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Therefore, study of capabilities of synthesis by ray trac-
ing of images of smooth spatial curves constructed by the 
method of spherical interpolation is a crucial issue.

2. Literature review and problem statement

The methods for constructing curves and surfaces that 
interpolate points set in space largely determine complexity 
of the algorithm for synthesizing images of objects and real-
ism of the synthesized scene. Comparison of various ways of 
describing curves and surfaces in solving problems of image 
synthesis by the method of ray tracing is given hereinafter. 
Objects with a triangulated surface without smoothing are 
used alongside the method of ray tracing in [3]. A method 
was proposed for finding the point of intersection of a pro-
jection ray (PR) with a triangle. At the same time, this ap-
proach significantly worsens realism of synthesized objects 
since the surface geometry is violated and physically correct 
illumination cannot be calculated.

One of convenient mathematical methods for describing 
curvilinear forms of objects consists in their representation 
with the help of pieces of parametric curves, surfaces or 
splines. Finding the point of intersection of a PR with such 
surfaces is not an easy task. An algorithm for finding point 
of intersection of a PR with NURBS splines was proposed in 
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1. Introduction

The main trend in modern computer graphics consists in 
strengthening realism of synthesized scenes [1]. Meeting the 
requirement of high realism is an important factor, for exam-
ple, in designing visualization systems (VS) for simulators 
of a variety of vehicles (e. g., aviation training simulators) or 
those used in film making with the use of computer graphics, 
etc. One possible way to cope with this problem is to apply the 
ray tracing method in solving problems of image synthesis [2].

The ray tracing method has been actively developing in 
recent years. It enables synthesis of images of analytically 
described surfaces without their preliminary triangulation, 
which significantly increases realism of the synthesized 
images of objects. At the same time, the base of models of 
objects and software accumulated in the computer graphics 
are oriented to the curves set by straight line segments and 
triangulated surfaces. In the classical computer graphics, 
this representation is necessary to synthesize curves and 
surfaces by the rasterization method.

Combination of the ray tracing method with the accumu-
lated base of object models and software should be realized 
preserving features of high realism of the method.

Solution of this problem is greatly simplified if the meth-
od of spherical interpolation is used to interpolate curves 
and surfaces.
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[4]. This algorithm is based on the well-known Bézier’s clip-
ping method. The author proposed to transform the NURBS 
surface into rational Bezier regions at the stage of preliminary 
preparation of the algorithm to work which requires addition-
al computational costs. A complex approach is presented in 
[5]. Parametrically free surface forms and the most suitable 
for them way of visualization by the ray tracing method are 
studied there. In general, analysis of works [4, 5] makes it 
possible to note that the use of NURBS and other parametric 
curves and surfaces significantly lengthens time of rendering 
the scene by the ray tracing method. This makes it difficult to 
use standard algorithms for image synthesis with the help of 
the ray tracing method. This feature of parametric description 
has made the researchers resort to algebraic curves and sur-
faces. A method for approximating a given set of ordered data 
points using biarc interpolation was proposed in [6]. There is 
no complex approach: construction of surfaces by this method 
and visualization by the ray tracing method are not considered. 
Construction of spherical splines for interpolation is discussed 
in [7]. In view of complexity, it is proposed to use this method 
for solving problems arising in geophysics and for a realistic 
description of the Earth’s geopotential. Local mixing of radi-
ally basic functions was proposed in [8] to construct surfaces. 
When using this approach, difficulties with boundary bonding 
arise in interpolation of triangulated surfaces. The interpola-
tion surface for a triangle was constructed in [9] by mixing two 
algebraic surfaces of the second and third order. To increase 
variety of forms of the interpolation surface, it was proposed 
to blend two algebraic surfaces of the second and third order. 
Disadvantage of this approach consists in complexity of cal-
culation of such surfaces. The lack of an algorithm for finding 
point of intersection of a PR with the surface makes it difficult 
to use this method in constructing VS. It was proposed in [10] 
to use an algebraic surface of the second order as perturbation 
functions but an initial triangulation net of high detail is re-
quired for interpolation. Besides, formation of such a surface 
is multi-stage and the time of image synthesis increases if 
the surface geometry alters. According to the author of this 
method, it can be used in systems of interactive volumetric 
oriented geometric modeling. It was proposed in [11] to apply 
the method of spherical interpolation which is based on the use 
of the simplest quadric, sphere. An example of construction of 
a spatial curve was considered. With this approach, the follow-
ing problems can be solved. Restoration of a smooth surface is 
possible using an existing model base with a triangulated sur-
face. In this case, there is no need to interpolate illumination 
according to Gouraud or Phong shading. When calculating 
glare, there is no need to calculate bidirectional reflectance 
distribution function (BRDF) and perspective is taken into 
account when calculating illumination. An undistorted by 
faces shadow shape is obtained in mapping. It is easier to apply 
a texture and much more. An example of constructing a curve 
by the method of spherical interpolation and its visualization 
by ray tracing is considered in [12].

Thus, there is a problem in computer graphics related with 
combining highly realistic image synthesis by the method of 
ray tracing with the accumulated base of model objects hav-
ing triangulated surfaces and linearly interpolated curves. 
The first part of this problem solution consists in necessity 
of further studies of the interpolation methods based on al-
gebraic surfaces, quadrics. It is necessary that this method be 
uniform (universal) both for constructing curves and surfac-
es. The second part of the problem solution is elaboration of 
the main stages (algorithms) of visualization by the method 

of ray tracing of arbitrary curves and surfaces constructed 
using algebraic surfaces. These surfaces make it possible to 
perform operation of tracing PR in a simplest way. This work 
is part of such studies. The work presents a complex solution 
for constructing spatial curves by the method of spherical in-
terpolation and synthesis of such curve image by ray tracing 
based on the proposed iterative process.

3. The aim and objectives of the study 

This work objective was to develop stages of image syn-
thesis by ray tracing of spatial curves constructed by the 
method of spherical interpolation.

To achieve this objective, the following tasks were ac-
complished:

– for visualization, construct an iterative process (IP) of 
calculation of the point in the PR nearest to some point in 
the mathematical spatial curve;

– elaborate stages of the construction of points in the 
spatial curve that would coincide with the step of the iter-
ative calculation process which allows one to perform visu-
alization algorithm and plot the curve point in one IP pass.

4. The main stages of synthesis of the spatial curve image 

4. 1. Features of construction of the projection ray
The process of synthesizing images of spatial mathemati-

cal curves by the method of ray tracing is complicated by the 
fact that there is no size of this object (for example, the size 
of the cross section of such a curve). In accordance with the 
method of ray tracing, it is necessary to find the intersection 
point of the projection ray (PR) with the object (it has no 
size in this case). In order to “capture” such an object, in-
troduce the concept of pixel visibility pyramid (PVP). This 
approach makes it possible to estimate whether the mathe-
matical point in the curve falls into the region of space allo-
cated to PVP, that is, to verify the “capture” operation. In 
this case, the minimum widths of the line of the synthesized 
image in a screen are limited by the pixel dimensions. Basic 
relationships for construction of PVP are shown below.  
Fig. 1 presents geometric elements of the problem.

Fig. 1. Geometric elements of the problem
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The right coordinate system XYZ is shown here (the z 
axis is directed upwards). The geometric scheme realizes 
centroprojective transformation of the synthesized spatial 
curve image onto the screen. In the scene bounded by a 
cube in Fig. 1, points (p1–p12) connected by straight lines 
present the initial data for the synthesized smooth curve. 
These initial data are supplemented with unit normals at 
each point n1{n1x, n1y, n1z}–n12 [11]. A flat screen is shown: 
(ps1–ps4) are set in XYZ coordinate system. Assume that 
the screen pixel is a square with vertices set by points  
(px1–px4) in XYZ coordinate system. In this case, the four 
planes forming the PVP can be determined for three points. 
One point, the center of projection h, is common for all 
planes. Two more points for each of the four planes are de-
termined at the pixel vertices. For definiteness, denote these 
planes fp1–fp4 by the numbers of the first points (of two) 
denoting the pixel vertices:

fp1 (x, y, z); fp2 (x, y, z); fp3 (x, y, z); fp4 (x, y, z).	  (1)

Relationships (1) will be used to perform “capture” test.

4. 2. Interpolation region. Sphere of greatest curva-
ture

According to [11], the method of spherical interpolation 
makes it possible to construct a smooth curve, both locally 
for an individual segment and as a whole for all segments. 
Therefore, in outlining of the main synthesis, the process 
of calculations for a local (individual) segment will be con-
sidered. Since hereinafter, vector quantities will be mainly 
written in relationships, they will not be denoted by an ar-
row. It is also important to note here that the points specified 
in XYZ coordinate system can be defined as the radius-vec-
tor of these points.

The following notation was adopted in Fig. 1: h is the 
radius-vector of the projection center; v is the observation 
vector connecting the point h with an arbitrary pixel in 
the screen. By analogy with [12], allocate a region of inter-
polation for each segment. To do this, construct a sphere 
of greatest curvature for the chosen segment. This sphere 
limits the space in such a way that any spatial curve con-
structed in a segment, e. g. p1, p2, will be inside this sphere. 
Define the radius-vector c0 for the middle of segment p1, 
p2 in which center of the sphere of greatest curvature is 
located

( )0 1 2c p p / 2.= + 				     (2)

Write the equation for the sphere of greatest curvature 
in a vector form:

0r c R 0,- - = 					     (3)

where r is radius-vector specifying a point in the surface.

4. 3. Test for checking transition of the projection 
beam in the interpolation region

Write in a parametric form the equation of straight line 
(projection ray is PR hereinafter) which coincides with the 
observation vector

( )p t h v t,= + ⋅ 			   (4)

where t is parameter, scalar,

1 3px px
v h.

2
+

= -

Write down equation of the plane passing through the 
center of the sphere of greatest curvature and perpendicular 
to the observation vector

( )0r c v 0.- ⋅ =  					     (5)

Find a joint solution of equations (4) and (5) with respect 
to t and substitute the obtained value in (4). Thus, the radi-
us-vector p(t0) is obtained which determines, for a given val-
ue of t0, position of the point of intersection p0(x, y, z) of the 
projection ray with surface (5), p0 henceforth. Write down 
distance l0 of the point p0 from the center c0 of the sphere of 
greatest curvature:

l0=|p0–c0|.

To evaluate the test, calculate the predicate:

0
1

1,l R count,
pred

0,background color.

£ -
= 		   (6)

If pred1=0, a background color is assigned to the pixel, 
otherwise count for this projection ray continues. This ap-
proach allows one to reduce counting time since there is a 
lot of background space between the interpolation regions.

4. 4. Relationships for construction of reference 
spheres

To simplify notation, assume that the segment p1, p2 is 
chosen in the previous step.

The vector field of the guides in which, properly, points 
of the interpolating curve constructed by the method of 
spherical interpolation will actually lie are defined as the 
straight lines perpendicular to the straight line connecting 
two consecutive points p1, p2 in the interpolation region 
[11]. The main feature of the method of spherical interpo-
lation is the use of such quadric as a sphere for construct-
ing a spatial curve of arbitrary shape between two points. 
The presence of normals to the future curve at each point 
through which it passes allows one to obtain, along with 
connectivity (C0), continuity of the first derivative, i.e. 
smoothness (C1) of the synthesized curve [1, 11]. In the 
process of synthesizing image of the curve, perform the 
following geometric constructions. Draw two spheres (so-
called reference spheres) through the ends of a segment of 
each straight line, for example, through the points p1, p2. 
In this case, the center o1 of one sphere must be located in 
the line passing through the point p1 and coinciding with 
the vector n1 of the normal at this point. The center o2 
of the second sphere must be in the straight line passing 
through the point p2 and coinciding with the vector of the 
normal n2.

The relationships for the equations of these lines have 
the form:

1 1 1po p n t;= + ⋅  2 2 2po p n t.= + ⋅ 			   (7)

Introduce notation and write the equation for the plane 
passing through the point (2) perpendicular to this segment

( ) ( )( )0 0 2 1f r r c p p .= - - 				    (8)
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Find joint solution of equations (7) for each straight line 
and (8) relative to t and substitute the obtained values in 
(7). Thus, radius-vectors for the centers o1, o2 of the refer-
ence spheres are obtained.

Write down the scalar values of the radii for the reference 
spheres:

1 1 1 2 2 2R p o ;R p o .= − = −

Write down final equations for the reference spheres in 
a vector form:

1 1 2 2r o R 0; r o R 0.− − = − − = 			   (9)

The reference spheres do not change during the curve 
synthesis.

4. 5. Relationships for constructing spatial curve
All steps of constructing spatial curve by the method of 

spherical interpolation are described in detail in [11]. Write 
the equation of the straight line parallel to the vector of the 
segment p2–p1 and passing through, e. g. the p1 point: 

( ) ( )1 2 1p t p p p t.= + − ⋅ 				    (10)

Construct vector field of the guides [11]. Write down 
vectors for each reference sphere:

1 0 1vo c ,o= − 2 0 2vo c .o= − 	  (11)

Next, write down for each reference sphere equations of 
the lines passing through arbitrary points p(t) in segment p1, 
p2 of the straight line (10) and parallel to the corresponding 
vectors (11):

 
( ) o

1 1l p t vo t ,+ ⋅=  ( ) 0
2 2l p t vo t .+ ⋅= 	  (12)

Substitute (12) into the equations of spheres (9) and find 
values of t0 at which intersection of the lines (12) with the 
spheres (9) respectively is done. Let they be 0

11t ,  0
12t  for the 

first sphere and 0
21t ,  0

22t . for the second sphere. Substitute 
these values into equation (12) and obtain values of coor-
dinates XYZ for each point of intersection. There are two 
intersection points for each sphere. Let they be ( )0 0

11 12p ,p , 
( )0 0

21 22p ,p  for the first and second sphere, respectively. Make 
use of [11] for a correct choice of roots. Let they be, for ex-
ample, 0

11p  and 0
21p . Further, according to [11], write down 

relations for the directing vectors:

( ) ( )0 0
11 11 21 21S p p t ;S p p t .= − = −

Finally, expression for the radius-vector specifying a 
point in the constructed curve, e. g. in the segment between 
points p1, p2, is written as relationship:

( ) ( ) ( )( )11 21s t p t s 1 t s t ,= + ⋅− +  			   (13)

where t is a parameter that varies from zero to one in seg-
ment p1, p2. The second term in equation (13) forms the 
vector field of the guides in which points of the interpolat-
ing curve actually lie. When parameter t is changed, linear 
interpolation of vectors s11, s21 is performed. As a result, a 
certain ruled surface is formed in which directing vectors 

perpendicular to the segment p1, p2 lie as it follows from 
relations (11), (12).

4. 6. Construction of the iterative process
In a case if the test (6) yields pred1=1, find segment of PR 

which fell into the region of interpolation. To this end, solve 
the system of equations (3), (4) relative to the t parameter. 
In a general case, solution of intersection with the sphere 
gives two roots: – t1, t2. Substitute these roots in equation (4)  
and obtain coordinates of the points of intersection with 
coordinate system XYZ. Let these be points p(t1), p(t2). 
Write down the equation of straight line for a part of the PR 
segment with its ends at these points. Then equation for this 
straight line coinciding with the PR has the form: 

( ) ( ) ( ) ( )( )1 2 1pr t p t �p t p t t.= + − ⋅ 		  (14)

In a general case, it is necessary to find at least one point 
in line (14) which closest approaches the constructed curve 
(13). Calculate these points using an iterative algorithm 
that determines n1 orders of the unknown number in each 
iteration step. In this case, the number of iterations will be 
equal to:

1K ,n / n= 					     (15)

where n is the number of orders of the unknown number. 
Assume that n and n1 are multiples.

Hereinafter, to construct an iteration process (IP), refer 
to the work of one of the authors of this article [13] in which 
it is proposed to represent parameter t as:

k k 1 k kt t ,−= + η ⋅δ 				    (16)

where k is the step number of iterations, k∈{1, 2, ...,K}; δk is 
the quantum of the k-th step of iterations, δk=2–n1·k; ηk is a 
positive coefficient determining the number of quanta used 
in the k-th step of iterations.

The goal of each k-th step is definition of a segment in the 
line (14) (hereinafter, selected segment) within the boundar-
ies of which the result of joint solution of equations (13), (14)  
can be found. It is important to note that the selected seg-
ment (SS) decreases in 2n1 in each next step of IP. In this 
case, joint solution is understood as finding a region of space 
in which curve (13) and straight line (14) are located most 
closely (in a particular case, they coincide). Main stages of 
computation performed in the k-th step of iterations of IP are 
considered below.

Stage 1. Substitute parameter value in equation (14) in 
this form:

( )k 1 kpr t j ,− + ⋅δ 			    (17)

where tk-1 is the parameter calculated in a general case in 
the previous step of IP. Since consideration is started from 
k=1, tk–1=t0=0 is obtained. Assume that the t parameter 
in (14) specifies length of segment p(t2)–p(t1) in relative 
units. At this stage, this segment and all subsequent selected 
segments are divided into 2n1 equal segments. Denote the 
radius-vectors of the end points of these equal segments at 
the k-th step taking into account (14) with k

jpr ,  where j 
index is introduced for numbering of points bounding equal 
segments k

jpr ,  where
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{ } 1nj 0,1,2, J , J 2 .Î = 			    (18)

In this case, the quantum value δk=2-n1 for k=1. Taking 
into account (14), agree that j index will be counted in a 
direction from point p(t1) to point p(t2).

Stage 2. Draw planes perpendicular to the segment, 
e. g. p1, p2, for which joint solution of equations (13), 
(14) is searched through points 1

jpr  of the ends of equal 
segments. Write down equation of these planes for the  
k-th step:

( ) ( )( )k k
j j 2 1f r r pr p p .= - -  		  (19)

Next, find joint solutions for equations (10) and (19) 
relative to t for each j at k=1. Denote these solutions as 

1 1 1
0 1 Jt ,t , t .  In total, j+1 solutions are obtained. Substituting 

these solutions in (13) and taking into account relationships 
(7)–(12), coordinates for j+1 corresponding points in the in-
terpolating curve of segment p1, p2 are obtained. Denote the 
radius-vectors for the computed points of the interpolating 
curve (with k=1) as follows:

( ) ( ) ( )1 1 1
0 1 Js t ,és t , ,és t .…  		   (20)

Stage 3. Define the selected segment. To do this, find 
differences between the radius-vectors (17) and (20) for 
all j. Denote the newly obtained difference vectors as 
follows:

1 1 1
0 1 Jd ,éd , ,éd .é… 				     (21)

Next, find modules k
jmd  of the resulting vectors (21) 

and sum them in pairs for each j-th segment. Denote these 
sums as follows:

k k k
j j j 1sd md md ,+= + 				    (22)

where subscripts j and j+1 are initial and final indices, re-
spectively.

Find minimal sum in the resulting set of sums (22). In a 
general case, such sums can be more than one. Then choose 
a sum with a minimum j value. The segment in the line (14) 
with minimal j value and with minimum sum (22) is de-
fined as the selected segment. In the given k-th step (or 
iteration), this segment is the closest to some point of the 
interpolating curve.

Stage 4. Define scalar factor ηk for relationship (16)

( )k k
j ,η = 				    (23)

where (j)k is value of the initial index of the selected segment 
at the previous stage of the k-th step.

Stage 5. Calculate parameter tk in the iterative equation 
(16) taking into account ηk=η1 determined at the previous 
stage. Initial conditions at k=1 for the IP are tk-1=t0=0. The 
obtained value of the parameter in this step of iteration when 
substituted in (14) makes it possible to calculate radius-vec-
tor of the initial point of the selected segment in coordinate 
system XYZ.

Calculation of all IP steps for stages 1–5 are continued 
until k=K. In the last step of the algorithm, a selected seg-
ment is obtained in the PR. All points of this segment are 
closest to a certain point of the interpolating curve with an 
accuracy determined by the number of steps of the IP.

4. 7. The test of performance of the “capture” operation
To determine whether a particular point of the interpo-

lating curve belongs to the corresponding PR, perform a test 
to know whether this point was got in the PVP. As a test 
point, the curve (13) point can be taken which corresponds 
e. g. to the initial index of the selected segment in the PR 
in the last algorithm step. Let this be in accordance with 
(20): s( k

0t ). To perform the test, substitute the value px= 
=(px1+px3)/2 in (1) and obtain a set of 4 numbers:

( )p1f px , ( )p2f px , ( )p3f px , ( )p4f px . 		  (24)

Select signs of numbers in (24) and form a set of “stan-
dard signs” for the region of space bounded by PVP:

( ) ( ) ( ) ( ){ }
sign1

p1 p2 p3 p4

f

signf px ,signf px ,signf px ,signf px .

=

=  	(25)

Use relationships (1) and (25) to identify position of 
any point of the interpolating curve relative to the region of 
space bounded by PVP. In analogy with (25), write the sign 
function for a point s( k

0t ) closest to the selected segment in 
the PR:

To evaluate the test, calculate the predicate using rela-
tions (25) and (26):

sign2 sign1
2

1, f f pixel color,
pred

0, background color.

= -
=  

Items 4.1–4.7 are performed for each PR. The process of 
image construction can be materially accelerated if classifi-
cation of the points of the initial data (p1–p12) is carried out 
in advance, by analogy with [12].

5. Discussion of the results: simulation of synthesis of the 
spatial curve image

Simulation was performed using Wolfram Mathematica 
mathematical software package. Fig. 2 shows the result ob-
tained in simulation of the image synthesis by ray tracing of 
the spatial interpolating curve drawn through points p1–p12 
(Fig. 1) taking into account the order of their assignment 
and constructed in accordance with the method of spherical 
interpolation.

Fig. 2. Simulation results

( )( ) ( )( ) ( )( ) ( )( ){ }
sign2

K K K K
p1 0 p2 0 p3 0 p4 0

f

signf s t ,signf s t ,signf s t ,signf s t . (26)

=

=
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The simulation task consisted of checking provisions 
stated in the theoretical part, namely:

– verification of correctness of work of the visualization 
algorithm based on the studied iterative process of calculat-
ing the point in the projection ray closest to a certain point 
in the mathematical spatial curve;

– verification of the algorithm for constructing points 
of a spatial curve with its step coinciding with the step of 
the iterative calculation process which makes it possible to 
perform the visualization algorithm and plot a curve point 
in a single pass of the IP.

The simulation results fully confirmed correctness of all 
theoretical positions set forth in the paper.

The obtained results differ from the known data in such 
aspects:

– application of the simplest quadric, sphere, for interpola-
tion of spatial curves. The obtained curves satisfy the condition 
of connectedness of the curve, C0, and the condition of continu-
ity of the first derivative, C1. When constructing a spatial curve 
passing through arbitrarily taken points, it is not necessary to 
use algebraic polynomials of the third and higher degree; 

– the proposed iterative process for visualization has 
a potential of wide parallelling of computations. In the IP 
algorithm, it is possible to adjust the number of orders of 
the unknown number determined in a single step, which is 
limited just by hardware.

As a disadvantage, it should be noted that a rather high 
performance of computing facilities is necessary for realiza-
tion of this method, especially when constructing surfaces. 
This method of synthesis of spatial curve images is the result 
of earlier studies. It is supposed that further research will be 
aimed at development of image synthesis by ray tracing of 
surfaces constructed by the method of spherical interpola-

tion as well as reduction of the counting time. The performed 
studies can be applied in various areas of computer graphics, 
e. g., in designing visualization systems (VS) for training 
simulators of vehicles for various purposes, such as aviation 
training simulators, etc., in making art films using computer 
graphics, etc.

6. Conclusions

1. To visualize the spatial curve, an iterative process 
(IP) was developed for calculating a point in the projection 
ray closest to some point in a mathematical spatial curve. 
To establish correspondence of a curve point to a pixel in a 
computer monitor screen, position of this point was evalu-
ated relative to the region of space bounded by the pyramid 
of pixel visibility. The proposed IP has potentials for a wide 
parallelization of computations.

2. An algorithm for constructing points in a spatial curve 
was developed with its step coinciding with the step of the 
iterative calculation process which makes it possible to per-
form visualization algorithm and plot a curve point in one 
pass of the IP. To this end, the point in the PR and the di-
rection vector of the curve at each step of iteration lie in the 
same plane perpendicular to the interpolated segment. This 
approach allows one to determine modulus of the directing 
vector for a subsequent stage of this iteration step. The pro-
posed interpolation algorithm is based on the simplest alge-
braic surface, sphere, and does not use algebraic polynomials 
of the third and higher degrees.

Thus, feasibility of image synthesis by ray tracing of 
spatial curves constructed by the method of spherical inter-
polation has been demonstrated.
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