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Abstract — An overview about the recent research results 
at the Tallinn University of Technology in the field of digital 
design and test is presented. The main topics discussed in the 
paper cover digital design, verification, emulation, 
dependability, fault simulation, and test generation. An 
experimental research environment is described which consists 
of prototype tools developed as a side-effect of our research 
activities. This environment together with a set of dedicated e-
learning tools serves also for teaching purposes for the 
disciplines of design and test of embedded systems. 

1.  INTRODUCTION 
NCREASING complexity of electronic systems has made 
testing and verification one of the most complicated and 

time-consuming problems in system design and production. 
The importance of design for testability is growing because 
the expenses of testing are becoming the major components 
of the design and manufacturing costs of new products. It is 
estimated that more than 70% of the design cycle for 
systems is spent on test and verification [1]. Nanometer 
technologies are introducing new challenges making test 
quality and dependability of systems a very fast moving 
target [2]. Enhancing productivity and quality of test related 
solutions is thus a key competitive aspect, both in terms of 
time-to-market and end-product quality. 

In this paper an overview about the recent results in the 
field of digital test at Tallinn University of Technology 
(TUT) is presented. One of the most important research 
areas has been multi-level diagnostic modeling of digital 
systems by Decision Diagrams (DD) [3]. Using DDs, a 
hierarchical automated test program generator DECIDER 
was developed which outpaces similar known academic 
systems in the speed of test generation [4]. Commercial 
tools of this type are missing today. A special class of 
Binary DDs (BDD) called structurally synthesized BDDs 
(SSBDD) has been developed [3] which allowed to 
implement ultra-fast fault simulator for combinational 
circuits [5]. Based on SSBDDs a defect-oriented test 
generator DOT was developed which is unic with its ability 
to prove redundancy of physical defects in digital circuits 
[6].  

Recent results of research in the field of reconfigurable 
logic allowed to create a hardware accelerator to replace 
traditional software simulators, which allowed to increase 
the speed of fault simulation in digital circuits about 200 

times [7]. Most of our current research is concentrated in 
the hot problems of testing Network-on-Chips (NoC) [8]. 

A set of prototype tools, developed as a side-effect of our 
research, together with dedicated set of tools targeted for e-
learning and created in frames of several EU projects, serve 
now at TUT for teaching design and test, design for 
testability and fault tolerance. The tools support lecture 
courses by hands-on training opportunity.  

In the following several most important research results 
obtained in the recent years at TUT are presented. In 
Section 2 the results in design verification are presented. 
Section 3 describes simulation speed-up possibilities by 
hardware emulation, whereas Section 4 presents new 
software algorithmic possibilities to increase the speed of 
fault simulation.  In Section 5 a novel approach to defect-
oriented test generation is presented, and in Section 6 our 
research on dependability issues is described. Finally, in 
Section 7 an overview is given about the prototype tool 
environment developed as a side-effect of our research. 

2. HIGH-LEVEL DD-BASED VERIFICATION 

With the increase in size and complexity of modern ICs, it 
has become imperative to address critical verification issues 
in the design cycle. The process of verifying correctness of 
designs consumes between 60% and 80% of design effort 
[9]. For every designer the number of verification engineers 
may vary from 2 to 4 depending on the design complexity. 
Moreover, validation is so complex that, even though it 
consumes most of the computational resources and time, it 
is still the weakest link in the design process. Ensuring 
functional correctness is the most difficult part of designing 
a hardware system [10].  
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We have developed a new framework for digital systems 
verification, called APRICOT (Assertions, PRopertIes, 
COde coverage and Test generation) [11]. It includes 
different tasks, such as assertion checking, code coverage 
analysis, simulation, test generation and property checking. 
APRICOT is easy to set up and use. The novelty of 
APRICOT lies in a system representation model called 
High-Level Decision Diagrams (HLDD). The framework 
has interfaces to commonly used design formats such as 
VHDL, SystemC, PSL and EDIF. Fig. 1 presents the 
general structure of the APRICOT framework. 

Decision Diagrams have been used in verification for 
about two decades. Reduced Ordered BDDs [12] as 
canonical forms of Boolean functions have their application 
in equivalence checking and in symbolic model checking. 
Additionally, a higher abstraction level DD representation, 
called Assignment Decision Diagrams (ADD) [13], have 
been successfully applied to, both, register-transfer level 
(RTL) verification and test.  

In this paper we consider a different decision diagram 
representation, High-Level Decision Diagrams (HLDD) 
that, unlike ADDs can be viewed as a generalization of 
BDDs. HLDDs can be used for representing different 
abstraction levels from RTL to behavioral. HLDDs have 
proven to be an efficient model for simulation and diagnosis 
since they provide for a fast evaluation by graph traversal 
and for easy identification of cause-effect relationships [14]. 
 
2.1. Code Coverage Analysis 

Code coverage provides insight into how thoroughly the 
code of a design is exercised by a suite of simulations. Code 
coverage analysis is a well-defined, well-scalable procedure 
and, thus, applicable to large designs. The main limitation 
of code coverage metrics lies in the fact that they only 
measure the quality of the test case in stimulating the 
implementation and do not necessarily prove its correctness 
with respect to the specification. 

We have shown how classical coverage metrics map to 
HLDD constructs [15]. Covering all nodes in the HLDD 
model corresponds to covering all statements in the 
respective HDL. However, the opposite is not true. We 
showed that HLDD node coverage is more stringent than 
HDL statement coverage [15]. This is due to the fact that in 
HLDDs diagrams are generated to each data variable 
separately. Such partition on variables includes an 
additional context to statement coverage. Similar to the 
statement coverage, branch coverage has also very clear 
representation in HLDD simulation. The ratio of every edge 
activated in the HLDD simulation process constitutes to 
branch coverage. 
 
2.2. Assertion-Based Verification 

Assertions have been found to be beneficial for solving a 
wide range of tasks in systems design ranging from 
modelling, verification to manufacturing test. In this paper, 

we present an approach to checking PSL assertions using 
HLDDs. Property Specification Language (PSL) is a 
recently accepted IEEE standard language [16] that is 
commonly used to express the assertions. Here, the 
assertions are translated to HLDD graphs and integrated 
into fast HLDD-based simulation. The structure of HLDD 
design representation with a temporal extension proposed in 
[17] allows straightforward and lossless translation of PSL 
properties. 
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Let us consider an example PSL property P1. 
  

P1: assert always !ready and (a=b)->next_e[1:3]ready 

Assertion P1 states that whenever ‘ready’ is low and ‘a’ 
is equal to ‘b’ then during the next three cycles ready must 
become true. The resulting HLDD graph describing this 
property is shown in Fig. 4. 
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Fig. 4. HLDD for property  P1 

Note that a HLDD representing assertions has always 
exactly three terminal nodes labeled by constants:  

Fig. 2. PSL property reqack 

Fig. 3. Timing diagrams for the property reqack 
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• FAIL – assertion P has been simulated and does 
not hold; 

• PASS – the assertion has been simulated and 
holds; 

• CHECKING – P has been simulated and it does 
not fail, nor does it pass non-vacuously. 

It has been shown by experiments that HLDDs is an 
efficient model for performing assertion checking [17]. 
2.3. Formal Verification  

The formal methods to be included to the APRICOT 
framework include high-level Automated Test Pattern 
Generation (ATPG) [18] and formal property checking. The 
latter is under development and will be reduced to using the 
first one as a model-checking engine. 

3. USING EMULATION FOR SIMULATION SPEED-UP 
One of the main problems when designing modern on-

chip systems is to make sure that already the first version 
of the chip is “alive”. That is, (1) all essential hardware 
components are working, and (2) application software and 
drivers are ready when the chip arrives from the factory 
(see e.g. [19]). Software simulation is the simplest way to 
check the functionality of a system and is typically the 
first choice. Unfortunately, because of its slowness, 
simulation does not guarantee that the results are available 
when needed and different approaches are under 
development to find possibilities for accelerating the 
simulation process. A possible solution is to use emulation 
(simulation in hardware) using reconfigurable logic like 
FPGA-s (see e.g. [20]). To model a hardware module, 
hardware description language (HDL) based simulation is 
the choice of most engineers. Taking into account that a 
model of the system may consist not only of HDL 
modules at various levels of abstraction but also of 
modules written in different HDL-s, a complicated 
simulation environment is required to make sure that the 
system is working as expected. [21]. 

Fault simulation is another widely used procedure in the 
digital circuit design flow. Test generation, fault 
diagnosis, test set compaction serve as examples of 
application of fault-free/fault simulators. Accelerating 
fault simulation would improve all the above-mentioned 
applications.   

The maximum gain in performance could be achieved 
by moving all the required modules into hard-ware, i.e., 
emulating the test-bench in hardware. There exist several 
approaches that confirm the usefulness of replacing 
simulation with emulation (see, e.g., [19,20]). Difficulties 
arise when the test-bench is so complex that major 
modifications are needed for implementing in hardware – 
test-benches are only models and are not meant to be 
implemented in hardware. To test the idea of replacing 
simulation with emulation, an environment was created 

with the purpose to evaluate the feasibility of replacing 
fault simulation with FPGA based emulation [7]. 

The availability of large FPGA-s doesn’t allow merely 
implementation of the circuit under test along with fault 
models but, additionally, to include test vector generation 
and output response analysis circuits, which in this case 
correspond to the test-bench, into a single reconfigurable 
device. Here we relied on a well-known solution for BIST 
– Linear Feedback Shift Register (LFSR) is used both for 
input vector generation and output correctness analysis.  
Automation of emulation environment generation was 
rather easy because of the modular structure of the hard-
ware part. All commonly used modules are written in 
VHDL that allows to parameterize design units (see 
Fig.5). The abstraction level of VHDL modules 
corresponds to register-transfer level thus allowing the use 
of basically any FPGA mapping tool.  
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Fig. 5. Fault emulation environment structure 
 

The proposed approach allows simulation speed-up of 
40-500 times as compared to the software-based fault 
simulation [7]. It should be noted that when taking into 
account also synthesis time, the speed-up is much smaller 
and therefore the most beneficial is to use scenarios where 
the number of simulation runs is large, e.g., evaluation of 
generator/analyzer structures for BIST. 

Based on experiences with fault emulation, a more 
elaborated emulation environment is under development. 
The need for such an environment is based on the fact that 
the whole description of a system almost always contains 
modules described at different abstraction levels. Some of 
these parts are never meant to be implemented in hardware, 
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e.g., test-benches and application software. The three 
following levels can be outlined in the first order:  
• Register-transfer level that is synthesizable and there-

fore directly implementable on FPGA. 
• Behavioral (functional) level that is synthesizable by 

high-level synthesis tools under certain circumstances. 
• The rest, essentially software, has lost hardware related 

issues from its abstraction and is therefore compilable 
for the used processor (core). 
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Fig. 6. Multi-module emulation environment 
 

As a result, the needed complexity and performance of 
the simulator will be reduced. Fig. 6 depicts the structure of 
such emulation environment, consisting of multiple parallel 
modules. Additional information about research challenges 
and potential solutions, especially synchronization related, 
can be found in [22,23]. 

4. SYSTEM LEVEL DESIGN OF DEPENDABLE REAL-TIME 
SYSTEMS-ON-CHIP 

The future on chip systems will resemble more computer 
networks than traditional chips and the Network-on-Chip 
(NoC) paradigm has been proposed. In addition, new 
integration methodologies have enabled new 3D 
architectures, where the dies are stacked into 3-dimensional 
structures, thus providing even higher densities and 
complexity. 

As technologies advance and semiconductor process 
dimensions shrink into the nanometer and subnanometer 
range, a high degree of sensitivity to defects begins to 
impact overall yield and quality [3]. It becomes very 
expensive to obtain perfectly operational hardware and the 
design processes have to be changed.  
 
4.1. Our NoC platform 

Our NoC platform is scalable packet switched 
communication platform for single chip heterogeneous 
systems. The hard guarantees are provided in Time Division 
Multiple Access (TDMA) way. 

The NoC topology is m x n (2D) mesh with bi-directional 
links between the switches. Each switch is connected to 4 
switches and to 1 resource. Every resource is connected to 

switch via resource network interface (RNI). The NoC 
platform uses a subset of OSI Reference Model layers: 
physical, data link, network layer, transport layer and 
application layer. A resource operates on all 5 layers while 
switches operate on 4 lower layers. We use wormhole 
switching with virtual channels and deterministic 
dimension-ordered (XY) routing. 

We concentrate on hard real-time data dominated event 
triggered NoC systems. However, not all of the traffic must 
be real-time.  
 
4.2. System Specification & Design 

In our approach the application is specified using C code. 
Based on the input description we extract the Extended 
Conditional Task Graph (ECTG). In NoC the 
communication platform introduces communication latency 
which depends not only on message size but also on 
resource mapping and needs to be taken into account. Fig. 
7.a depicts an example task graph which describes an 
extract of a GSM decoder.  

The ECTG describes the application tasks, their 
dependencies and task parameters – for example Worst 
Case Execution Time (WCET), task size etc. Additionally, 
we need to have the system reliability requirements, how 
many faults need to be tolerated, and describe the available 
hardware resources. All the information above and the 
ECTG itself are captured in XML file. An example of 
captured information for a part of GSM Decoder can be 
seen on Fig. 7b. 

Once we have the refined task graph, system architecture 
and dependability description we need to produce a 
schedule which meets the application deadlines and 
dependability requirements. During the whole process we 
take into consideration also possible task mapping. For 
example – data intensive tasks could be mapped to the same 
resource or nearby resources to compensate network 
latency. The exact scheduling algorithms are known to be 
NP-hard problems. Therefore, different heuristics are used 
for calculating near-optimal schedules with reasonable time. 
Fig. 7.c depicts an example of scheduling Figure 1a task 
graph on multi-processor system.  
 
4.3. Dependability analysis 

Reliability improvement techniques have been 
extensively studied in various systems, either in bus based 
embedded, macro distributed systems or cover lower layers 
of NoC. Our objective is to extend those techniques to the 
system level, to provide design support at early stages of the 
design flow. The application should be able to tolerate 
transient or intermittent faults. Permanent faults can be 
handled by re-scheduling and re-mapping the application on 
a NoC. During the scheduling process we have from one 
hand the list of tasks with Worst Case Execution Times and 
on another hand the dependability requirements.  

This is a design area where do not exist any integrated 
system level design methodology with dependability 
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requirements. One of the objectives is also to extend the 
existing system level design tasks into the new design 

paradigms, such as NoC-based systems and 3D 
architectures.

  

 

 
Fig. 7. Scheduling and mapping 

 

5. ULTRA-FAST FAULT SIMULATION 
Fault simulation is a well investigated research field, and 

a lot of methods have been proposed during the last 
decades, like parallel fault simulation, deductive fault 
analysis, critical path tracing. The main problem of very 
powerful critical path method is related to handling of 
reconvergent fan-outs. It can “process” by a single 
simulation run all the faults in the circuit, however it works 
exactly only in the fan-out free circuits. A modified rule 
based critical path technique that is linear time, exact, and 
complete was proposed in [24]. However, the rule based 
strategy does not allow simultaneous parallel analysis of 
many patterns beyond the fan-out free regions. 

In [25] we proposed a new concept of parallel critical 
path tracing throughout the whole circuit.  

Differently from the known critical path tracing 
approaches, a method is proposed to create ordered 
topological model for parallel fault backtracing. The model 
is based on the full Boolean differential, which allows 
generalization of the parallel critical path fault tracing 
beyond the reconvergent fan-out stems (see Fig.8). The 
method is based on the following theorem [25]. 

Theorem: If a stuck-at fault is detected by a test pattern 
at the output y of a subcircuit (see in Fig. 8) represented by 
a Boolean function y = F(x1, …, xi, xj,… xn), then the fault 
at the fan-out stem x which converges in y at the inputs x1, 
…, xi, is also detected iff 
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From the formula (1), a method results for generalizing 
the parallel exact critical path tracing beyond the fan-out 
free regions. All the calculations in (1) can be carried out 
in parallel because they are Boolean operations. Further 
details about the solution for nested reconvergencies can 
be found in [15]. 
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Fig. 8. Reconvergent FFR in a circuit 

A topological pre-analysis is carried out to generate an 
efficient optimized model for backtracing of faults to 
minimize the repeated calculations because of the 
reconvergent fan-outs. The algorithm is equivalent to exact 
critical path tracing, while the backtracing is organized in 
parallel for groups of test patterns. To achieve high 
simulation speed, the network of macros rather than gates is 
used. To make it possible to rise from the lower gate level 
to the higher macro level, the macros are modeled by 
structurally synthesized BDDs. A special calculation 
method was developed to handle the SSBDDs in parallel for 
groups of test patterns [25]. 

The proposed exact parallel path tracing fault analysis is 
carried out in the following sessions: 
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• topological pre-analysis of the circuit to create a 
model for fault tracing along the critical paths; 

• parallel simulation of a given set of test patterns to 
calculate the values of all variables of the circuit; 

• parallel fault backtracing on the topological model 
created during the first session. 

The topological pre-analysis to create a model for fault 
backtracing is carried out only once to serve all the next 
sessions of the procedure. It consists of the following  
procedures:  

• creation of the Reconvergency Graph (RG) of the 
circuit,  

• creation of the whole calculation model of the 
circuit. 

Because of the parallelism, higher abstraction level 
modeling, and optimization of the topological model, the 
speed of fault simulation was considerably increased. 

Table 1 presents the fault simulation results for the 
circuits of ISCAS’85 and ISCAS’89 families (column 1) 
to compare different fault simulators: exact critical path 
tracing [24] (column 2), two state-of-the-art commercial 
fault simulators from major CAD vendors (columns 3 and 
4), and the proposed new method (column 5). The 
simulation times were calculated for the sets of random 
10000 patterns. The time needed for topology analysis is 
included and is negligible compared to the gain in speed 
compared to the previous best method.  

TABLE 1. COMPARISON OF TOOLS FOR FAULT SIMULATION 

Fault simulation time, s Circuit 
[24] C1 C2 New 

c432 70 13.0 3.8 0.64 
c499 190 3.0 2.8 0.98 
c880 140 26.0 4.0 0.65 
c1355 640 44.0 9.0 1.33 
c1908 640 53.0 15.6 1.61 
c2670 560 104.0 11.0 1.99 
c3540 770 191.0 37.4 4.43 
c5315 1270 246.0 28.6 3.41 
c6288 4280 1159.0 139.2 46.39 
c7552 1480 378.0 40.5 5.44 

s4863_С N/A 353.0 30.0 5.10 
s5378_С N/A 170.0 15.9 4.17 
s6669_С N/A 416.0 40.8 7.94 
s9234_C N/A 248.0 26.7 6.72 

s13207_C N/A 332.0 27.2 10.18 
s15850_C N/A 470.0 57.8 13.75 
s35932_C N/A 1751.0 111.6 36.22 
s38417_C N/A 1351.0 157.0 39.05 
s38584_C N/A 1399.0 115.3 34.97 
Average 

speed gain 258.9 41.1 5.8 1 

Compared to the commercial tools C1 and C2, the 
average gain in speed is 41.1 and 5.8 times, respectively. 
All the experiments were run on a 366 MHz SUN Ultra60 
server using SunOS 5.8 operating system except the 
experiments for the known exact critical path fault 
simulator where the data are taken from [24]. The 
experiments in [24] were run on a 2.8 GHz Pentium 4 
computer with Windows XP. 

6. DEFECT-ORIENTED TEST GENERATION 
The logical stuck-at fault (SAF) model has been a long 

time the prevalent technique to handle formally the real 
physical defects in electronic sytems. In today’s systems, 
however, we have two difficulties when using this model: it 
is too complex because of the huge number of faults to be 
handled in systems, and it is inaccurate to represent real 
physical defects which are taking place in today’s 
nanoelectronic circuits. The paradox is that the two 
difficulties are working against each other: when trying to 
represent the defects with less complex and higher level 
fault models the accuracy will even decrease, and vice 
versa, when trying to increase the accuracy of defect 
modeling, the complexity of the fault model will increase. 
To get out from the deadlock, the two opposite trends – 
high-level modeling and defect-orientation – should be 
combined into hierarchical approach.  

Another problem is that the know-how about defects is 
quickly getting obsolet. New semiconductor processes will 
introduce new failure mechanisms, defects, and fault 
effects. This makes defect-based testing difficult, and all the 
needed changes in defect modeling should be taken into 
account and introduced continuously into the database of 
test generation and fault simulation tools.  

We have developed a new approach for hierarchical 
defect simulation based on defect preanalysis for the 
components included into the libraries, and using the results 
of preanalysis in higher level fault modeling. The 
cornerstone of the new approach is - the functional fault 
model as a method for mapping faults from one hierarchical 
level to another. Based on this approach, a hierarchical 
algorithm for defect-oriented deterministic test generation 
was developed and implemented [6].  

A methodology was developed which allows to find the 
types of defects that may occur in a real circuit, to 
determine their probabilities of occurrence, and to find the 
input test patterns (logical constraints) that allow to activate 
and detect these defects. This set of constraints which 
allows to detect all defects in a given component is called 
functional fault model of the component. 

According to this model, each library component is 
represented by a set of logical constraints needed for 
activating the defects in the component. Simulations for 
finding the constraints are carried out on the layout level of 
components. The set of logical constraints can be regarded 
as a method for mapping physical defects to the logic level. 
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During higher (logic) level test generation and fault 
simulation the physical defects are modeled only by logical 
constraints without referring back to the layout details. 

The proposed functional fault model allows to represent 
and handle arbitrary physical defects not only in the library 
components, but also the physical defects in the 
communication network of components by the same 
technique.  

There is a class of physical defects which increase the 
number of states in the circuit. To activate these defects, 
sequences of patterns (sequential constraints) are needed. 
Simulation based technique to find sequential constraints is 
not the best solution. For this purpose analytical approach 
was developed. A physical defect in the component is 
modeled as a defect variable in a generic Boolean 
differential equation which includes both the correct and 
faulty behavior of the component. Solutions of these 

equations give the logical constraints (or sequential 
constraints) for activating defects locally. In such a way, for 
example, the bridging faults that cause a feedback and 
transform a combinational circuit into a sequential one, can 
be modeled for test generation purposes.  

A defect-oriented deterministic test generation tool 
(DOT) was developed [6]. The experimental data obtained 
by the tool for ISCAS’85 benchmark circuits are presented 
in Table 2. It was shown that 100% stuck-at fault tests 
covered only about 75-82% physical defects (column 5 in 
Table 2). The main feature of the new tool is its ability to 
reach 100% defect testing efficiency (percentage of 
covering the non-redundant defects) for the given set of 
defects by proving the redundancy of not detected defects. 
The tool allows to prove the redundancy of physical defects 
in relation to the logic behavior of a circuit.  

TABLE 2. EXPERIMENTAL DATA OF DEFECT-ORIENTED TEST GENERATION 

Number of defects Defect coverage 

Redundant defects 

 

Circuit All 
defects Gates System 

100% stuck-at fault ATPG DOT 

1 2 3 4 5 6 7 8 
c432 1519 226 0 78,6 99,05 99,05 100,00 
c880 3380 499 5 75,0 99,50 99,66 100,00 

c2670 6090 703 61 79,1 98,29 98,29 100,00 
c3540 7660 985 74 80,1 98,52 99,76 99,97 
c5315 14794 1546 260 82,4 97,73 99,93 100,00 
c6288 24433 4005 41 77,0 99,81 100,00 100,00 

  
Column 6 in the Table 2 shows the defect testing 

efficiency after proving the redundancy of defects inside the 
library cells, and column 7 shows the defect testing 
efficiency after proving the redundancy for the whole set of 
defects. The column 8 shows the defect testing efficiency 
reached by the test generation tool DOT. 

7. DESIGN AND TEST RESEARCH ENVIRONMENT 
The experimental tools developed as a side effect of the 

research carried out at TUT during the recent 5-6 years are 
organized as an experimental R&D environment for 
investigating a broad set of design and test problems (Fig. 
9). The environment consists of the following parts: 

• Synthesis tools (high-level and logic level 
synthesis). 

• Test generation and fault simulation tools 
(hierarchical, logic and defect level test sequence 
generators). 

• Converters (interfaces between tools). 
• Other (university) tools linked to the environment. 

Design information can be created in different ways: (1) 
VHDL files to be processed by commercial or experimental 
high-level or logic synthesis systems, (2) manually by 
schematic editors. The gate-level design is presented in the 

EDIF format. In university research practice, ISCAS 
benchmark families which have their own presentation 
format (ISCAS format) are widely used. In order to link test 
generation and fault simulation tools with all the needed 
formats, different converters are developed. EDIF netlists 
can be converted into ISCAS’85 or ISCAS’89 formats. 
Necessary technology library files to support such 
conversion have been created for the research environment. 

The Turbo-Tester tools are based on SSBDDs, they have 
EDIF-SSBDD converters to link the tools with commercial 
CAD systems. Hierarchical ATPG DECIDER uses two 
inputs – higher level (RTL) descriptions in VHDL and low 
gate-level descriptions in EDIF. For importing VHDL 
descriptions to DECIDER which uses high-level DDs as 
input, a converter VHDL-DD is available. 

As a set of examples, the following design flows can be 
exercised in this environment. 

• Design and hierarchical ATPG. RTL VHDL design 
is synthesized by high-level synthesis tool. A logic 
level synthesis for the high-level blocks follows. 
For these designs DD and SSBDD models are 
generated. Using DDs and SSBDDs, hierarchical 
ATPG DECIDER generates test sequences. 
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• Logic level ATPG. Using SSBDDs, Turbo Tester 
ATPG generates logic level test patterns targeted to 
detect logic level stuck-at faults. 

• Defect-oriented ATPG. Using SSBDDs and the 
defect library, the defect-oriented test generator 
DOT generates test patterns targeted to defect 

physical defects. The defect libraries available are 
created in cooperation with Warsaw University of 
Technology. 

• University tools that traditionally use ISCAS 
benchmarks can be linked via EDIF-ISCAS 
converter to commercial design tools. 

 

RTL-VHDL Logic synthesis
Synopsys/Cadence

Gate-Level 
EDIF

EDIF-SSBDD

EDIF-ISCAS ISCAS
Netlist

University
Software

SSBDD

VHDL-DD

DD

Hierarchical
DECIDER

Defect-level
DOT

Defect
Library

Defect/Fault
Analysis

WUT

Logic level
Turbo-Tester

Test

High-Level Synthesis
TTU Behavioral

VHDL
RTL-VHDL Logic synthesis

Synopsys/Cadence

Gate-Level 
EDIF

EDIF-SSBDD

EDIF-ISCAS ISCAS
Netlist

University
Software

SSBDD

VHDL-DD

DD

Hierarchical
DECIDER

Defect-level
DOT

Defect
Library

Defect/Fault
Analysis

WUT

Logic level
Turbo-Tester

Test

High-Level Synthesis
TTU Behavioral

VHDL

 
Fig. 9. Hierarchical design and test research environment 

Turbo Tester tool set represents an independent logic 
level test research environment. It consists of a set of tools 
for solving different test related tasks by different methods 
and algorithms:  

• Test pattern generation by deterministic, random 
and genetic algorithms. 

• Test optimization (test compaction).  
• Fault simulation and fault grading for combinational 

and sequential circuits by different algorithms. 
• Defect-oriented fault simulation and test generation. 
• Multi-valued simulation for detecting hazards and 

analyzing dynamic behavior of circuits. 
• BIST analysis and quality evaluation for different 

BIST architectures. 
All the Turbo Tester tools operate on the model of 

SSBDD. The tools run on the structural level whereas two 
possibilities are available – gate-level and macro-level 
modeling. In the latter case, the gate network is 
transformed into macro network where each macro 
represents a tree-like sub-network. Using the macro-level 
helps to reduce the complexity of the model and to 
improve the performance of tools. The fault model used in 
the Turbo Tester is the traditional stuck-at one. However, 
the fault simulator and test generator can be run also in the 
defect-oriented mode, where defects in the library 

components can be taken into account. In this case, 
additional input information is needed about defects in the 
form of defect tables for the library components. 

A selection of the prototype tools described above 
together with a set of separate tools (Java applets) 
developed specially for teaching purposes are integrated 
into e-learning environment to support university courses 
by providing opportunity for the students for hands-on 
training [26]. This environment consists of toolsets: (1) 
Turbo Tester - CAD Software for Digital Test, (2) 
xTractor -  CAD Software for High-Level Synthesis, (3) 
DefSim – HW/SW environment for experimental study of 
CMOS defects, (4) BIST Analyzer - a training system for 
learning self-testing issues of modern multi-core electronic 
systems, (5) Trainer 1149 - a multi-functional SW system, 
which provides a simulation, demonstration, and CAD 
environment for learning, research, and development 
related to IEEE 1149.1 Boundary Scan (BS) standard, (6) 
Applets for training and teaching logic synthesis and test 
at gate- and register transfer levels, (7) Applets for FSM 
Decomposition and Synthesis, (8) Deterministic traffic 
generator for NoC simulator, and (9) Test Time Calculator 
(Simple NoC simulator, based on XY-routing).  

The laboratory tasks developed for this environment 
represent simultaneously real research problems, which 
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allow to foster in students critical thinking, problem 
solving skills and creativity in a real research environment 
and atmosphere. 

CONCLUSIONS 
An overview was given about the recent research results 

at TUT in the field of design and test of dependable 
embedded systems. These results have been obtained 
thanks to the broad international cooperation during the 
last decade in frame of several EU projects like SYTIC, 
VILAB, REASON, eVIKINGS II, VERTIGO [27]. As a 
result of these projects, two new competence centres were 
established – Estonian Research Centre for Dependable 
Computing and Estonian Development Centre of Mission 
Critical Embedded Systems (ELIKO). ELIKO contracts 
between 7 private SMEs in Estonia under the leadership of 
TUT. Both centres are working on transfer of technology 
to local industry. Through ELIKO very tight links have 
been established now between the Academia and the 
industry of Estonia.  

 As a side-effect of the research carried out during 
recent years, an experimental research environment has 
been developed to support in the future both, research and 
teaching. The originality of the environment is in multi-
functionality of the system (important for research and 
training), low-cost and ease of use. The multi-functionality 
means that different abstraction level models can be easily 
synthesized (to analyze the influence of the complexity of 
the model to the efficiency of methods); different methods 
of the same task are implemented (to analyze the 
efficiency of different approaches), the fault models can 
be easily changed and updated (to analyze the adequacy 
and accuracy of testing). The multi-functionality allows to 
set up and modify easily different experimental schemes 
and scenarios for investigating new ideas and methods. 
This multi-functionality gives an excellent opportunity for 
students working in this environment to understand the 
ideas, advantages and drawbacks of different methods at 
changeable conditions. In traditional commercial design 
tools these purely research oriented possibilities are 
missing. 

ACKNOWLEDGMENT 
The work has been supported by Estonian Science 

Foundation grants 5910, 6717, 6829, 7068, EC 6th FP IST 
project VERTIGO, Estonian IT Foundation (EITSA) and 
Enterprise Estonia.  

REFERENCES 
[1] R.Klein, T.Piekarz. Accelerating Functional Simulation for Processor 

Based Designs. Mentor Graphics Corporation. White paper, 2005. 
[2] K.Roy, T.M.Mak, K.-T.T.Cheng. Test consideration for nanometer-

scale CMOS circuits. IEEE Design and Test of Computers, vol.23, no 
2, pp.128-136, 2006. 

[3] R.Ubar. Test Synthesis with Alternative Graphs. IEEE Design and 
Test of Computers. Spring, 1996, pp.48-59. 

[4] J.Raik, R.Ubar. Fast Test Pattern Generation for Sequential Circuits 
Using Decision Diagram Representations. JETTA. Kluwer Acad 
Publishers, Vol. 16, No. 3, pp. 213-226, 2000. 

[5] R.Ubar, S.Devadze, J.Raik, A.Jutman. Fast Fault Simulation in Digital 
Circuits with Scan Path. 13th Asia and South Pacific Design 
Automation Conference – ASP-DAC 2008, Seoul, Korea, Jan. 21-24, 
2008, pp. 667-672. 

[6] J.Raik, R.Ubar, J.Sudbrock, W.Kuzmicz, W.Pleskacz. DOT: New 
Deterministic Defect-Oriented ATPG Tool. Proc. of 10th IEEE 
European Test Symposium, May 22-25, 2005, Tallinn, pp.96-101. 

[7] P.Ellervee, J.Raik, R.Ubar, K.Tammemäe. FPGA-Based Fault 
Emulation of Synchronous Sequential Circuits. IEE Proc. on 
Computers & Digital Techniques. Vol.1, Issue 2, pp.70-76, March 
2007. 

[8] J.Raik, R.Ubar, V.Govind. Test Configurations for Diagnosing Faulty 
Links in NoC Switches. 12th IEEE ETS 2007, Freiburg, Germany, 
May 20-24, 2007, pp.29-34. 

[9] International Technology Roadmap for Semiconductors 2006 report, 
[URL] www.itrs.net, 2006. 

[10]  S.Tasiran, K.Keutzer, Coverage metrics for functional validation of 
hardware designs. Design&Test of Computers, IEEE, Vol 18, Issue 4, 
Jul-Aug. 2001, Pages 36-45. 

[11] URL: http://www.vertigo-project.eu 
[12] R.Bryant. Graph-based algorithms for boolean function manipulation. 

IEEE Trans. on Comp,C-35, 8:677-691, 1986 
[13] V.Chayakul, D.D.Gajski, L.Ramachandran, “High-Level 

Transformations for Minimizing Syntactic Variances”, Proc. of  
ACM/IEEE DAC, pp. 413-418, June 1993. 

[14] R.Ubar, J.Raik, A.Morawiec, Back-tracing and Event-driven 
Techniques in High-level Simulation with Decision Diagrams. ISCAS 
2000, Vol. 1, pp. 208-211. 

[15] K.Minakova, U.Reinsalu, A.Chepurov, J.Raik, M.Jenihhin, R.Ubar, 
P.Ellervee. High-Level DD Manipulations for Code Coverage 
Analysis, Baltic Electronics Conf., IEEE, 2008. 

[16] IEEE-Commission, “IEEE Standard for Property Specification 
Language (PSL),” 2005, IEEE Std 1850-2005.  

[17] M.Jenihhin, et al. Temporally Extended High-Level Decision 
Diagrams for PSL Assertions Simulation. Proc. of the 13th IEEE 
European Test Symposium, 2008. 

[18] J.Raik, R.Ubar, T.Viilukas, M.Jenihhin. Mixed Hierarchical-
Functional Fault Models for Targeting Sequential Cores. Elsevier 
Journal of Systems Architecture. 

[19] A.Bigot et al. Deploying Hardware Platforms for SoC Validation: An 
Industrial Case Study. The International Conference on Field 
Programmable Logic and Applications (FPL’04), Antwerp, Belgium, 
pp. 64-73, Aug. 2004. 

[20] N.Genko et al. A Complete Network-On-Chip Emulation Framework. 
Design Automation & Test in Europe (DATE’05), Munich, Germany, 
pp. 246-251, March 2005. 

[21] K.Morris. Debug Dilemma. Simulate or Emulate? FPGA and 
Structured ASIC J., http://fpgajournal.com, Jan. 2005. 

[22]  P.Ellervee, A.Arhipov, K.Tammemäe. Clock Manipul. for 
Heterogenous Emulation Environment. The 24th NORCHIP 
Conference, Linköping, Sweden, pp. 213-216, Nov. 2006. 

[23] P.Ellervee, U.Reinsalu, A.Arhipov. Translating Beha-vioral VHDL 
for Emulation. The 25th NORCHIP Conference, Aalborg, Denmark, 
Nov. 2007. 

[24] L.Wu, D.M.H.Walker. A Fast Algorithm for Critical Path Tracing in 
VLSI. Int. Symp. on Defect and Fault Tolerance in VLSI Systems, 
Oct. 2005, pp.178-186.   

[25] R.Ubar, S.Devadze, J.Raik, A.Jutman. Ultra Fast Parallel Fault 
Analysis on Structural BDDs. 12th IEEE ETS, Freiburg, Germany, 
May 20-24, 2007, pp.131-136. 

[26] http://ati.ttu.ee/projects/tools.html 
[27] http://ati.ttu.ee/index.php?page=800  

12 R&I, 2008, No 1


