ИНТЕРПРЕТАЦИЯ И АНАЛИЗ СТАТИСТИЧЕСКИХ ДАННЫХ, ОПИСЫВАЮЩИХ ПРОЦЕССЫ ЭКОНОМИЧЕСКОЙ ДИНАМИКИ

Ляшенко В. В.

Аннотация. Рассмотрены особенности проведения анализа данных, характеризующих процессы пространственно-временной динамики в экономических системах. Обобщены методы такого анализа. Предложен подход, позволяющий интерпретировать и проводить анализ подобных данных. Предложенный подход апробирован для исследования взаимосвязи меду кредитными и депозитными ставками.

Введение. Для решения большинства прикладных задач экономического анализа, так или иначе, возникает необходимость обработки довольно таки большого объема статистической информации. Это связано с тем, что принимаемые решения должны быть взвешены и обоснованы на основе статистически значимых выводов, которые позволяют выявить, прежде всего, существующие тенденции экономического развития. Однако при этом возникает довольно таки сложная задача, взаимозависимая как с обоснованием и построением адекватной модели, объясняющей взаимосвязи между исследуемыми данными, так и с последующим анализом при помощи поостренной модели имеющегося набора статистических данных. Кроме этого на сложность решения поставленной задачи накладывают свой отпечаток проблемы прикладного статистического анализа [1]. Одной из таких проблем, которая в большей степени касается анализа статистических данных, характеризующих процессы экономической динамики, является согласование в одной модели пространственновременных особенностей (характеристик) исследуемых процессов. Иными словами довольно-таки часто в экономических исследованиях возникает задача анализа динамики взаимосвязи некоторого исследуемого экономического процесса (или явления) между различными субъектами рынка на определенном временном интервале. Адекватное решение такой задачи, с одной стороны сталкивается с недостаточным количеством статистических данных относительно пространственного или временного описания исследуемого экономического процесса (явления), а с другой, с необходимостью обработки групп данных различной размерности.

Таким образом, основная <u>цель данной статьи</u> заключается в попытке обоснования некоторого подхода позволяющего интерпретировать и проводить анализ статистических данных, характеризующих процессы пространственновременной динамики в экономических системах.

Примеры экономических процессов пространственно-временной динамики и методы их анализа. Наиболее распространенным примером пространственно-временной динамики в экономических системах можно считать набор данных характеризующих развитие некоторого процесса (явления) во времени с учетом многообразия имеющихся субъектов хозяйствования. Под описание таких процессов (явлений), в частности, можно отнести динамику различных показателей социально-экономического развития страны в разрезе ее отдельных регионов, либо развитие некоторого сектора экономики с учетом функционирования отдельных его составляющих экономических агентов. В качестве примера такого описания следует также назвать динамику развития банковского сектора экономики как с учетом региональных особенностей отдельных территориально-административных единиц страны, так и с учетом наличия определенного числа субъектов хозяйствования, определяющих соответствующую деятельность в том или ином регионе.

Как правило, анализ пространственно-временной динамики в экономических системах сводиться либо к кросс-секционной регрессии, либо к регрессии временных рядов [2]. Первый тип регрессии позволяет оценить взаимосвязь между различными анализируемыми данными в определенный момент времени, второй — взаимосвязь между данными одного (или нескольких) параметра на протяжении некоторого интервала времени. При этом, применение первого типа регрессии, как правило, не учитывает динамики анализируемых данных, а

второго — наличия взаимозависимого влияния между исследуемыми параметрами с точки зрения различных субъектов хозяйствования. В итоге же обобщенная модель анализа может принимать структурированный вид:

$$Y = F(X_1, X_2, ..., X_n) \Leftrightarrow \begin{cases} y^1 = f^1(X_1), \\ y^2 = f^1(X_2), \\ ... \\ y^n = f^n(X_n), \end{cases}$$
(1)

или

$$Y = F(X_1, X_2, ..., X_n) \Leftrightarrow \begin{cases} y^1 = f^1(x_1^1, x_2^1, ..., x_n^1), \\ y^2 = f^2(x_1^2, x_2^2, ..., x_n^2), \\ ... \\ y^i = f^i(x_1^i, x_2^i, ..., x_n^i), \end{cases}$$
(2)

где Y – зависимая переменная, характеризующая некоторые обобщенные ее значение;

 $\{X_n\}$ — множество независимых переменных, характеризующих некоторые обобщенные их значения;

F(...) – функция, отображающая вид регрессионной зависимости между обобщенными значениями исследуемых переменных;

 y^n и y^i – зависимые переменные с учетом анализа влияния одной независимой переменной X_n на всем исследуемом интервале времени или с учетом анализа влияния всех независимых переменных $\left\{x_n^i\right\}$ для некоторого определенного интервала времени і соответственно;

 $f^n(...)$ и $f^i(...)$ – функция, отображающая вид регрессионной зависимости между зависимыми и независимыми переменными, которые представлены не обобщенными значениями.

Тем не менее, такой подход не объясняет в полной мере степени взаимовлияния между различными субъектами хозяйствования, данные о которых и составляют основу пространственно-временной динамики исследуемых процессов (явлений) в экономических системах.

Иным подходом анализа пространственно-временной динамики в экономических системах может быть введение в уравнение регрессии коэффициентов, нивелирующих асимметрию информационного влияния между анализируемыми переменными [3, 4], что в итоге позволят элиминировать влияние исследуемого многообразия, как субъектов хозяйствования, так и отдельных особенностей их территориального распределения. Недостатком такого подхода можно считать отсутствие единой методологической базы построения таких коэффициентов, что затрудняет построение унифицированных процедур анализа.

В качестве еще одного подхода, позволяющего проводить анализ пространственно-временной динамики в экономических системах, следует указать концепцию метода главных компонент [5]. Сущность такой концепции для анализа пространственно-временной динамики может быть сведена к определению наиболее значимого влияния того или иного субъекта хозяйствования, данные которого и используются для последующих исследований. Однако в таком случае, как и в случае построения структурированной системы регрессионных уравнений не учитывается возможное взаимовлияние между различными субъектами хозяйствования.

Основы прикладного регрессионного анализа как база исследования экономических процессов пространственно-временной динамики. Рассматривая основы применимости регрессионных моделей для анализа пространственно-временной динамики, прежде всего, обращает на себя внимание возможность использования многообразия оценок регрессии. В таком многообразии особенно следует выделить использование стандартизированных шкал преобразования в пространстве переменных. Это связано с тем, что оценки параметров регрессии после преобразования оказываются измеренными в единицах среднеквадратических отклонений переменных от своих средних, и они стано-

вятся сопоставимыми между собой и с параметрами других регрессий. В таком случае регрессионное уравнение (далее уравнение первичной оценки регрессии взаимосвязи) принимает вид (рассматривается простейший случай одномерных регрессии для некоторого множества исследуемых субъектов хозяйствования, анализируемые данные которых распределены во времени):

$$Y^* = \eta \cdot X^*, \tag{3}$$

где Y^* – преобразованные значения зависимых переменных регрессионной модели конкретного субъекта хозяйствования,

 X^* — преобразованные значения независимых переменных регрессионной модели конкретного субъекта хозяйствования,

 η – стандартизованные коэффициенты регрессию, которые отражают
 корреляционную взаимосвязь между зависимыми и независимыми переменны ми конкретного субъекта хозяйствования.

В таком случае можно констатировать, что уравнение регрессии (3) в полной мере характеризуется стандартизованным коэффициентом η . Рассматривая некоторую систему таких уравнений для различных множеств данных Y^* и X^* , описывающих динамику функционирования определенного числа субъектов хозяйствования (k), можно утверждать, что она полностью описывается множеством стандартизованных коэффициентов $\{\eta_k\}$. При этом в геометрической интерпретации стандартизированные коэффициенты в плоскости параметров Y^* и X^* отображают угол наклона определенной линии регрессии (рис. 1).

Таким образом, именно такое множество уравнений регрессии можно рассматривать в качестве модели описания пространственно-временной динамики некоторого экономического процесса (явления). Однако при этом возникает вопрос, который касается определения некоторой обобщенной характеристики анализа пространственно-временной динамики. В качестве такой характеристики в простейшем виде, казалось бы, могла быть интегральная характе-

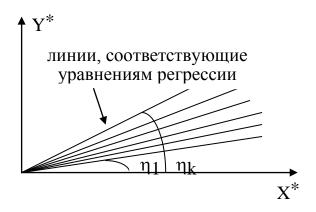


Рис. 1. Графическая интерпретация уравнений регрессии, описываемых стандартизированными коэффициентами

ристика множества стандартизированных коэффициентов $\{\eta_k\}$. Однако данное обобщение не приемлемо, по крайне мере, с точки зрения анализа экономических прочесов (явлений). Это связано с тем, что в таком случае не учитывается в полной мере степень взаимного влияния между различными

субъектами хозяйствования, которые описываются своими уравнениями регрессии — своими стандартизированными коэффициентами регрессии. Для решения поставленной задачи, на наш взгляд, необходимо рассмотреть возможное графическое представление уравнений регрессии в трехмерном пространстве (рис. 2). Такое пространство целесообразно характеризовать следующими параметрами: исследуемая переменная (в частности независимая), которая представлена своими средневзвешенными значениями Y^{**} ; стандартизированные коэффициенты регрессии взаимосвязи отображаемых переменных в трехмерном пространстве в виде их обобщенных средневзвешенных значений от переменной, которая не отображается η^X ; третий параметр — это пространственно-временная характеристика (в данном случае фактор времени). Иначе, можно описать введенные переменные также следующим образом: $Y^{**} \leftrightarrow Y^*$, $\eta^X \leftrightarrow X$, $T \leftrightarrow Y^{**}(T)$, где стандартизированные коэффициенты первичной оценки регрессии взаимосвязи и параметр времени введены неявно.

Таким образом, в трехмерном пространстве графическая интерпретация уравнений регрессии, описываемых стандартизированными коэффициентами, может быть представлена в виде проекций на плоскость $Y^{**}\eta^X$ конуса, который и отображает сущность взаимосвязи анализируемых параметров пространственно-временной динамики некоторого экономического процесса (явления).

Образующие такого конуса отображают динамику взаимосвязи исследуемых параметров по каждому из анализируемых субъектов хозяйствования. При этом в качестве обобщенной характеристики анализа пространственно-временной динамики анализируемого процесса (явления) может выступать величина коэффициен-

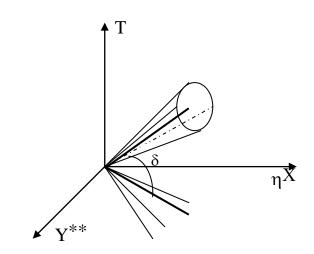


Рис. 2. Трехмерное графическое представление обобщенной характеристики анализа пространственно-временной динамики

та регрессии δ между средневзвешенными значениями выбранной для дальнейшего исследования переменной и стандартизированными коэффициентами регрессии между основными исследуемыми переменными во взаимной их временной динамике:

$$Y^{**}(T) = \delta \cdot \eta^{X}(T). \tag{4}$$

Интерпретировать такой коэффициент δ можно как угол наклона конуса, отображающего сущность взаимосвязи анализируемых параметров пространственно-временной динамики исследуемого экономического процесса (явления), к плоскости $Y^{**}\eta^X$. С экономической точки зрения, такая интерпретация может обозначать качество развития (функционирования) исследуемого процесса (явления). При этом незначительная величина такого коэффициента свидетельствует о неоднозначности и недостаточности исследуемого процесса (явления), в тоже время его значительная величина, что соответствует удаленности конуса от плоскости $Y^{**}\eta^X$, свидетельствует о динамичности развития рассматриваемого процесса (явления).

Исследование взаимосвязи меду кредитными и депозитными ставками с учетом их регионального изменения как пример пространственно-

временной динамики в экономических системах. Анализируя обобщенную динамику взаимосвязи между величинами кредитных и депозитных ставок, по банковской системе Украины в целом, приходим к выводу о наличии незначительной, но значимой корреляционной взаимосвязи:

$$Ks = 0.347 \cdot Ds, \qquad (5)$$

где Ks – преобразованные по стандартной шкале значения ежемесячных средневзвешенных кредитных ставок на протяжении 2004–2006 годов;

Ds – преобразованные по стандартной шкале значения ежемесячных средневзвешенных депозитных ставок на протяжении 2004–2006 годов.

Однако даже простое исследование динамики рассматриваемых ставок позволяет сделать вывод о неоднозначности развития их взаимосвязи (рис. 3, обобщено по данным [6]). Более того, анализ данных рис. 3 не свидетельствует о наличии явной тенденции уменьшения величины спрэда между анализируемыми ставками, о чем в своих исследованиях говорят различные авторы [3, 7].

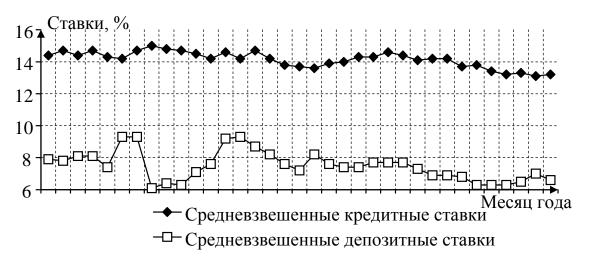


Рис. 3. Динамика средневзвешенных кредитных и депозитных ставок на протяжении 2004-2006 годов (в целом по Украине)

Данное обстоятельство приводит к необходимости проведения анализа пространственно-временной динамики взаимосвязи кредитных и депозитных ставок, где в качестве субъектов хозяйствования целесообразно рассматривать,

по крайне мере, отдельные регионы Украины. Данное утверждение основано на исследованиях проведенных в работе [7]. Рассматривая характеристики такой динамики (на протяжении 2004—2006 годов) можно прийти к выводу о наличии неоднозначных тенденций взаимосвязи между кредитными и депозитными ставками в разрезе отдельных регионов Украины (табл. 1).

Таблица 1. Отдельные статистические характеристики изменения кредитных и депозитных ставок в разрезе регионов Украины

Регионы	Кредитные ставки			Депозитные ставки		
	min	max	disp	min	max	disp
Автономная республика Крым	15,9	19,8	1,70	5,60	9,90	0,57
Винницкая обл.	15,11	20,43	2,07	5,91	10,66	1,24
Волынская обл.	14,54	18,12	1,22	6,07	12,39	1,99
Днепропетровская обл.	13,27	15,53	0,31	5,84	14,57	3,85
Донецкая обл.	13,58	16,24	0,40	4,19	9,23	1,12
Житомирская обл.	15,42	19,61	1,35	5,39	9,74	0,86
Закарпатская обл.	14,56	17,99	0,89	4,82	8,94	0,75
Запорожская обл.	13,54	16,20	0,38	6,96	9,53	0,39
Ивано-Франковска обл.	13,49	16,98	0,89	6,13	12,00	1,79
Киевская обл.	15,14	20,60	2,38	5,58	12,51	1,69
Кировоградская обл.	16,38	20,31	1,13	6,02	9,35	0,59
Луганская обл.	15,48	18,94	0,89	4,60	8,54	1,01
Львовская обл.	13,96	16,65	0,55	5,72	9,23	0,50
Николаевская обл.	13,52	17,62	1,02	6,32	9,57	0,65
Одесская обл.	14,10	16,28	0,34	4,16	8,48	0,98
Полтавская обл.	14,09	22,26	2,67	7,89	11,83	0,86
Ровненская обл.	14,87	19,48	1,95	6,43	10,50	1,18
Сумская обл.	15,47	19,52	1,49	7,02	11,41	1,03
Тернопольская обл.	15,26	19,01	1,39	4,75	8,91	0,90
Харьковская обл.	13,01	19,39	2,17	4,55	11,51	1,38

Херсонская обл.	14,81	19,56	1,78	4,41	10,01	1,25
Хмельницкая обл.	14,78	20,13	1,79	6,09	9,33	0,53
Черкасская обл.	14,43	22,16	2,20	6,90	11,50	1,13
Черновицкая обл.	14,92	19,43	1,69	5,24	8,63	0,95
Черниговская обл.	16,04	20,04	0,81	2,52	10,05	3,19

Более того, неоднозначной является и динамика развития такой взаимосвязи. Иными словами для одних регионов можно наблюдать положительную

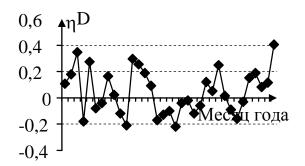


Рис. 4. Динамика стандартизированных коэффициентов регрессии на различных интервалах времени между кредитными и депозитными ставками в их региональном аспекте

корреляцию взаимосвязи кредитных и депозитных ставок для других отрицательную. Подтверждением неоднозначности взаимосвязи между кредитными и депозитными ставками в их региональном аспекте является также динамика стандартизированных коэффициентов регрессии на различных интервалах времени (рис. 4). При этом, как видно из данных рис. 4, такая неоднозначность в равной мере имеет

положительную и отрицательную взаимосвязь, которая, как показали дополнительные исследования, практически не является сезонной.

Полученные стандартизованные коэффициенты (η^{Ds}) можно использовать для получения обобщенной характеристики анализа пространственновременной взаимосвязи кредитных и депозитных ставок, где в качестве зависимой переменной выступают средневзвешенные их показатели в целом по Украине (Ks^*):

$$Ks^* = -0.07 \cdot \eta^{Ds}$$
. (6)

Исходя из данных уравнения (6) можно сделать вывод, что процессы пространственно-временной динамики взаимосвязи кредитных и депозитных ста-

вок не являются достаточно развитыми, что и сдерживает развитие кредитного рынка в Украине. При этом достоверность такого вывода полностью коррелирует с результатами исследований, проведенными в работе [7].

При этом следует отметить, что, в частности, пространственно-временная зависимость между кредитными и депозитными ставками на протяжении 2006 года была более коррелированной. Обобщенный коэффициент такой зависимости равнялся -0,64. Иными словами, можно утверждать, что на протяжении последнего времени между кредитными и депозитными ставками все-таки наблюдается тенденция отрицательной корреляции, что и может быть подтверждением других исследований относительно уменьшения величины спрэда между анализируемыми величинами. Это также может служить подтверждением правильности выбранного направления для проведения анализ статистических данных, характеризующих процессы пространственно-временной динамики в экономических системах.

Выводы. Предложен подход для анализа пространственно-временной динамики в экономических системах. Адекватность проведения подобного анализа апробирована на реальных данных для выявления существующей динамики взаимозависимости между кредитными и депозитными ставками. В качестве дальнейших исследований по данному направлению целесообразным является проведение обоснования строгой формализация предложенного подхода, и распространение его на случай множественной регрессии.

Литература.

- 1. Суслов В.И., Ибрагимов Н.М., Талышева Л.П., Цыплаков А.А. Эконометрия. Новосибирск: НГУ, 2003. 560 с.
- 2. Уотшем Т.Дж., Парамоу К. Количественные методы в финансах. М.: Финансы, ЮНИТИ, 1999. 527 с.
- 3. Азаренкова Г.М. Фінансові потоки в системі економічних відносин. X.: ВД «ІНЖЕК», 2006. – 328 с.
 - 4. Марьянчик И.В. Структура рынка и прибыльность в переходных эко-

- номиках. Пример Украины. М.: EERC. 2003. 44 с.
- 5. Єріна А.М. Статистичне моделювання та прогнозування. К.:КНЕУ, $2001.-170~\mathrm{c}.$
 - 6. Кредитные и депозитные ставки. Режим доступу: www.bank.gov.ua.
- 7. Христофорова О.М. Аналіз впливу банківських відсотків на сталість руху вихідних кредитних потоків // Вісник Міжнародного слов'янського університету. 2004. Т. VII. $\mathbb{N} \ 1.$ С. 9-13.