TIOJIATOK A

Anpo0ariist pe3yJbTaTiB poooTH

229

Investigation of Architecture and Technology
Stack for e-Archive System

Hennadii Falatiuk, Mariya Shirokopetleva, Zoia Dudar
Department of Software Engineering
Faculty of Computer Science
Kharkov National University of Radio Electronics

Kharkov, Ukraine
hennadii.falatiuk@nure. va, marija.shirokopetlevai@nure.ua, zoia.dudar@nure.ua

Abstract — This work describes main concepts of
architecture style and technologies selection for building
distributed e-Archive system. The paper presents overall
concepts, vocabulary, data models, responsibilities that an
electronic archive system must fulfill, and a set of
recommended functions to cover these responsibilities. The
article describes the main information flows and functions. It
outlines the theory of the OAIS model, illustrates an example
of complex microservices architecture design and approaches
to solve data consistency and application deployment
challenges. The comparative analysis of software architecture
styles was performed and, as result, the combination of
Microservice and Event-Driven architectures was chosen as
the most suitable architecture for building clectronic archive
system. It implies having microservices that communicate
with each other via some message bus instead of direct calls.
The technology stack chosen for that architecture
implementation and application delivery is proven to be
production-ready, has detailed documentation and large
community support. The technology stack is Asp .Net Core
2.1 — framework, Rabbit MQ, Apache Tika, Elasticsearch,
Mongo DB, MS SQL Server, Azure Blob Storage, Event
Store, Signal R, Docker, Kubernetes.

Keywords — microservices, e-archive, OAIS, software
architecture, containers, orchestration, eventual consistency,
software design patterns

I INTRODUCTION

For the last decades, dozens of thousands of bits of
digital information are being created every day. People film
movics, take photos, record songs. write texts and crcatc
documents and all these data must be stored in some way.
When it comes for big organizations with hundreds of files
created for millions of users it is not an easy task to
organize the storage of that digital information in an
efficient form that allows quick access to required pieces.
This problem is most critical for government organizations
where according to law all the cases of the citizens must be
stored for a long petiod of time. Bul storing such amount of
information in the system that produces it in most cases
makes the system much slowly and eventually kills its
productivity at all. And all this is for nothing since most of
the information 1s not access very often and is stored
moslly for history or in case of something.

To deal with these challenges the e-archive systems
come for the rescue. Such systems are intended to shift the
weight of storing huge seldom accessible data from the
shoulders of the systems- producers. The e-archive system
nust be well constructed to handle the expected amount of

2019 International Scientific-Practical Conference

Problems of Infocommunications. Science and Technology

data by design. And this is not just about code. the first
thing that must bc properly sclected is the conceptual
model of the system because the only way to build
something good is to understand what you are building.

II. OPEN ARCHIVAL INFORMATION SYSTEM MODEL

The process of e-archiving is not a new challenge. A
long time ago the NASA’s CCSDS (Consultative
Committee for Space Data Systems) has faced the problem
of proper organization and long-term preservation of the
information generated by decades of space missions and
observations. As a result, the OAIS model was created
which then become an ISO standard (ISO 14721:2012).

The major information streams and functions are shown

on the Fig, 1.
Preservation
Py Planning %
S N
Negotiate i
Pres annn/,/ . H
Require: R
e mf% " Data Dasa
2 informagen | Management oo L
P - 7 i N - e
O A o]
Ingest Access
SIP | Order DIPs

\

e R 0 BT
Producer Créate ~\ Retrieve ¢ /. Consumer
\ Archival AP

L AP
\ 3 Storage
Megoliste . e

Sutvrwisam\

Agrasment . Mange Jorméts, sthndards;
. policies, gengratereports;
N “design SIP/AIP templated

Iégotiate
ssemination
/" Agreements

/

\‘|Adminislralion

Fig. 1. OAIS I'unctional Model

OALIS stands for Open Archival Information System, it
is a framework that provides a broad understanding of
actions nccessary for the long-term preservation and
accessibility of data. Unlike many standards, OAILS does
not specify any implementation, programming API, data
format, or protocol. Instead, it provides a conceptual model
that consists of four basic parts [1]:

e Vocabulary that defines common {erms,
operations, services, and information structures of
the ¢-archive system.

o Data model of the information that is sent to.
managed inside and exported from the system.
This model implics the following package tvpes:
Submission Information Package (SIP) for import,
Archival Information Package (AIP) for

PICSKT 20719

978-1-7281-4184-8/19/531.00 ©2019 IEEE

68

preservation and Dissemination Information
Packages (DIP) for export.

e Mandatory responsibilitics of the c-archive. They
imply negotiation with producers and consumers
for the completeness and intelligibility of
information being archived and following well-
defined and well-documented procedures for
obtaining, preserving, authenticating, and
providing this information.

e Rccommended sct of functions to fulfill the
responsibililies of the e-archive system. These
functions are grouped into six functional modules;
ingest, data management, archival storage, access,
administration, and preservation planning,

So, the OAIS model gave us the overall concepts,
vocabulary, data modecls, responsibilitics the e-archive
system must fulfill and set of recommended functions (o
cover these responsibilities. Now, the actual challenge is to
build the software, design its architecture, select
technologies, data formats, communication protocols,
design internal and external API and create the deployment
and maintenance strategy. so that all functional and non-
functional requirements are met.

III. ARCHITECTURE CONSIDERATIONS

Architecture is the foundation stone of the application,
that is the first thing the system construction must start
with. Given functional and non-functional requirements the
main goal of software architecture is to define which
components the system should consist of. how those
components are going to communicate with each other and
how they must be deployed in order to [ulfill these
requirements. That is the hardest and the most important
part of the application construction because all the mistakes
made on this stage are the most expensive to fix in future,
so you always need to put the right amount of effort on this
task.

A. Choosing the architecture style

The architecture of software application is usually
complex and comprehensive, especially when it comes to
web-oriented systems with the rich business domain.
That's why it is impossible to make a good solution in the
rush from scraich. So, the first thing {0 choose when
designing the application is the architecture style. which
defines a high-level paradigm and principles. Experts from
Microsoft distinguish six different architecture styles [3]:

e N-tier — a traditional approach that usually implics
dividing an application into logical layers (i.c.
presentation, business logic, and data access) and
placing these layers on N tiers (nodes). Layers
have vertical orientation and cach layer can call
only the layer below.

o Web-Quecue-Worker — this architecture implies
thin web layer which main purposc is to validate
user requests and issue commands for long-mnning
CPU-intensive tasks (o queue and a worker that
listens to this queue for incoming tasks and
processes them asynchronously in the background.
Such architecture is suitable for domains with
resource intensive long-running tasks.

PICSKTY 70719

October 8-11, 2019

230

e Microscrvices — in that case, application is
composed of many small, independent services.
each of them implements the single business
capability. Microservices are loosely coupled and
communicate with each other via strictly defined
APIL This architecture is suitable for complex
domains.

¢ CORS (Command Query Responsibility
Segregation) — approach that implies different read
and write data models. This architecture allows
independently scale read and write workloads.

e Event-driven architecture — implies the publish-
subscribc communication model, where producers
publish cvents and consumers subscribe to them.
Both producers and consumers are independent of
each other.

¢ Big Data and Big Compute — architecture style that
deals with large data volumes or high-performance
computing by means of splitting data into chunks
and performing parallel processing of them.

Considering the c-archive domain, we alrcady have
vertically decomposed functions (i.c. import, data
management, storage, administration, search, export and
preservation planning) and models (i.e. SIP, AIP, DIP).
Moreover, the workloads of each functional capability may
differ dramatically, which leads to necessity of independent
scaling of each function. The e-archive system must be
able to handle large data volumes by design, which also
implics need to horizontal scaling. As any software, the e-
archive system cannot be built whole at once. so it is going
to be constructed incrementally, which implies frequent
releases. Also due to loosely coupled functions the updates
in one function might not affect others, so to minimize
impact and downtime of the updale process it should be
possible to independently ship updates of different parts of
the system, The fulfillment of the e-archive system
requirements by different architecture styles is shown on,

TABLE L E-ARCHIVE SYSTEM REQUIREMENTS FULFILLMENT BY

DIFFERENT ARCHITECTURE STYLES

E-Archive Architecture styles

Requiremen N. Web- Micro cQ Event- Big
t 1‘1 N Quene- | servic RS Driven Data

< | Worker es

Independent
functional - /- i g A
scaling

Scaling out +F + + + i +

Fault

isolation
Gracefull
degradation
Modular
updates

Ease of
modification
Loose
coupling

Considering the results of the architecture styles
comparison, the most suitable style is the combination of
the Microservices and Event Driven architectures, which
implies having microservices that communicate with each
other via some message bus instead of direct calls.

Kyiv, Ukraine

69

2351

Besides, this architecture style naturally fits the SaaS
(Software as a service) delivery model which is the primary
way of how the e-archive system is going to be shipped to
end-users. This delivery model shifts imposes all the
deployment and maintenance activities on the company
that develops software, while the end-user just buys a
subscription which provides access directly to application.

B. Defining the architecture components and
communicalion scheme
Having chosen the high-level system architecture, the
next step is to define components, set of functions they
implement, and the data flow between them.

As mentioned earlier there are three types of
information packages: SIP, AIP, DIP. Each type represents
data format on certain stage of the archiving process as
well as translations between them. Basically, any
information package consists of the following parts [2]:

1) Content Information (CI) — the set of information
that is the original target of preservation by the e-archive.

2) Preservation Descriptive Information (PDI) — the
set of information that maintains confidence, authenticity,
and context of the CI over an indefinite period f(i.e.
reference, context, provenance, fixity and access rights
information).

3) Descriptive Information (DI) the set of
information that describes the CI and is used lo locale,
analyze, retrieve, or order information from the e-archive
system.

The difference between those package types is in the
completeness and format of the information. Thus, SIP
typically contains CI and part of PDI, the AIP contains the
CI and must contain full PDI and DI, the DIP may contain
parts of CL, DI and PDI. Since CI, DI and PDI are abstract
terms, it is needed to strictly define their formats and
representation in the current system. So, in the AIP
package the CI is going to be represented as collection of
files of any supported format, DI is an XML file that
corresponds to the target archive's schema and PDI is an
XML file with XSD schema defined by the system.
Considering these package types and functions that the e-
archive must provide, the set of components the system
will consist of arc present on the Fig. 2:

1) Import Sve — service that is responsible for
preprocessing of data supplied for import to the archive
(SIPs). That is the first stage of AIP creation process
which performs data transformation to the format
acceptable by the target archive (e.g. split one SIP into
several AlIPs, split / transform DI, convert CI to another
file format. etc.)

2) Archive Sve — service that is responsible for actual
storing of archiving data. The top-level entities of this
service are “Archives”, they are analogs of an actual
archive from the real world. Archive contains information
packages in form of AIPs. Each archive has its schema in
XSD format which defines the structure of AIP's DI. All
the packages that are being imported to the system are
stored in certain archive. The process of placing or

2019 International Scientific-Practical Conference

Problems of Infocommunications. Science and Technology

updating AIP into archive includes the following stages
that are going to be carried out by that service:

a) Data Validation. Validation of supplied AIP"s DI
according to the schema of the archive this AIP is being
imported. Validation of Cl (i.c. file formats, file sizes,
content, etc.)

b) Checksum calculation.
information for CI and DI.

Calculate fixity

¢) PDI maintenance. Update of related sections in
PDI when CI and DI are changed.

d) DI maintenance. According to configurcd AIP
template, if there is a relation between the CI and DI
update DI when CI changes.

Tiself the Archiving service provides set of APT for adding

AIP, retrieving AIP info. retrieving and updating
individual parts of AIP.
L rt Client W ;;A
mport Client Wel ¢ O
¥ w SQL DB(h 12 Models
|- User
« - Group
L Permission
APl Gateway Identity Svc
_Blob Document pob Dol Document DB
Sloge. 08 (Data Models SoL 08 SR
@ £ mi Q e Data Models
Rt - Schema. » . Export Rue
=7\ Submission Agreement.] A Taemplata =\ Export Log
Import Sve Archive Svc Export Svc
Data Models:) Recameras =
Data Models
SQL pg|- Subscription 0L DB|- Archive Statistic
Ferbipsd | Data Analysis Rute,

Elasticseareh Customer Sve Advisory Sve
]

Document &

D8 @ (ata Models saL o8 [Data Models
m - AIP"s DI Dogument —————<\ SOL DB|- Migration Rule;
- Search Criteria D8 ;1 Data Modals - Migration Log
Apache ™ - Search Results. | s = ~
Tika Search Query | Rule. "
| - Check Out Log.

Tika”\C V[N | Exacasion Log
Search sve | Data Msnagement

Migration Sve

Event
Store

-.; Shuce
'uErAmt — ~@L
-—

Message Queue Saga Svc

Fig. 2. Components diagram of the e-archive system architecture

3) Search Svec — service that is responsible for search
functionality in the e-archive system. It indexes the DI of
cach AIP, also. if configurcd, performs text extraction
from CI and indexes it as well. Besides this service
contains all the configuration for search query and results
appearance.

4) Data Management Sve — service that is responsible
for manual and automatic management of AIPs. This
services provides such functionality as configuration and
launch of rules for AIPs' DI, PDI and CI modification.
checking out AIPs for editing. visualization of AIP's parts
for manual editing.

5) Export Sve — service that is responsible for export
of packages from the e-archive system. This scrvices
transforms AIPs to DIPs of the format that is acceptable
by the export target.

PI1C SKTY 20719

70

6) Migration Sve — service that is responsible for data
migration between archives. This service performs
preservation planning function which implies safe
migration of data from archive with stale storage to
archive with the modern storage.

7) Identity Svc — service that is responsible for user
management. This service provides authentication and

authorization, wusers and groups configuration and
permissions management. The best way to do
authentication / authorization in the microservice

architecture is token based authentication mechanism [2].
This approach implies separate microservice that stores all
the account info, so can authenticate user. When user has
proven his identity (via password or by other means) this
service issues the authorization token with all the
information about user rights in the system. Then this
token is encrypled and sent to the client. When user
performs any restricted opcration in the system, it sends
this token along with request to the respective service.
Each microservice in the system is able to decrypt token
and use information in it to verify user's rights to perform
requested action. This authentication scheme has
following advantages:

a) Centralized identity management. Users, groups
and permissions are controlled by single microservice.

b) No centralized failure for authorization. When
user is authenticated and has received the token it can
access any of the microscrvices in the system until the
token expires even if the Identity Service is down.

¢) No network latency for authorization. Token
contains all the information about user permissions, so the
requested microservice does not have to call the Identity
Service for any additional details.

d) Strong security. Token is encrypted with strong
cryptographic algorithm which makes it impossible to
forge it.

The format of the token used for the Identity Svc is JSON
Web Token (JWT) with HMACSHA256 signing
algorithm.

8) API Gateway — this is a deployment component that
provides a single, unified API entry point across all the
internal microservices' APIs.

9) Web App — this is the first user interactive part of
the system which provides access to all the functionality
shipped by microservices APIs,

10) Import Client — this is the sccond uscr interactive
part of the system which is a desktop application that
performs import of packages into the system.

11) Saga Sve — this service is responsible for
maintaining consistency of long running operation in the
system.

12) Message Queue — this is the message bus that
cstablishes asynchronous communication model between
microservices.

C. Choosing the consistency model

Consistency is an important part of the e-archive
system, since it is intended to preserve information for an

PICSKTY 70719

October 8-11, 2019

LE

indefinite period. Maintaining
distributed system is a tricky task.

consistency in the

According to the CAP theorem it is impossible to
simultancously maintain more than two out of three
guaraniees: Consistency, Availability and Partition
tolerance. Considering this “2 of 3” limitation the e-archive
system will stick to Availability and Partition tolerance
combination (AP). Since system has transactional
operations which span multiple durable resources, we need
to implement Eventual Consistency across these resources.
The overall concept of the Eventual Consistency is shown
on Fig. 3 by example of import process:

Import Saga Archive Search
Sve Sve Sve Sve
| Up/aar:{(A Uploading | { 1

TRERDA N Preservation i CreateSaga
Obyect) Object AndWhite
Event EventTo

EventStream

retumn
SavingFileTo

BiobStorage
AndinfoTo
MengoD8

. Doihg same for XML metadata file and other Freservation Objects ...}

L Applytmport([

In Background: |
Packageld) 1. Transform / Spiit ¢
Metadata {
retum 2. Convert
U Preservation
Objects

3 Prepare AlIP(s)
Note: when new }
files are created
issue appropnate
event before

saving them to

Blob Storage
and Mongo DB.
AIP Prepared H
. Event r__WrtingEventTo
EventStream |
Begin AP | Foreach PO
LI Import Event and Metadata: |
i Archiving 1. Retrieve content
200 from Import Sve |
Event 2. Perform validation
and calculation }
ntingEventTo 3. Send Archiving |
EventStream Event to Saga Svc!
4. Write to Blob
retum Storage and
Mongo DB
AIP o
Archived
Event
WritingEventTo |
EventStream
Begin AIP
Indexing Event
:For each PO

and Metadata:

1. Retrieve content
from Archive Svc
2 Extract content
of POs

Co/:npose in-memory I:
JSON document

Indexing Descriptive
Info; Event
WritingEventTo |
EventStream
returm

i Index document
i in Elasticsearch

AlP 1
WiitingEventTo Indexed :
EventStream; Event

Writing Saga |
Completed Event
b To Stream

Fig. 3. Sequence diagram of eventual consistency implementation
during the AIP import process

Kyiv, Ukraine

71

2

To achieve this goal the combination of the following
design patterns is used [3]:

* Saga — concept that represents a sequence of local
ransactions in different microservices. To
coordinate sagas the orchestration way was chosen
with separate microservice responsible for it.

e Transaction Log Tailing — approach of updating
data store that implies writing an intent of update
action to the scparate persistent log file and after
this log file is saved to disc perform the update of
data source.

o Compensating Transaction — design pattern that
implies that command / handler that updates data
source has compensating action that can undo
changes to data source that were made by the
intended action.

e [dempotent Fvent Handlers — approach that allows
to execute same handler with same arguments
multiple times and each time result will be the
same. Thus, calling event handler to added item
with same id to database must neither add multiple
records nor throw an exception, but create record
only once.

e [vent Sourcing — design patlern from Domain
Driven Design that implies concept of storing not
the state of certain entity, but rather sequence of
events that lead to that state. This provides such
advantage as optimistic concurrency (there is no
need to lock records, since cach event contains
expected version of the object, so if the last
persisted event's version differs from the incoming
event, then concurrent access is detected and error
is raised and data is not changed).

Before cach operation that is going to update data store
that is part of overall consistency model of the e-archive an
event with all the information that describes action intent is
sent to Saga Svc. And after the event is written to disc
(Event Store) the actual action is performed. Events are
delivered via Rabbit MQ. Each event handler that
processes received event is idempotent and implements
compensative transaction pattern. The cvent strcam
representation of the import saga is shown on the Fig. 4.

Import Saga

[1 Uploading Preservation Object Event

[2 Uploading Metadata Event

[3 Metadata Split Event

[4. Preservation Object Conversion Event
|5_AIP Prepared Event

[B Begin AIP Import Event

[8 Archiving Preservation Object Event

lWO Begin AIP Indexing Event

©

AIP Archived Event

[11 Indexing Descriptive Info Event

[12. AIP Indexed Event

|
|
|
|
|
]
[7_ Archiving Metadata Event |
|
|
|
|
|
|

[13 Saga Completed Event

Fig. 4. Lvent stream representation of import saga

2019 International Scientific-Practical Conference

Problems of Infocommunications. Science and Technology

Since all events are sequentially written to event stream
they can be easily traversed forward and backward. So, in
case of failure at any step of the distributed transaction the
compensation sequence is launched which implies reading of
saved events in rteverse order and redelivering of these
messages to respective handlers with compensate flag sct to
true.

IV. TECHNOLOGY STACK SELECTION

Considering the microservice architecture the
following technology stack is considered the most suitable
for its implementation:

e Asp Net Core 2.1 - framework used for
implementing functional microservices (Import,
Archive, Search, Data Management, Export,
Migration, Identity, Saga and Web App). This
framework allows to write web applications that
arc possible to host on Linux and Windows
platforms.

e Rabbit MQ - message broker that enables
asynchronous communication between functional
microservices. This message queue supports
multiple messaging protocols, flexible message
routing, messages persistence, has convenient API
and official client library for the .Net programming
language. Moreover, it supports horizontal scaling,
and can be deployed as a cluster.

e Apache Tika — text extraction toolkit that is used
for extraction of text from AIP's CI for further
indexing in the search engine. This is an open
source solution with convenient HTTP API. Since
this is a stateless service it can be easily scaled
horizontally.

e Elasticsearch — search engine that is used for
indexing of AIP's DI and text extracted from CI. It
supports flexible queries, aggregations, full-text
queries, suggestions and other features valuable for
c-archive system. Elasticscarch supports horizontal
scaling and can be easily deployed as a cluster.

* Mongo DB - is an open source document-oriented
database. It is used for storing complex document-
like entries in different microservices (e.g. AlP,
SIP, DIP, Submission Agreement, Search Query,
Management Rule, ctc.). This databasc provides
ACID data integrity guarantees and horizontal
scaling, which is beneficial for e-archive system.

e MS SQL Server — traditional SQL database in .Net
world. It is used for storing user management data
and records regarding long-running processing in
scveral microservices (i.c. Check Out Log,
Execution Log, Migration Log, elc.).

e Azure Blob Storage — cloud storage for SIP’s files
and AIP's CI. This storage supports replication
which is necessary for e-archive system.

e Event Store — stream database for event sourcing
that is used for storing sagas of transactional
actions in the svstem. This database can be scaled
horizontally and easily deployed in cluster.

PI1C SKTY 20719

72

e Signal R is a .Net library that simplifies adding
ability to push content from server to connected
clients as il becomes available rather than waiting
for clients to request data from server. This
technology supports four types of transport (Web
Sockets, Server-Sent Events, Forever Frame, Ajax
Long Polling) and fully encapsulates the fallback
mechanism for (ransport selection, which
automatically enables support of any browser.

The communication between Web App and
microservices is performed via API Gateway. The API
Gateway allows to monitor and limit the APIT calls to
microservices. Since communication between Web App
and other microservices is synchronous, the simple HTTP
REST approach was chosen. For communication between
microservices the asynchronous messaging approach was
chosen using AMQP 0-9-1. This decision was made to
decouple microservices from each other and due to the
long-running time-consuming nature of the operations that
thesc microscrvices take part in.

The combination of those technologies allows to build
c-archive system that fully implements all the required
functions, can handle large data volumes, meet the
performance, consistency and recoverability requirements.

V. APPLICATION DEPLOYMENT

At that point the overall system consists of 11
functional microservices and about 13 third-party
components instances used by those microservices (since
the databasc per microservice pattern was chosen during
system design). And this is the minimal deployment
configuration with single instance of each service. So,
when it comes to scaling out the number of services will
increase to several tens. Manual deploving of such system
and its configuration will take enormous amount of time,
that is just unproductive. Moreover, the ideal option is to
deploy cach component on a separate node for the sake of
fault isolation. But it would be an extreme waste of
resources if single node runs single application.

A. Simplifying product deployment with Docker

To tackle the complexityv of microservice app
deployment the containerization comes for the rescue.
Application containerization is an OS-level virtualization
method used to deploy and run distributed applications
without launching an entire virtual machine (VM) for cach
app |4]. Containers are more lightweight than VMs,
because the container engine virtualizes the OS for each
container, so all the containers share the same OS files,
while the hypervisor virtualizes the hardware which leads
to having a full copy of OS for each VM. Application and
all the dependencies (i.c. runtime components, environment
variables, dependent libraries, system tools) are packed into
an image, which represents a layered set of files with copy
on write approach. Containers provide a lot of benefits for
application deployment:

1) Isolation — application ranning in container is fully
isolated, which means other applications on the host machine
do not affect it. Also the container contains all the files and
dependencies. so when it is removed it does not leave any
artifacts related to this application on the host OS.

PICSKTY 70719

October 8-11, 2019

234

2) Standardization and portability containers
provide stadardization of the execution environment and
abstract away the specifics of the underlying operating
system and hardware. This allows images run uniformly
on any host no matter where thev were created.

3) Fine-grained control — each container gets its own
set of system resources with defined quotas, which cannot
be exceeded.

4) Ease of deployment and configuration — containers
arc not nceded to be installed or specifically configured.
they are just activated by single command line. All the
configuration is already coded into an image.

3) Security — strong isolation and complete control
over traffic flow and management of the containerized
application minimizes its vulnerable surface.

The most common app containerization technology is
Docker which became an industry standard for containers. To
containerize an application, it is needed to create an image
using the Dockerfile. In microservice application each service
must has its own image. After the image is created and
pushed to the container registry, the container can be spun on
any host running the Docker Engine by means of single
command. Of course, manual launch of dozens of images is
much easier than manual installation of services, but still far
from production. To simplify deployment of all the
microservices al once the Docker Compose file comes for the
rescue. This is a file in YAML format that allows
declaratively specify the deployment configuration of
multiple images, so the respective conlainers are spun up
altogether as a single application. Docker Compose file can
be used with Compose CLI which deploys containers on a
single node or with Stack Deploy command of Docker CLI
that can work with cluster of nodes.

So, now we have convenient and easy to use tool for
deploving the whole microservice application by literally
executing single command line. The next challenge is to
maintain and monitor the running app.

B. Orchestration of containerized application

Orchestration is an important part of containerized
application deplovment and maintenance. Having a lot of
containers that execute their own independent tasks and
communicates with each other is great up until the point
when they arbitrarity go down. With a traditional
monolithic app, it is not a big deal, when application stops
working it is enough to just connect to that single node it is
deploved on and fix the issue. But when it comes to
containers, this is far from casy to manually handle such
faults. For that bare reason the container orchestration tools
were constructed. Such tools aim to automate container
management and provide a framework not only for
defining initial containers deployment but also for
managing multiple containers as a single application,
Container orchestration tools provide such important
functionality for microservice application as:

e Self-healing — automatic spinning of container
instances up to required count when existing oncs
go down.

e Aulo-scaling — automalic creation / removal of the
containers considering the load of the system.

Kyiv, Ukraine

73

£ T

e Resource control — control over allocation of
resources for running containers.

e Load balancing — forwarding incoming traffic to
containers considering their load.

e Service discovery — resolving the internal TP address
of the containcr that provides the requested service.

e Monitoring — statistics and logs collection for
running containers.

The power of container orchestration tools is in the fact
that you do not need to write any code to make it work. just
specify desired properties via configuration file and sce
how your app is up and running. Among all the available
orchestration tools Kubermnetes is the most widely used one.

Kubemetes is from the ground designed to work on
cluster of machines and distribute workloads across them.
The top-level concepts in the Kubemetes cluster are Master
and Worker Nodes. Master Node is a single machine that
coordinates work of the whole cluster: monitors applications,
maintains their desired state, performs updates, manages
networking and communication between machines. The
Worker Node is a machine that runs containers. Each Worker
Node has a Kubelet process which performs communication
with the Master Node and manages running containers and a
container runtime that pulls images and muns applications.
The great thing about Kubernetes is that it abstracts away all
the infrastructure details about physical nodes in the cluster,
so that it is not needed to configure which nodes the
application should be deployed on, all that matters is
declaring what components the application consists of and
dependencies between them. To achieve this goal Kuberneltes
brings the following abstractions:

e Deployment — APl object that represents
application configuration (which components it
consists of, how many replicas cach container must
have, etc). Once this object is created in
Kubernetes. the Master Node uses it to create Pods
with specified containers on Worker Nodes of the
cluster. Each Deployment has cormresponding
Deployment Controller that maintains the desired
state of the application.

e Pod — is the smallest unit of deploviment. A Pod
contains a group of one or more related containers
and resources shared between them. Such
resources are storage, networking and containers
specifications. Each Pod has a unique cluster IP
address that is shared between all the containers in
the Pod. Such IP addresses are intcrnal in cluster
and arc not cxposed to the outside world.

e Service — is an API objects that defines a logical
set of Pods and rules by which they can be
accessed. Services handle routing and load
balancing between dependent Pods, which allows
dependent Pods to dic on one node and replicate on
the other without breaking the communication.

e [olume, Persistent Volume and Persistent 'olume
Claim — those are API objects that abstract storage.
Since local files in containers are transient (they
die along with the container) it is needed to have a
mechanism to store data outside the container.

2019 International Scientific-Practical Conference

Problems of Infocommunications. Science and Technology

Volumes lifetime is tied to Pod's one. But Pods are
also ephemeral objects in Kubernetes, so there
should be a mechanism to persist data beyond the
Pod's lifetime. Persistent Volume and Persistent
Volume Claim serve this functionality.

Those are just concepts needed for basic application
deployment, while there are much more things to configure
in Kubemetes for the production-ready deployment.
Kubernetes brings a lot of complexity and is a bit tough to
get started, but once it is understood it provides all the
functionality for automatic production-ready deployment
and maintenance of applications that consist of hundreds of
microservices. Since e-archive system is designed to scale
horizontally and even the simplest deployment requires
dozen microservices to be up and running, the Kubernetes
is a perfect tool to choose.

VI. CONCLUSION

In this paper we have described and compared different
architectures styles that can be used for e-archive sysiem
construction. Designing application architecture is not an casy
task especially when it comes to distributed systems with
large data volumes. Every software development process
must start from analysis of application domain and
requirements, especially non-functional ones, because they
cause biggest impact on choosing archilecture style and
resulting system complexity. We have designed archilecture
that is based on Microservices and Event Driven architecture
style, which accounts all the characteristics of the e-archive
system domain and provides such important possibilitics as
horizontal scaling, modular updates, loose coupling of
components, case of modification and large volume handling.
The technology stack chosen for that architecture
implementation and application delivery is proven to be
production-ready, has detailed documentation and large
communily support. One important point that can be seen
from this analysis is that construction of microservices
requires strong knowledge of cloud architecture patterns and
mature DevOps culture, because it is not enough (o just write
code it also must be correctly deploved. orchestrated and
monitored to bring the real value. The designed architecturc
hag big cost of initial construction but offers chipper updates,
modification and maintenance in future.

REFERENCES

[1] Korb and 8. Strodl, "Digital preservation for enterprise content: a
gap-analysis between ECM and OAIS", in 7th International
Conference on Preservation of Digital Objects, Vienna, Austria,
2010, pp. 221-228.

[2] Consultative Committee for Space Data Systems, Reference model
Jor an open archival information system (OAIS) recommendation
for space data system practices : recommended practice CCSDS
630.0-M-2. Washington, DC Magenta Book, June 2012, p. 4-1.

[3] C. de la Torre, B. Wagner and M. Rousos, NET Microservices:
Architecture for Containerized NET Applications, 2nd ed.
Redmond: ., Washington 98052-6399. 2019, pp. 311-324

[4] A Homer. J Sharp, L Brader. M. Namumoto and T
Swanson. Clond Design Patterns: Prescriptive Architecture
Guidance for Cloud Applications. Microsoft patterns & practices,
2014, pp. 190-197.

|5] C. de la Torre, Containerized Docker Application Lifecycle with
Microsoft Platform Tools. Redmond: Washington 98052-6399,
2017, pp. 1-12.

[6] T. Baier and I. White, Getting Started with Kubernetes, 2nd ed.
Packt Publishing Ltd, 2015, pp. 87-130.

PI1C SKTY 20719

74

75

JIOJIATOK B

Crnaiinu npe3eHrarii

XHYPE
Kadepnapa Il
ATecTauinHa poboTa marictpa

«docnigeHHA MeToAIB | TEXHONOriN CTBOPEHHSA
pPO3NoAineHnxX CUCTEM eNeKTPOHHOT apxiBaLii
OaHNX»

BukoHnas: ct. rp. [13Cm-18-1 danaTiok I.0.

KepieHwk: npod. Oygap 3.B.

OB’EKT AOC/IAKEHHS

06’eKT pocnigKeHHs - cyyacHi MeTogm Ta TexHooriT peanizauii

PO3MOAIIEHMUX CUCTEM eNIEKTPOHHOT apXiBaLii gaHMX.

Preservation
Planning
A Data
én |Management

Rftrieve Consumer
Archival
Storage .

Phssemination

OAIS (Open Archival

Information System) - Negoliate

Preservation
Requireme:

Negotiate
echnologies
Retrieve

Descriptive

MiYXHApOAHWIM CTaHaapT
AOBroTpUBasIoro

36epexeHHA UMbpoBHMX

Producer

JaHMX,

“\ Mange "fonmials‘ si:éndards.," Adreement
", policies, genprate geports,
‘design SIPIAIP templates

Administration
"

Agreement

76

META POBOTHU TA NOCTAHOBKA 3AJIAMI

MeTa po60TH - po3pobKa NpPoOTOTMNY CMCTEMM eNEKTPOHHOT apxiBauil
AaHMX Ta JOCNIAKEHHA BMMBY Pi3HMX apXiTEKTYPHMX CTUIIB NPOrpamHoOro
3abe3MeYeHHA Ta TEXHO/ONM po3po6KM i pO3ropTaHHA Ha NPOAYKTMBHICTb |

JlaHOi CUCTEMM. \

3apgaua po6oTm — cnpoekTyBaTt i nobyoyBatn CUCTEMY ENEKTPOHHOT
apxigauji gaHux, fka Bignoeigatume dyHkUioHansHUM BuMmoram OAIS Ta
A0CNIANTA BASNB NPUINHATUX apXITEKTYPHUX pilleHb Ta obpaHnx TeXHOMNOrIn

Ha aTpMBYTN AKOCTI OTPUMAHOrO NPOrPaMHOro 3abe3neYeHHs.

i\\\ D :
A I A r PAMA " T <<ingludes> 9 Join CreateSubscription
Unauthorized \Q_) rganization/® 2
<<|nclude>>

& <<extend>> <<include>>
<<nclude>_ W reate New™~/'
Register Qrganizalio

3
F]

View Manage
Wotifications AT B ubscription:

Authorized
User

>_L\

Organization
Owner

Add Descriptive
formation 1o Pack:
- Preservation Descripfivi
"""""""" > lnformetion o Pockage
“mi<extend> - amcmemnen.. 00 secrecy altribuies
the Package
escnplwe Information
Package: Spacify validation rulas Tar
Producer / L Comen fomion >
<<extends>
| <<sxh=nd>> pecify transformation rules
@ - 3 -7 _<<extend>> ens
—— ~Rackage: <extends>.._____—~Spedly ransformation raleE~

<<4rc.‘ude>> “<include> >

st @ Speclfy A!P generanon
Wanage { _<sinclude>" Settin
Archives / i «wdude»
Archive s onfigure available
Administrater | <<include>>"""" storages
anage Sys_lern B Fand onfigure availablg
| — Corfiguration_~" """ ===~ LS subscriptions.

L. <<inglude>>

— L Tehe, 7
onitor System p onfigure system
System Porformarice 2sources pricing

Administrator

--eezinclude:

t

1

;

77

ATPUBYTHU AKOCTI MPOIrPMHOIO 3ABE3MNEYEHH

CucTema eneKTpPOHHOrO apxiBy Ma€ BOMOAITM HACTYMHUMM
aTpubyTamu AKOCTI:

* Performance;

+ Scalability;

+ Reliability;

- Availability;

* Security.

APXITEKTYPA: N-Tier

Mepeearu:
Presentation Layer
m # * [opu3oHTaNbHE macLiTabyBaHHA;
* [lpocToTa NPOEKTYBAHHSA i pO3pO6KH;
T l + [lpoctoTa posropraHHa
Business L g .
= SR
=5
Web API Heponikum: \ 1
T l Siovage Laier * HeMOXAMBICTE He3aNeXHOoro (YHKLiOHabHOTO

9 EJ macluTabyBaHHs;

(=
% :& Il'p » BigcyTHicTb i30nauii BMxoay yHKUIN 3 nagy;

a * HeMOXAMBICTb YaCTKOBMX OHOBJ/IEHb;
File Storage

Database Search Engine

+ BMCOKa 3B'A3HICTb CUCTEMM; o

+ BucoKa CKnafHiCTb aBTOMAaTM3aLii Diﬂ‘fpl/lMK[d
.//

CUCTEMMU, T

78

APXITEKTYPA: Microservices

MNepearu:

Heponiku:

l'opu3oHTanbHe MacluTabyBaHHA;

MigTprmMKa HesaneHoro pyHKUioHaNbHOro MacluTabyBaHH

[30/80i8 BMXoAy YHKLINM 3 nagy;

MOKAMUBICTb YaCTKOBMX OHOBJIEHD;

Starage

@

!@

Data Models
- User,

- Croup:
Permission:

Blob Docurnent .~ Dogument DB
DB SQLDB
L Data Madels:
Data Modeis < G
| S‘\P’ i o - Export Rule;
- Submission Agreement. Export Log;

Impo:\&rc /

HasBHicTb npoTecToBaHUX BiAKPUTUX 3aco6iB aBTOMaTU3aLii

pO3ropTaHHA i NiATPUMKM CTaHY CUCTEMM.

BucoKka CKnagHiCTb NpOEKTyBaHHA i pPO3po6KM
CHUCTEMM;
MoTpebye BMCOKO-KBanichikoBaHWX iHxeHepiB

41A po3pobKK

/
soL DBl Subscnplmn
Q I+ Bnllmg Rule;

Data Models:

- Management
Rule
- Check Qut Log;
- Execution Log

- Search Cnlena
- Search Resu\ts
- Search Query,

Message Queue Saga Svc

LUABJ/IOHN MNMPOEKTYBAHHA

LLlabnoHM NpoeKTYyBaHHA:
Onion Architecture
CQRS + Mediator

Repository + Unit of Work
Compensating Transaction

Transaction Log Tailing

SERVER DATA STORAGE
Command Wiite AP1 Command
CLIENT
Query Read Query
APl

Synchronize

\ Application Services / ;

= -

, User Interface
4 (WEB APl)

Domain Services

> ‘ \
/ Vo
/ ‘ \ |
k DomainModel | |
[|

k/ Persistence

(Database,

Extermal AP, File

/System)

79

LHAICHICTb AAHMUX

\

Transactional Consistency

SOL Resource| | Flie Storage Elastic e
Manager HEii HEidis Coordinator
Manager Manager
1 enlist - o N
enlist

<+

Prepare Succeeded
commit
| = commit
| commit
|
Prepare Failed
roliback
rollback
rollback

\
Eventual Consisten\ﬁ

Message Broker

0. SIP Creation Event

1. Uploading Preservation Object Event
2. Uploading Metadata Event

3. Metadata Split Event

4 Preservation Object Conversion Event,
5. AlP Prepared Event

'gaga service |
(Orchestrator)

Event £
Stream’ B 6. Begin AIP Import Event |
@
@ i
7. Archiving Metadata Event
@ "t 8. Archiving Preservation Object Event

9. AlP Archived Event

- & 10. Begin AIP Indexing
13 % ' Event

T __|11. Indexing Descriptive Info Event
12. AIP Indexed Event
13. Saga J ;
nt

(GompleiadiE ver

TEXHOJIOT ||

TexHonorii po3pobku:

* Asp .Net Framework MVC ta Web API 2.0

* MS SQL Server

+ Elasticsearch

+ Apache Tika

* Azure Blob Storage

* SMB File Share

* Microsoft Distributed Transaction
Coordinator

» Angular JS

* Bootstrap 3.0

\
TexHonorii po3ropTaHHA i Bnposap{,

Azure

Virtual Machines
Windows Failover Cluster
SQL Server Failover Cluster Instance
SMB Scale Out
Azure File Share

AIATPAMA PO3IOPTAHHA

ﬁl&zur& Cloud
* Provider

80

Windows Failover Cluster |

VM

. Virtual Network
Client Load Balancer

) saL SGL SME Seale-Out
Domain Controller Failgver Falover over Sforsge
Chister Ciuzter Spaces
5 telegr a -
| : o 8 2
’®-’< _—-’@ @ i .'-! mﬂux ‘ h“ ‘

TECTYBAHHA

+ Unit Testing;
* Integration Testing;

+ System Testing.

Ana ouiHKK BiANOBIAHOCTI CMCTEMM eNEeKTPOHHOro apxiBy aTtpmbyTam

AKOCTi NpOrpaMHoOro 3abesnevyeHHA 6y/10 NpoBejeHe TeCTyBaHHA:

* Functional Testing;
« Security Testing;

» Performance Testing;
« Scalability Testing;

« Availability Testing;

* Recoverability Testing;

Azure Blob
Storage

Do

Azure File Share

81
NEPCNEKTUBN PO3BUTKY

BapTo Big3HauYMTH, WO CTBOpPEHa CMCTEMA MAE BiAKPUTI NnuTaHHA AnA
NoAasiblIoro AOCAIAKEHHA:

\\
Po3po6ka cTpaterii miHiMi3aLii BUTpaT AN1A po3ropTaHHA CUCTEMM Y
BMKODMCTaHHA;

\
« JocnigxeHHa MeX macliTabyBaHHSA 3amnporoHOBaHOT apXiTEKTYpM;
L]

Peanizauis MikpocepBiCHOT apXiTEKTYpM Ta AOCNIAXKEHHA 3MiHM
aTpUOYTIB AKOCTI CUCTEMM;

BukopucTtaHHA Docker KoHTeMHeEpPiB AnA po3ropTaHHA B Kubernetes
KnacTepi 1a 4OCNiAXKEHHSA BMNAMBY LUMX TEXHOOMM Ha aTpUBYTH

-]
//
/
AKOCTi CMCTEMM Y MOPIBHAHHI 31 3BMYaMHMMM BipTYanbHUMK
MallMHaMH

//
,«/4
,‘/‘

ATPOBAUIA PE3Y/IbTATIB

Pe3ynbTat pobotu

238

ony6nikoBaHi y cTari

Investigation of Architecture and Technology
Stack for e-Archive System

«|Investigation of Architecture

and Technology Stack for e-
Archive System» Ha

%
b o oo steans 1ed Rty wa shave.
emerrt

MiKHapoaHiK Haykosii |IEEE
KOH(epeHuil «Problems of
Infocommunications. Science

and Technology (PIC
S&T2019)»

5 zicn Da
Anirel lfemmisn

ot
B (D) f

PICSST 010

BUCHOBKM

B pesynbTaTi BUKOHAaHHS arecTaniinoi podboTu 0yJI0 cpoeKTOBAHO
ApXiTEKTYPY apXiBHOI CUCTEMH Ta CTBOPEHO IIPOTOTHIL, SKHI
Bianosigae OAIS Mozeni Ta 3a10BoJIbHIC 00paHUM aTpHOyTaM
SIKOCTI TIPOrPaMHOTO 3a0e31eUeHHS.

OTpuMaHi pe3yabTaTH MOXKYTh OyTH BUKOPUCTAHI JUIS
MPOEKTYBAaHHS HOBUX CUCTEM EJICKTPOHHHUX apXiBiB, a TAKOXK JIJIS
BH3HAYEHHS HANPSMY, PEJIEBAHTHOCTI 1 BAPTOCTI 3MIHU apXiTeKTypH
1 TEXHOJIOT1H ICHYIOUHX apXIBHUX CHCTEM.

JIOJJATOK B

Biaryk ta penensii

83

84

Peueniin

Ha arecTauiiiny poboTy maricTpa

crynenta rpynu [13Cm-18-1 Danamioka ["ennazgis Osnexcanaposuda
cnenianbaicTs — 121- Inkenepis nporpamroro sabesneyerus
ocBiTHRO-TIpodeciiina nporpaMa «lIporpamue 3abe3nedenns cucTeM»

«JlocniypKeHHA METOIIB | TEXHOIOTII CTROPCHHA PO3NOAUIEHHX CHCTEM eNeKTPOHHOT apxiBaiii
JaHHX R,

(Tema aTecraniitnoi poboTh)

Crpykrypa arecrauiiinoi pobotu: noscHiopankHa 3anucka 86 cropinok; rpadiusa yacTuna
15apkywie; nporpaMHe sactocypamHs (npukiauHa nporpama) 127 caiinis saransaum oBcarom
32.8MGaiir.

B arectauiiiniii poGori npeacTaBneHo NPOTOTHI CHCTEMH ENEKTPOHHOrO apxiBy, AKuii
peanizye ocHOBHI (YHKIII 3rilHO 3 MDKHAPOJHMM cTaHAapTOM 30epekeHHA UMAPOBHX aHHX
OAIS (Open Archival Information System). Pospofiena nporpamua cecreMa BiATIOBifi@e TaKim
OCHOBHHM ATPHOYTaM AKOCTI MPOrpaMHoro 3afesnedeHHs, SK MPOAYKTHBHICTL, MacTaboBaHiCTh,
JOCTYnHICTh, Haaifinicts, Oesmexka. Hachorommi, B ymoBax iHTEHCHBHOrO 3pocTammsi 06’ eMiB
UHGPOBHX JAHUX, MMTAHHA JOBIOTPHBAIOTO X 30epekeHHs € HAIIBHUAIHO BAXIHBHM i TOMY TeMa
arecTauiiinoi poboTH € 10CTATHRO AKTYANBHOI.

[MoschiopasbHa 3anncka Ao po3poGNiEHOr0 MPOEKTY BiAMoOBizae yciM BHMoOram, Mo
BHCYBAIOTHCA JI0 ATECTAIAHMX POBIT: AoliTEHe PO3MilleHHS TekeTy Ta rpadiunux Marepiasiis
BHXO/JA9H 3 TeM PO3ALIB Ta MAPO3ALIIE, BMIJIE 3aCTOCYBaHHA ITEPATYPH Ta MOCHIAHbL Ha Hel Ta
BHKOHAHE Ha JIOCTaTHLO BHCOKOMY piBHi. ITporpamue 3abesmeueHns, HajaHe HA pellCH3YBaHHI,
BIIMOBI/IAE 3aBAAHHIO Ta € MPALE3AATHHM,

AHai3 npeAMeTHOT ramysi, atpuOyTiB AKoCTI MporpaMAOro 3a0esNeyenns, apXiTeKTypHHX
criiiB, wabNoHiB MpoeKTyBaHHs i TeXHOMOrii GY/NO NPOBEJEHO HA BHCOKOMY PiBHI. Bapro
BUIBHAYHTH JIOWITBHICTE OOpammx CTyNeHTIB MeTofis i 3acobie pospofks, TecTyBaHHA i
BIPOBA/UKEHHA NporpaMHoro 3abesnevennd. Yei npuiHATi TexHiuni pitneHns € o6rpyHTOBAaHHMH
| 3BAKCHHMH,

Pospobnenuii mpoToTHN CHCTEMH eNEKTPOHHOIO apxXiBy, a4 TAKOXK Pe3yibTaTH
IOCADKEHHS BIUIMBY WAGIOHIB NMPOEKTYBAHHS | TeXHONOrili Ha aTpubyTH SKOCTI CHCTEMH
€IOCTOBIPHHM | MOXKYTh OyTH BHKOPHCTAHI NPH CTBOPEHHi CHCTEM 31 CXOKHMH
dyaxioHaNbEHIMK | HeQYHKUIOHATIEHUMH BUMOTaMH,

Cepen Heponikis arvecranilinoi pofoTH MaricTpa BapTo Bif3HAYMTH HeiHTYPrHBHMIL
iHTepdeiic kopuctysaua, pincyTHicTs nigrpumkn SIP nakeris y dopmari FGS Arendehantering ta
siacyThicts nigrpumkn PDI nakery y dopmari PREMIS. TMpore 3a3naveni Heloniky 3HAYHO He
BIIMBAIOTh HA AKICTH NpeACTaBIeHOT poGoTH.

B uinomy arecrauiiina po6ora marictpanta rpynu I13Cm-18-1 ®anatioka I.0. sianosinae
BHMOTaM 0 atecTauifinux podiT i saciyroBye ouinkn «siaminno» (96 Gaxis, A). ATecrauiiiny
poboty MoskHa npeAcTaBHTH s saxucty B EK 3a cnenjansnictio 121- Imkenepis nporpaMHoro
3abesnevenns, ocBiTHO-mpodeciiinoio nporpamoio «lTporpamue 3aGesnedenHs cHeTEMy.

Penensent ﬁ}/ o ﬁc‘}e‘f’ DY e Bl

85

Penensin

Ha aTecTauiiiny poGoTy maricrpa

crynenta rpynu [13Cm-18-1 hanatioka 'ennanis Onexcanaposuya
crietiansiicts — 121- Inkenepis nporpamuoro 3abe3neyeHns
ocBiTHRO-TIpotheciiina nporpama «IIporpamue 3a0e3neyeHHs CHCTEMY
OCIiIKeHHA METOIIB i TEXHOMNOTiH CTBOPEHHS PO3NOLIEHHX CHCTEM elle
apxiBaill JaHux».

(Tema aTectaniiinoi poboTh)

Crpykrypa arectauiiinoi poGoTH: mosicHIOBaNbHAa 3amucka 86 cTopiHok; rpadiuna
YacTHHA 15apKywis; nporpamMHe 3acTocyBaHH#A (pHKNagHa nporpama)l27daiinis saransaum
obcarom 32.8M6GaiiT.

[Ipencrasnenuii B arectauiiiniii poGorti NpoTOTHN CHMCTEMH eNEKTPOHHOIO apxiBy
Bianosinae QynxuionansiuM BuMoram Mogeni OAIS Ta obpanum atpubyram sKocTi
nporpaMHoro sabesnedyeHHs. AKTyanbHIiCTH TeMH pobOTH 3yMOBAeHa HeoOXigHicTiO
CTBOPEHHS HAAIHHOIO CXOBHIIA HPPOBUX JaHHX B yMOBAX CTPIMKOTO 3pocTanus ix 06’ eMis.

[loAcHioBabHA 3alHMCKa BiANOBIJIAE CTAHAPTAM TA BUMOTaM, AKi BHCYBAKOTBCA MIOA0
arectauiiiiux pobit maricTpis. Po3ninu NosCHIOBATBHOT 3aMHCKHM Nponopiiiini, Hanmucani
rpamMoTHO. ¥ poBoTi aBTOp MPOEMOHCTPYBAB BMIHHA MPAIIOBATH 3 HAYKOBOIO JIITEpPaTypoIo,
B AocTatHiii mipi mpouHTyBaR i B moAcHioBanbHiit 3ammeni. IMporpampe 3abesmeueHns,
HallaHe Ha PeleH3YBaHHs, BiNOBIAE 3aBJAHHIO TA € NPALE3AaTHHM.

Texniuni pimenns, npuiiHaTi nig Yac asanisy i pospobku nporpaMuoro sabesneveHus
€ ONTHMAIBHHMH, BHKODHCTaHHA 1WAONOHIB NMpOEKTYBAaHHA i TexHoustoriii po3poGku i
BIIPOBA/KEHHA CHCTEMH € OOIPYHTOBAHHM 3 3BAMEHUM.

Jocnikenna BIUIMBY apxiTexkTypH, mabnoHiB NpoOeKTYBaHHA | TexHonoriii Ha
arpubyTH AKOCTI CHCTEMH NPOBENEHO 3 BHKOPHCTAHHAM MNpPOBIIHWX 3acoBir i MeTomir
po3pobkn nporpamuoro 3abesneuenna. OTpUMaHi pe3y/lbTaTH € JOCTOBIPHHMH i MOKYTb
Oymi BukopucTaHi npu pospobui po3NOAUIEHMX CHCTEM, WO BiANOBINAIOTE HeoGXimmmx
atpHOyTIB AKOCTI MporpaMHoro 3aGesneueHus,

3 Heznonikis atecrauiiinoi poGoTH MaricTpa ¢l BIA3HAYHTH BIACYTHICTH MOPIBHAHHA
BHKOPHCTAHHSA albTEPHATHBHUX TEXHONOriH penauiiinux i Hepensuilinux 6a3 HaHMX, OKpim
saraneHoBitoMoro MSSQLServer, i BincyTHicTs mocmimxenns suxopucranns Docker
KoHTelHepis ana posropranna B Kubernetes knacTepi Ta BIIMBY UMX TeXHONOTiH Ha
aTpuOYTH AKOCTI CHCTEMM Y TOpiBHAHHI 31 3BHUAliHAMH BIpTYaILHHMH MammuHamu. [lpote
pe3ynbTaTH NoTOYHOI poOOTH MOXKYTE OyTH BHKOPHUCTaHI NPH NOJANBLIIOMY AOCHTIAAKCHHI
BHIIE3a3HAYEHHX MHTAHb,

B uinomy arecrauiiina pobora marictpanta rpynu II3Cm-18-1 ®anatioka I.0.
BIAMOBI/Ia€ BHMOTaM J10 arecTaliiinux pobiT i 3aciyrosye ouinkM «BimMinHO» (95 Gan, B).
Atectauiiiny poboTy MoOXHa npencrasutH g saxmery B EK 3a cnemiansmictio 121-

[nenepia nporpamuoro sabesneuenns, ocmitHso-npodeciiinolo nporpamoio «IIporpamue
3abesneyeHHs CHCTEMY.

86
XAPKIBCHKHMI HALIIOHAJIBHUI YHIBEPCUTET PAJIOEJIEKTPOHIKH

dakyIbTET KOMI'IOTEPHUX HAYK
BIAI'YK

Ha aTecTaliiiHy poOOTy mMarictpa
®damnatroka ['ennamisg OjekcaHapoBrya,

cnerianbHicTh 121- [Hkenepis mporpaMHOro 3abe3neueHHs
OCBITHBO-TIpO(eciitHa mporpama «IIporpamHe 3a0e3neUeHHs CUCTEMY
Tema arecrartiiinoi po6otu: JocaipkeHHs METOIIB 1 TEXHOJIOT1M CTBOPEHHS

PO3MHOIIJIEHUX CUCTEM EJIEKTPOHHOI apxiBalli JaHuX

Arecrartiiina po6ora marictpa @anarioka ['.O. mpucBsueHa JOCTIKEHHIO METO/IIB 1 TEXHOJIOT1H
CTBOpPEHHSI PO3MOJIIJICHUX CHUCTEM EJEKTPOHHOI apXiBallii JaHuX. 3abe3nedeHHs HaIiHHOTO CXOBHUIIA
JUTSL BEJIUKUX 00CATIB NU(POBUX JaHUX € HAA3BUYANHO BaXIIMBHM 3aBIAHHSIM B CYy4YaCHOMY CBITI.
Bupimenns npobiemMu JOBrocTpokoBoro 30epiranus aanux omnucano B mozeni OAIS (Open Archival
Information Model), sika HacCKOroAHI € MDKHAPOJIHUM CTaHAApTOM Iu(poBoro 30epexeHHs. OCKUTbKU
OAIS omnmcye 3aranbHi TOHATTS, MOJIEII JTaHUX Ta PEKOMEHIOBAaHUX (YHKIIIi, SKi Ma€ BUKOHYBATH
€JICKTPOHHHUI apxiB, MUTaHHs OyJayBaHHS NPOrPAMHOrO 3a0e3MeUeHHs, SKE BIAMOBITATUME YCIM
BUMOTaM, 3aJMIIAETHCA BIiTKPUTHM. Y dYac CTPIMKOTO PO3BHTKY BIAKPHUTOTO IPOTPAMHOTO
3a0e3nedeHHs Ta XMapHUX TEXHOJIOTIH, MOCTae aKTyaJlbHUM IMHUTaHHS BUOOPY apXiTEKTypH, MAOIOHIB
NPOEKTYBAaHHS 1 TEXHOJIOTIH pO3pOOKH 1 BIPOBAIKEHHS, 3 YpaxyBaHHSIM IOCSTHEHHS HEOOXiTHUX
aTpuOYTIB SIKOCTI MPOTrPaMHOT0 3a0e3MeUeHHS.

Po0oTa BUKOHaHA SIKICHO, CAaMOCTIIHO, MiJl Yac po3pOOKU CTYAEHT MOKa3aB 3HAHHS Ta BMIHHS
BUKOPHUCTOBYBATH B MPAKTUYHIN TisSITbHOCTI 3acobu po3podku Visual Studio, Azure Dev Ops Ta Azure.
VY mporieci poGOTH CTYJIEHT MPOJEMOHCTPYBAB CEPHO3HE BIIHOMIECHHS 0 POOOTH, BHCOKHH DPIBEHBb
MITOTOBJIEHOCTI 70O CAMOCTIMHMX HAayKOBHX IOCII/DKEHb Ta CaMOCTIHHOI poOOTH, MOKa3aB yMIHHS
KOPUCTYBATUCSI HAYKOBO-TEXHIYHOIO JITEPATypor0, pecypcamMu Mepexi IHTepHEeT, BUABUB TIMOOKI
3HaHHS B 00J1aCTi aIrOPUTMi3allii Ta MOB IIPOTpaMyBaHHS.

ITix yac BUKOHAHHS aTECTAIIHOT poOOTH OyJia MpoaHai3oBaHa MPeIMETHA Tally3b, TOCIIHKEHI
BIUIUB apXITEKTYPHUX CTWJIIB 1 IIa0JIOHIB NPOEKTYBAaHHS Ha aTpuOyTH SKOCTI MPOrpaMHOTO
3a0e3nedeHHs, MPaBUIbHO BHKOHAHA IOCTAaHOBKA 3aBJaHHsA, OOpaHa apxiTeKTypa Ta TEeXHOJOTii,
BUKOHAHO MIPOCKTYBAHHS Ta peasti3allis IPOTOTHITY CUCTEMH €JIEKTPOHHOTO apxiBy. Pe3ynbTaTt poboTn
BIJIMOBI/IalOTh 3aBJAaHHIO Ha aTeCTAIliiHy pOOOTY 1 € aBTEHTHUYHHMH, MPO IO CBIAYUTH HU3BKUN
BIJICOTOK CXOXKOCTI 3 IHIMTUMHU poOoTamu B [HTEpHETI.

Marictpant rp. [13Cm-18-1 ®anatiok I'.O. roToBHUil 10 CaMOCTIHHOI 1HXXEHEPHOI JiSITLHOCTI.
ArtecraniitHy po6oty MoxHa momaTu g0 3axucty B EK 3a cmemiamphicTio 121 — «IHXKeHepis
IPOTrPaMHOro 3a0e3MeueHHs», OCBITHBO-MIpodeciiiHol0 mporpamoio «IIporpamue 3abe3nedeHHs
CHCTEM.

« » 20 p.

KepiBHuk arecrariitHoi poOoTH marictpa
T ITHIC mpod. Hymnap 3.B.

