracing fault analysis is
carried out in the following sessions:

8 R&I, 2008, No 1

• topological pre-analysis of the circuit to create a
model for fault tracing along the critical paths;

• parallel simulation of a given set of test patterns to
calculate the values of all variables of the circuit;

• parallel fault backtracing on the topological model
created during the first session.

The topological pre-analysis to create a model for fault
backtracing is carried out only once to serve all the next
sessions of the procedure. It consists of the following
procedures:

• creation of the Reconvergency Graph (RG) of the
circuit,

• creation of the whole calculation model of the
circuit.

Because of the parallelism, higher abstraction level
modeling, and optimization of the topological model, the
speed of fault simulation was considerably increased.

Table 1 presents the fault simulation results for the
circuits of ISCAS’85 and ISCAS’89 families (column 1)
to compare different fault simulators: exact critical path
tracing [24] (column 2), two state-of-the-art commercial
fault simulators from major CAD vendors (columns 3 and
4), and the proposed new method (column 5). The
simulation times were calculated for the sets of random
10000 patterns. The time needed for topology analysis is
included and is negligible compared to the gain in speed
compared to the previous best method.

TABLE 1. COMPARISON OF TOOLS FOR FAULT SIMULATION

Fault simulation time, s Circuit
[24] C1 C2 New

c432 70 13.0 3.8 0.64
c499 190 3.0 2.8 0.98
c880 140 26.0 4.0 0.65
c1355 640 44.0 9.0 1.33
c1908 640 53.0 15.6 1.61
c2670 560 104.0 11.0 1.99
c3540 770 191.0 37.4 4.43
c5315 1270 246.0 28.6 3.41
c6288 4280 1159.0 139.2 46.39
c7552 1480 378.0 40.5 5.44

s4863_С N/A 353.0 30.0 5.10
s5378_С N/A 170.0 15.9 4.17
s6669_С N/A 416.0 40.8 7.94
s9234_C N/A 248.0 26.7 6.72

s13207_C N/A 332.0 27.2 10.18
s15850_C N/A 470.0 57.8 13.75
s35932_C N/A 1751.0 111.6 36.22
s38417_C N/A 1351.0 157.0 39.05
s38584_C N/A 1399.0 115.3 34.97
Average

speed gain 258.9 41.1 5.8 1

Compared to the commercial tools C1 and C2, the
average gain in speed is 41.1 and 5.8 times, respectively.
All the experiments were run on a 366 MHz SUN Ultra60
server using SunOS 5.8 operating system except the
experiments for the known exact critical path fault
simulator where the data are taken from [24]. The
experiments in [24] were run on a 2.8 GHz Pentium 4
computer with Windows XP.

6. DEFECT-ORIENTED TEST GENERATION
The logical stuck-at fault (SAF) model has been a long

time the prevalent technique to handle formally the real
physical defects in electronic sytems. In today’s systems,
however, we have two difficulties when using this model: it
is too complex because of the huge number of faults to be
handled in systems, and it is inaccurate to represent real
physical defects which are taking place in today’s
nanoelectronic circuits. The paradox is that the two
difficulties are working against each other: when trying to
represent the defects with less complex and higher level
fault models the accuracy will even decrease, and vice
versa, when trying to increase the accuracy of defect
modeling, the complexity of the fault model will increase.
To get out from the deadlock, the two opposite trends –
high-level modeling and defect-orientation – should be
combined into hierarchical approach.

Another problem is that the know-how about defects is
quickly getting obsolet. New semiconductor processes will
introduce new failure mechanisms, defects, and fault
effects. This makes defect-based testing difficult, and all the
needed changes in defect modeling should be taken into
account and introduced continuously into the database of
test generation and fault simulation tools.

We have developed a new approach for hierarchical
defect simulation based on defect preanalysis for the
components included into the libraries, and using the results
of preanalysis in higher level fault modeling. The
cornerstone of the new approach is - the functional fault
model as a method for mapping faults from one hierarchical
level to another. Based on this approach, a hierarchical
algorithm for defect-oriented deterministic test generation
was developed and implemented [6].

A methodology was developed which allows to find the
types of defects that may occur in a real circuit, to
determine their probabilities of occurrence, and to find the
input test patterns (logical constraints) that allow to activate
and detect these defects. This set of constraints which
allows to detect all defects in a given component is called
functional fault model of the component.

According to this model, each library component is
represented by a set of logical constraints needed for
activating the defects in the component. Simulations for
finding the constraints are carried out on the layout level of
components. The set of logical constraints can be regarded
as a method for mapping physical defects to the logic level.

R&I, 2008, No 1 9

During higher (logic) level test generation and fault
simulation the physical defects are modeled only by logical
constraints without referring back to the layout details.

The proposed functional fault model allows to represent
and handle arbitrary physical defects not only in the library
components, but also the physical defects in the
communication network of components by the same
technique.

There is a class of physical defects which increase the
number of states in the circuit. To activate these defects,
sequences of patterns (sequential constraints) are needed.
Simulation based technique to find sequential constraints is
not the best solution. For this purpose analytical approach
was developed. A physical defect in the component is
modeled as a defect variable in a generic Boolean
differential equation which includes both the correct and
faulty behavior of the component. Solutions of these

equations give the logical constraints (or sequential
constraints) for activating defects locally. In such a way, for
example, the bridging faults that cause a feedback and
transform a combinational circuit into a sequential one, can
be modeled for test generation purposes.

A defect-oriented deterministic test generation tool
(DOT) was developed [6]. The experimental data obtained
by the tool for ISCAS’85 benchmark circuits are presented
in Table 2. It was shown that 100% stuck-at fault tests
covered only about 75-82% physical defects (column 5 in
Table 2). The main feature of the new tool is its ability to
reach 100% defect testing efficiency (percentage of
covering the non-redundant defects) for the given set of
defects by proving the redundancy of not detected defects.
The tool allows to prove the redundancy of physical defects
in relation to the logic behavior of a circuit.

TABLE 2. EXPERIMENTAL DATA OF DEFECT-ORIENTED TEST GENERATION

Number of defects Defect coverage

Redundant defects

Circuit All
defects Gates System

100% stuck-at fault ATPG DOT

1 2 3 4 5 6 7 8
c432 1519 226 0 78,6 99,05 99,05 100,00
c880 3380 499 5 75,0 99,50 99,66 100,00

c2670 6090 703 61 79,1 98,29 98,29 100,00
c3540 7660 985 74 80,1 98,52 99,76 99,97
c5315 14794 1546 260 82,4 97,73 99,93 100,00
c6288 24433 4005 41 77,0 99,81 100,00 100,00

Column 6 in the Table 2 shows the defect testing

efficiency after proving the redundancy of defects inside the
library cells, and column 7 shows the defect testing
efficiency after proving the redundancy for the whole set of
defects. The column 8 shows the defect testing efficiency
reached by the test generation tool DOT.

7. DESIGN AND TEST RESEARCH ENVIRONMENT
The experimental tools developed as a side effect of the

research carried out at TUT during the recent 5-6 years are
organized as an experimental R&D environment for
investigating a broad set of design and test problems (Fig.
9). The environment consists of the following parts:

• Synthesis tools (high-level and logic level
synthesis).

• Test generation and fault simulation tools
(hierarchical, logic and defect level test sequence
generators).

• Converters (interfaces between tools).
• Other (university) tools linked to the environment.

Design information can be created in different ways: (1)
VHDL files to be processed by commercial or experimental
high-level or logic synthesis systems, (2) manually by
schematic editors. The gate-level design is presented in the

EDIF format. In university research practice, ISCAS
benchmark families which have their own presentation
format (ISCAS format) are widely used. In order to link test
generation and fault simulation tools with all the needed
formats, different converters are developed. EDIF netlists
can be converted into ISCAS’85 or ISCAS’89 formats.
Necessary technology library files to support such
conversion have been created for the research environment.

The Turbo-Tester tools are based on SSBDDs, they have
EDIF-SSBDD converters to link the tools with commercial
CAD systems. Hierarchical ATPG DECIDER uses two
inputs – higher level (RTL) descriptions in VHDL and low
gate-level descriptions in EDIF. For importing VHDL
descriptions to DECIDER which uses high-level DDs as
input, a converter VHDL-DD is available.

As a set of examples, the following design flows can be
exercised in this environment.

• Design and hierarchical ATPG. RTL VHDL design
is synthesized by high-level synthesis tool. A logic
level synthesis for the high-level blocks follows.
For these designs DD and SSBDD models are
generated. Using DDs and SSBDDs, hierarchical
ATPG DECIDER generates test sequences.

10 R&I, 2008, No 1

• Logic level ATPG. Using SSBDDs, Turbo Tester
ATPG generates logic level test patterns targeted to
detect logic level stuck-at faults.

• Defect-oriented ATPG. Using SSBDDs and the
defect library, the defect-oriented test generator
DOT generates test patterns targeted to defect

physical defects. The defect libraries available are
created in cooperation with Warsaw University of
Technology.

• University tools that traditionally use ISCAS
benchmarks can be linked via EDIF-ISCAS
converter to commercial design tools.

RTL-VHDL Logic synthesis
Synopsys/Cadence

Gate-Level
EDIF

EDIF-SSBDD

EDIF-ISCAS ISCAS
Netlist

University
Software

SSBDD

VHDL-DD

DD

Hierarchical
DECIDER

Defect-level
DOT

Defect
Library

Defect/Fault
Analysis

WUT

Logic level
Turbo-Tester

Test

High-Level Synthesis
TTU Behavioral

VHDL
RTL-VHDL Logic synthesis

Synopsys/Cadence

Gate-Level
EDIF

EDIF-SSBDD

EDIF-ISCAS ISCAS
Netlist

University
Software

SSBDD

VHDL-DD

DD

Hierarchical
DECIDER

Defect-level
DOT

Defect
Library

Defect/Fault
Analysis

WUT

Logic level
Turbo-Tester

Test

High-Level Synthesis
TTU Behavioral

VHDL

Fig. 9. Hierarchical design and test research environment

Turbo Tester tool set represents an independent logic
level test research environment. It consists of a set of tools
for solving different test related tasks by different methods
and algorithms:

• Test pattern generation by deterministic, random
and genetic algorithms.

• Test optimization (test compaction).
• Fault simulation and fault grading for combinational

and sequential circuits by different algorithms.
• Defect-oriented fault simulation and test generation.
• Multi-valued simulation for detecting hazards and

analyzing dynamic behavior of circuits.
• BIST analysis and quality evaluation for different

BIST architectures.
All the Turbo Tester tools operate on the model of

SSBDD. The tools run on the structural level whereas two
possibilities are available – gate-level and macro-level
modeling. In the latter case, the gate network is
transformed into macro network where each macro
represents a tree-like sub-network. Using the macro-level
helps to reduce the complexity of the model and to
improve the performance of tools. The fault model used in
the Turbo Tester is the traditional stuck-at one. However,
the fault simulator and test generator can be run also in the
defect-oriented mode, where defects in the library

components can be taken into account. In this case,
additional input information is needed about defects in the
form of defect tables for the library components.

A selection of the prototype tools described above
together with a set of separate tools (Java applets)
developed specially for teaching purposes are integrated
into e-learning environment to support university courses
by providing opportunity for the students for hands-on
training [26]. This environment consists of toolsets: (1)
Turbo Tester - CAD Software for Digital Test, (2)
xTractor - CAD Software for High-Level Synthesis, (3)
DefSim – HW/SW environment for experimental study of
CMOS defects, (4) BIST Analyzer - a training system for
learning self-testing issues of modern multi-core electronic
systems, (5) Trainer 1149 - a multi-functional SW system,
which provides a simulation, demonstration, and CAD
environment for learning, research, and development
related to IEEE 1149.1 Boundary Scan (BS) standard, (6)
Applets for training and teaching logic synthesis and test
at gate- and register transfer levels, (7) Applets for FSM
Decomposition and Synthesis, (8) Deterministic traffic
generator for NoC simulator, and (9) Test Time Calculator
(Simple NoC simulator, based on XY-routing).

The laboratory tasks developed for this environment
represent simultaneously real research problems, which

R&I, 2008, No 1 11

allow to foster in students critical thinking, problem
solving skills and creativity in a real research environment
and atmosphere.

CONCLUSIONS
An overview was given about the recent research results

at TUT in the field of design and test of dependable
embedded systems. These results have been obtained
thanks to the broad international cooperation during the
last decade in frame of several EU projects like SYTIC,
VILAB, REASON, eVIKINGS II, VERTIGO [27]. As a
result of these projects, two new competence centres were
established – Estonian Research Centre for Dependable
Computing and Estonian Development Centre of Mission
Critical Embedded Systems (ELIKO). ELIKO contracts
between 7 private SMEs in Estonia under the leadership of
TUT. Both centres are working on transfer of technology
to local industry. Through ELIKO very tight links have
been established now between the Academia and the
industry of Estonia.

 As a side-effect of the research carried out during
recent years, an experimental research environment has
been developed to support in the future both, research and
teaching. The originality of the environment is in multi-
functionality of the system (important for research and
training), low-cost and ease of use. The multi-functionality
means that different abstraction level models can be easily
synthesized (to analyze the influence of the complexity of
the model to the efficiency of methods); different methods
of the same task are implemented (to analyze the
efficiency of different approaches), the fault models can
be easily changed and updated (to analyze the adequacy
and accuracy of testing). The multi-functionality allows to
set up and modify easily different experimental schemes
and scenarios for investigating new ideas and methods.
This multi-functionality gives an excellent opportunity for
students working in this environment to understand the
ideas, advantages and drawbacks of different methods at
changeable conditions. In traditional commercial design
tools these purely research oriented possibilities are
missing.

ACKNOWLEDGMENT
The work has been supported by Estonian Science

Foundation grants 5910, 6717, 6829, 7068, EC 6th FP IST
project VERTIGO, Estonian IT Foundation (EITSA) and
Enterprise Estonia.

REFERENCES
[1] R.Klein, T.Piekarz. Accelerating Functional Simulation for Processor

Based Designs. Mentor Graphics Corporation. White paper, 2005.
[2] K.Roy, T.M.Mak, K.-T.T.Cheng. Test consideration for nanometer-

scale CMOS circuits. IEEE Design and Test of Computers, vol.23, no
2, pp.128-136, 2006.

[3] R.Ubar. Test Synthesis with Alternative Graphs. IEEE Design and
Test of Computers. Spring, 1996, pp.48-59.

[4] J.Raik, R.Ubar. Fast Test Pattern Generation for Sequential Circuits
Using Decision Diagram Representations. JETTA. Kluwer Acad
Publishers, Vol. 16, No. 3, pp. 213-226, 2000.

[5] R.Ubar, S.Devadze, J.Raik, A.Jutman. Fast Fault Simulation in Digital
Circuits with Scan Path. 13th Asia and South Pacific Design
Automation Conference – ASP-DAC 2008, Seoul, Korea, Jan. 21-24,
2008, pp. 667-672.

[6] J.Raik, R.Ubar, J.Sudbrock, W.Kuzmicz, W.Pleskacz. DOT: New
Deterministic Defect-Oriented ATPG Tool. Proc. of 10th IEEE
European Test Symposium, May 22-25, 2005, Tallinn, pp.96-101.

[7] P.Ellervee, J.Raik, R.Ubar, K.Tammemäe. FPGA-Based Fault
Emulation of Synchronous Sequential Circuits. IEE Proc. on
Computers & Digital Techniques. Vol.1, Issue 2, pp.70-76, March
2007.

[8] J.Raik, R.Ubar, V.Govind. Test Configurations for Diagnosing Faulty
Links in NoC Switches. 12th IEEE ETS 2007, Freiburg, Germany,
May 20-24, 2007, pp.29-34.

[9] International Technology Roadmap for Semiconductors 2006 report,
[URL] www.itrs.net, 2006.

[10] S.Tasiran, K.Keutzer, Coverage metrics for functional validation of
hardware designs. Design&Test of Computers, IEEE, Vol 18, Issue 4,
Jul-Aug. 2001, Pages 36-45.

[11] URL: http://www.vertigo-project.eu
[12] R.Bryant. Graph-based algorithms for boolean function manipulation.

IEEE Trans. on Comp,C-35, 8:677-691, 1986
[13] V.Chayakul, D.D.Gajski, L.Ramachandran, “High-Level

Transformations for Minimizing Syntactic Variances”, Proc. of
ACM/IEEE DAC, pp. 413-418, June 1993.

[14] R.Ubar, J.Raik, A.Morawiec, Back-tracing and Event-driven
Techniques in High-level Simulation with Decision Diagrams. ISCAS
2000, Vol. 1, pp. 208-211.

[15] K.Minakova, U.Reinsalu, A.Chepurov, J.Raik, M.Jenihhin, R.Ubar,
P.Ellervee. High-Level DD Manipulations for Code Coverage
Analysis, Baltic Electronics Conf., IEEE, 2008.

[16] IEEE-Commission, “IEEE Standard for Property Specification
Language (PSL),” 2005, IEEE Std 1850-2005.

[17] M.Jenihhin, et al. Temporally Extended High-Level Decision
Diagrams for PSL Assertions Simulation. Proc. of the 13th IEEE
European Test Symposium, 2008.

[18] J.Raik, R.Ubar, T.Viilukas, M.Jenihhin. Mixed Hierarchical-
Functional Fault Models for Targeting Sequential Cores. Elsevier
Journal of Systems Architecture.

[19] A.Bigot et al. Deploying Hardware Platforms for SoC Validation: An
Industrial Case Study. The International Conference on Field
Programmable Logic and Applications (FPL’04), Antwerp, Belgium,
pp. 64-73, Aug. 2004.

[20] N.Genko et al. A Complete Network-On-Chip Emulation Framework.
Design Automation & Test in Europe (DATE’05), Munich, Germany,
pp. 246-251, March 2005.

[21] K.Morris. Debug Dilemma. Simulate or Emulate? FPGA and
Structured ASIC J., http://fpgajournal.com, Jan. 2005.

[22] P.Ellervee, A.Arhipov, K.Tammemäe. Clock Manipul. for
Heterogenous Emulation Environment. The 24th NORCHIP
Conference, Linköping, Sweden, pp. 213-216, Nov. 2006.

[23] P.Ellervee, U.Reinsalu, A.Arhipov. Translating Beha-vioral VHDL
for Emulation. The 25th NORCHIP Conference, Aalborg, Denmark,
Nov. 2007.

[24] L.Wu, D.M.H.Walker. A Fast Algorithm for Critical Path Tracing in
VLSI. Int. Symp. on Defect and Fault Tolerance in VLSI Systems,
Oct. 2005, pp.178-186.

[25] R.Ubar, S.Devadze, J.Raik, A.Jutman. Ultra Fast Parallel Fault
Analysis on Structural BDDs. 12th IEEE ETS, Freiburg, Germany,
May 20-24, 2007, pp.131-136.

[26] http://ati.ttu.ee/projects/tools.html
[27] http://ati.ttu.ee/index.php?page=800

12 R&I, 2008, No 1

