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RAPIDLY CONVERGENT «SUPERRESOLVING» DIRECTION-OF-ARRIVAL
ESTIMATION OF NOISE RADIATION SOURCES IN ADAPTIVE ARRAYS

D. I. LEKHOVYTSKIY, YA. S. SHIFRIN

The paper summarizes and develops the results obtained by the authors in [11, 33, 49, 50]. We compare the
efficiencies of some “superresolving” methods for estimation of a spatial spectrum of Gaussian noise in an
antenna array for the case of a finite-size sample in maximum likelihood estimates of their correlation matri-
ces. The comparison is based on an analysis of exact and empirical random parameters distribution laws that
determine the methods resolution by statistical and non-statistical criteria. Significant differences in these
laws are shown owing to which conclusions about comparative merits of different methods, based on their
asymptotic properties analysis, can change to opposite ones under conditions of small samples. Causes of
the difference and the possibilities following from their analysis to improve the convergence rate of adaptive
methods for noise sources direction-of-arrival estimation are studied.

Keywords: direction-of-arrival estimation, «superresolving» space-time spectral analysis, convergence rate,
statistical analysis, resolution, finite sample, adaptive lattice filter.

I. INTRODUCTION AND STATEMENT
OF THE PROBLEM

Practical needs for “super-Rayleigh” noise radia-
tion sources resolution and heightening their angular
coordinates measurements accuracy have stimulated
the development of a great amount of “superresolv-
ing” methods of direction of arrival (DoA) estima-
tion in antenna arrays (AA) [1 — 19, etc]. Yacov D.
Shirman was first who established the “superresolu-
tion” fundamental possibility, sense and extreme per-
formance for different applications [20, 21, 34, 35].
An important role in the development of this line of
investigation was played by works of J.P. Burg [24]
and J. Capon [36]. A flow of publications on this topic
including those of review nature, that then followed,
goes far beyond the works referred to in this paper.

Merits of the “superresolving” methods have
been provided by the processing optimization (by
these or those criteria) based on statistical character-
istics of AA output signals (multivariate probability
density functions). Under typical in practice condi-
tions of parametric a priori uncertainty, in synthe-
sized algorithms, instead of a priori unknown true
parameters, these or those their estimates obtained
by finite-size training samples are used. Stipulated by
this randomness of the estimates entails randomness
of parameters characterizing efficiencies of methods
used. Their statistically correct comparison therefore
has to be based on an analysis of distribution laws of
relevant random parameters.

Great attention in the literature is paid to the
statistical investigations of “superresolving” methods
of space-time spectral analysis (ST SA) [1 — 16, 22,
26, etc] including those for solving problems of point
noise sources direction finding in AA. Nevertheless,
due to a lot of the methods, problems solved with
them, and criteria used, the investigations can not
be considered as completed. As a development of
[15 — 19], in the paper, exact or empirical (by simula-
tion results) distribution laws are analyzed for spectral
functions (SF) of some known ST SA methods given
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a finite size sample in the maximum likelihood (ML)
estimate of the correlation matrix (CM) of Gaussian
noise at AA outputs.

Beside of self-importance, the analysis allows
substantiating the simple modifications of considered
methods which significantly improve their statistical
properties [33].

The paper is organized as follows. Initial mod-
els and assumptions are formulated in Section II.
Potentialities of Gaussian noisy (in time) quasi-
harmonic (in space) signals resolution-detection by
means of optimal (by the Neyman-Pearson crite-
rion) processing under hypothetic conditions of full
a priori definiteness are considered in Section III. In
Section IV, after the technique is briefly described,
exact probability density functions (pdf) of random
SFs are presented for some space-time spectral analy-
sis methods given different training sample (herein-
after termed sample) sizes in ML estimates of CM.
Their resolutions on this basis are compared by sta-
tistical (Section V) and non-statistical (Section VI)
criteria. Reasons of the difference and following from
them ways to improve statistical properties of consid-
ered ST SA methods are discussed in Section VII. In
Section VIII, new kinds of “superresolving” ST SA
methods being highly efficient under conditions of
small-size samples are substantiated.

I1. INITIAL RELATIONSHIPS,
MODELS AND ASSUMPTIONS

A. Random  spectral functions (SF)

Ry (oc):S(oc,‘i’) of considered ST SA methods look
like

S1(a)=(x" (o) ¥ -x(a)) (MV)

. ) S
Sa(at) =, | €, - ¥-x(a) ", mel,M, (LP) (1)
S (o) = 2mm X (u)"l"xz(a), me M, (MCA)

|ej,, ~‘I’~x(0c)|
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&(@:%, (BL)
Ss(0)=(x" () ¥ -x(a)) . (TN)

The SF S (o) correspondsto Capon’s “Minimum
Variance® (MV) method [1 -6, 14, 22, 25]; S, ()
to Burg’s “Ijinear Prediction” (LP) method [1, 2,
6, 24, 27]; S3(o) to one of the “Modified Capon’s
Algorithms” (MCA) variants [16 —19]; S,(a) to
Borgiotti-Lagunas’s method (BL) [3, 6], S5 (o) to the
“Thermal Noise (TN)” one [6, 14, 27].

In all the SFs, x(o)={x, ()}, is the non-
random M - variate steering vector (in o- direction)
subject to M receive AA elements (modules) spacing
and performance. In particular, for a linear uniform
AA (LUAA) consisting of identical isotropic elements

x(oc)={exp(j-(£—(M+1)/2)- oc)}ﬁl,
o=2-1-d-sin0/\,

(2)

where 0 is the direction of search counted from the
AA normal; d is the distance between adjacent AA el-
ements; A is the wavelength.

The e,, in (1) denotes the mth (mel,M ) col-
umn of a M xM identity matrix I,, (the M -variate
vector with a single non-zero ( m th) element equal to
unit); (*) is a sign of Hermitian conjugation.

B. Statistical properties of SFs (1) are defined by
the properties of the random M x M matrix

¥, —o, 3)

being inverse to the used estimate @ :{ (py} %‘:1 of the
a priori unknown spatial CM

q’={%}%’=1=yf'y;, ltel,L (4)

of M -variate random vectors y, = yi([) M of com-
plex amplitudes of AA output signals at the discrete ¢
th (£€ 1, N ) time moment.

As usually [3 — 14], assume these vectors to be
normal (Gaussian), interindependent, with a zero

mean and the same CM (4):

Y, ~CN(0,®),y,=0,y,-y, =®-3,,, {,me N. (5)
Here, §,,, is the Kroneker delta; the bar, like in
(4), symbolizes the statistical averaging.
Formed by N > M-size sample Y={y,},, the
random matrix

o A 1 * 1

q):{(py}g:]:ﬁYY :NA, (6)
under conditions (5), as is well known, is the ML es-
timate of unknown CM (4). Namely its use in (3) is
implied below when analyzing statistical properties of
methods (1). The analysis is essentially based on the
known property of estimate (6) related to that the ran-
dom M x M matrix that defines it

N
A={a"j}%’=l=Y'Y =§y['h‘a (7)

given N >M has the complex Wishart distribution
[23] with the pdf

p(A;@,8)=1"(®)- |A|S ~exp{—tr(<l)"1 -A)},
=N-M >0.

Here, |C| and #(C) are the matrix C determi-
nant and trace;

M
[(@)=n" 02 @ T T (M +8+1-i)
i=1
is the normalizing multiplier; I'(x) the Gamma
function [31] that for integer x=m=>1 is equal to
I(m)=(m-1)!.

The pdf parameters in (8) are =N -M >0 (ef-
fective sample size) and true CM @ (4), what is re-
flected in the designation p(A;®,3).

C. We suppose that for the true CM admissible is
the presentation [4 — 14, 19]

I, +ihi.x(si).x*(si)=1M +G-h-G',
i=1

@®)

n M ©)
G= {X(Bi )}i:] ,X(B;) ={x/ (B; )}4:1 ,h= ah'ag{hi}:':l .

It implies interindependence of M receive ele-
ments self-noise with the same variance (power) (as-
sumed to be unit) and noncorrelatedness of radiations
of n external sources with relative (with respect to a
level of the elements self-noise) intensities (SNR) #,
(iel,n). The M-variate vector-columns x(B;) of
M xn matrix G (9) describe the aperture amplitude-
phase distribution of radiations from the f; -direc-
tions (i€ 1,n). For LUAA, in particular, they look like
(see (2))

x(B,)={exp(J-(£~(M +1)/2) B, )} M,
B;=2-m-d-sinb, /A, iel,n,

where 0, is the direction to the i th source counted
from the AA normal.
Matrix ¥ being inverse to @ (9) equals
¥={o, )}, =o' =1, -G-(h" +G"-G) -G".(1])
The latter equality in (5), as well as (9) and (10)
reflect a noisy in time and quasi-harmonic in space
character of point sources signals, and, for brevity,
hereinafter they are therefore termed noisy quasi-
harmonic signals. Besides, by virtue of unambigu-
ous relation between true (6)- and “generalized”
(a,p)-directions, the latter ones only, without re-
serve and quotes, are used below.

(10)

III. POTENTIALITIES OF NOISY
QUASI-HARMONIC SIGNALS
RESOLUTION-DETECTION

A. Shirman’s statistical theory developed in
works [20, 21, 34] treats various kinds and criteria
of resolution. Here, concepts of the quasi-complete
resolution-detection theory are used. According to it,
n signals in noise are considered as resolved if the sta-
tistical characteristics of detection (conditional false
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alarm probabilities (FAP) F and proper detection
probability (PDP) D) of each of them by turns play-
ing a role of useful signal in the presence of the rest
(n—1) signals playing a role of interfering ones, re-
main not worse than an admissible limit.!

In such a statement, a procedure of spatial res-
olution is reduced to testing the hypotheses: either
H, about the presence or H about the absence of a
source in successively or simultaneously tested signal
directions a of sector (o,,c,) chosen. The resolu-
tion-detection potentialities are provided by the op-
timal processing of received realization under hypo-
thetic conditions of full a priori definiteness.

B. As applied to the models of Section II, the
latter means a knowledge of a-dependent CMs @,
and @, ofvectors y, (5) by hypotheses H, and H, .
They are related to CM ® (9) by the equalities

o, ="', »
0= % *#Be 1 (1)
(I)l (I)O+h X(B/) (B/) 70(=B[9

In this case, the optimal (by the Neyman-Pearson
criterion) processing of the K-variate realzation of in-

put process Y={y,} £, is reduced to formation of the
statistic [18, 34]

£(o) =1 () ory (o) =-2(a)

z(o) =15 () A-ry (0t), 1y (o) =¥ -x (),
and to its comparison with the threshold v, (ct)
providing the specified FAP

F= .[ P @ dx_ .[ p Zo

vo() K vy (o)

Here, p. (x) and p, (x) denote pdfs of the sta-
tistics §(o) and z(o) under hypothesis H = H, of
the absence of sources in the direction under analysis.
Using (8) with M =1 and N =K and taking
into account (12), it is easy to make sure [19] that

Py (x)=p. (X,Gé ) where

K-1
Pz(x,cz)=m (%) -exp{—%} (15)

is pdf of Gamma-distibution with the integer shape
parameter K (Erlang’s distribution [30]) and the
scale parameter

(13)

xX)dx. (1)

o’ (o) = (o) =1y (o) @ -1y () =
{Gé(oc)— X" ()% -x(ct), o0 Py, (16)
o (oc) (1+u[) a=B,, (€l,n,

51

u, = =h,-x (B,)- ¥ -x(B, ), o=B,, L€ Ln.(17)
Go

It follows from (14)— (16) that the required
threshold level equals

' Works [2, 4, 7— 14 etc.], wherein resolution is
linked to an angular coordinates estimation accuracy (with
a degree of errors proximity to the Cramer-Rao bound),
from positions of the theory of [20, 21, 34] concern quasi-
complete resolution-measurement.
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(a)/K (18)

where X, isaroot of the equation F = (p(x0 ) , whereas
K-l

YA (19)
i=0

is the “survival function” [30] of Erlang’s distribution

with o? =1. Herewith PDP of the signal (from the
direction of search o) given a =6,

j pz(x oh )dx (p(l
Kovp (o)

fully depends on the detection parameter u, (17).Ithas
an evident sense of “optimal” signal to interference
(a mixture of interfering signals from the B, #a
directions and receive channels noise) power ratio
(OSIR) after the optimal processing. It is convenient
to write it down as

Vo =Xy - c50

=J.pz(x,1) dx=e"

D= D(p_[ T J, Lel,n(20)
¢

w =q,-k., g =r-h,, Leln,
e =X (Be) Bc /r r=x Bz) (Bg),

where g, is the OSIR in the absence of “interfering”
signals (in the presence of self-noise solely) to be
henceforth termed OSNR in order to emphasize
its dissimilarity from SNR /4, in the AA elements;
k. < 1 is the “useful” signal energy utilization factor
[20] characterizing the loss due to the presence of
“interfering” signals.

In particular, for LUAA given n=2 and o=,
when, by virtue of (9) — (12),

hy
_1+q2'X(B2).

from (21) obtain [18 — 21, 34]

o2y

G=x(B,), r=M, ¥, =1, X (B,)(22)

_ql'ke’ kezl_IQ2 '|p|2’
Sk (23)
=M-h, i=1,2.
Here,
p=x (B,)-x(B,)/r=sin(n-A)/(m-A) (24)

is the spatial correlation factor of “useful” and
“interfering” signals subject to the relative angular
distance between them

A=(By=By)/Ags Bg=2-1/M; (25)

A is the first nulls radiation pattern (RP) half-
width of the synphase M - element LUAA.

The approximate equality in (24) is valid under
conditions of M >>1 and A<1 to be of key interest
for the later discussion.

C. Fig. la shows families of the dependences
D=D(n), with p=g-k, and g=g,, accounted by
(20), (19) for different values of F and sizes K of
the analyzed input process realization Y={y,}%,.
Fig. Ib shows dependences k. (A) (23) — (25) for a
set of OSNR values ¢,, =¢, of “interfering” signal.
They allow defining the statistical detection charac-
teristics ( F, D) of the signal with OSNR ¢ versus the
angular distance A <1 between them and, hence, the
possibilities of their angular resolution-detection.
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Let, e.g., ¢g=20 (13dB), K =5, and PDP have
to be not less than D>D , =0.5 for FAP F=107°.

allow
As follows from Fig. la, u>4 and hence &, >0.2
(=7 dB) are required for this. According to Fig. Ib,
this k. value is provided for A>0.19 if g,, =10 dB,
and for A>0.22 if g, =15dB. When A>0.23, it is
provided even if g,, — <. The corresponding lower
bound A=A, , as is seen from the given examples
and was shown as early as in [20], can be less than
the Rayleigh limit A=A, =1. This bound is provided
solely under hypothetic conditions of full a priori def-
initeness with optimal processing (13) of the signals
described in Section II and therefore characterizes
their resolution-detection potentialities.

The “super-Rayleigh” resolution is “purchased” at
the expense of the increase /g =k_' times in the signal
threshold power. However, under optimal processing
(13), power loss (21), (23) is minimum, or, what is the
equivalent, the power is used for resolution as much ef-
fectively as possible. For example, in a test scenario of
two (n=2) equipotent LUAA signals, A, is inversely
proportional to \/5 given “small” K , and to g given
the “large” K . A boundary between the “small” and
“large” K issubjectto D and F' . It can be shown, in

particular, that for D=0.5 and F =107 [18, 19],

_|=/\g  for k<5,
™ 1<0.577/q for K >35.

D. The processing under real conditions of a priori
uncertainty is inevitably related to an additional signal
loss and (or) aggravation of requirements to the sam-
ple size (observation interval). These loss and require-
ments being a “pass” for these or those methods to the
work under corresponding conditions are defined by
distribution laws of statistics formed by the methods.
Below, a role of the statistics is played by random SFs
of methods (1), wherein instead of unknown CMs (9),
(11) their ML estimates (6), (3) are used.

IV. DISTRIBUTION LAWS OF SPECTRAL
FUNCTIONS “AT POINT”

A. In an optimal resolution-detection procedure,
statistic (13) at points of analysis a.€ (o,,a, ) is com-
pared with threshold (18), (19) (for the moment (until
Section VI) we assume that necessary thresholds can
be formed).

(26)

1 =
N o 7
08 K:IUU/’IA 20, IA 5 / A‘:%
o AW L A
' Lillt i | /77
0.6 T 7
05 XN EEIREN) 2
ST
0.3 l“ ! l/ Ll ///'/1 = r=107
ool S U S A s
0.1 //,/'/://I/. R4
gz umak
0.1 1 10 100

The statistical characteristics of the threshold

processing of random SFs S(o) (1) are defined by
distribution laws of their values at these points.

When deriving the laws, assume ML estimates
(6), (3) tobe formedbythe N > M sample Y ={y[,};vz1
of vectors y, with properties (5), so matrix A (7) has
the Wishart distribution (8):

A=Y-Y', p(A)=p(A;®,8),5=N-M=>0. (27)

Having no possibility to give here complicated
and bulky computations, we restrict ourselves by a
brief description of a procedure and results of exact
computation of the pdf for the first three SFs (1) only
that are direct subject to matrix ¥ . The pdfs of the
two latter SFs dependent on the squared matrix are
unknown for the authors. Their empirical distribution
laws are obtained below with the help of a mathemati-
cal model pretested with exact results.

B. The essence of the technique is in the follow-
ing [15]. Let us introduce the kxk Hermitian matrix

QZ{(},;},{CH:Z*.A‘I.Z:N‘I.Z*~‘I’-Z,
7= {z i K<SM,

where A is random matrix (27); Z the non-random full
column-rank matrix (with £ < Mlinearly independent
M-variate columns z,, i=1,k ).

It can be shown [47] that the kxk matrix

R={ifs, -Q" (29)
under conditions of (27) has the Wishart distribution
p(R) =d! ‘R‘é ~exp{—tr(Q . R)}

ke(k-1)

d=n 2 |

(28)

(30)

S+k

HF(k+6 i+1)

with the kxk non-random matrlx of parameters Q~',
Q={Q,l}, =2"-v- Z. (1)
Given k=M and Z=I,, when Q=V,

Q'l=-0, Q A~! and hence R = A , distribution (30)
turns 1nto (8).

C.Let k=1 and Z=z, =x(a). In this case, ma-
trices (28) — (30) are transformed into the scalars

Q=5"(a), Q' =8(a), d=58"-5 ()",

0-(N-5,(0) . R=N-5,().

0 ]
k,,dB /zﬂ‘
-2 7
e | » /’4’/
-4 ——T7+
2 — " /.:"
-6 —
1727 | 1 = g =0dB
_3 — /' 57 2 = 5dB
|3 At 3 = 10dB
-10 L 4 = 15dB
i 5 = 20dB
— 12—~
’/5 A
~14 L
0.1 1
b

Fig. 1. (a) Dependences D = D(u). (b) Dependences &, (A) (23) — (25) foraset of ¢,
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and distribution (30) takes the form

R . s .
plR)=(51-5, (o)) -(R/S, (o)) -expl- &5, (o)}
The pdf of SF LSA’](oc)=]é/N of Capon’s MV
method therefore equals

3
1 N x-N x-N
P. S SN i S XN L3
5 )75 5 (@) [&(a)] e"p{ s1<oc>}‘ :
where S, (o) is the “true” value of SF (given Y-y ).

In this case, the “normalized” SF, being more
convenient for the further analysis,

v=S(a)/S(a) (33a)
with the pdf
pv(x)=S(a)-p§(S(a)-x), (33b)
for the MV method equals

p(x)=p, (x)=(8)" N (N -x)"-exp{-N-x}. (34)

Pdfs (32), (34) were first obtained as early as in
[22] and then “re-derived” in [23]. In [19, 28], they
were obtained also for ML estimates of persymmetri-
cal CMs being possible, in particular, in AAs with the
central symmetry in spacing of pairwise identical re-
ceive elements (modules) [3, 18]. Discussion on pe-
culiarities related to this CM specificity as well as to
other ones is a subject for a separate publication.

Let now k=2, and Z={z,,z,} be the Mx2
matrix with the columns

z,=e,, 7,=x(a), me LM . (35)
In this case, pdf (30) of the 2x2 matrix

R ={;’ij 7 equals
A _ ~ |5 A
p(R)=(n'6!-(6+1)!) : Q] R‘ -exp{—tr(Q'R)},
0-7"¥.Z (36)
and the first three SFs of (1) are related to 2x2 matrix
Q (28) elements as
N 1 N 0
Si= S, 5=
L N, ‘qlz
(for the moment, for designation simplicity, argument
o of the SFs is omitted).
D. Therewith the problem to be solved is reduced
to solving two subproblems: K
a) to find pdf of 2x2 matrix Q (28) via pdf (36)
of matrix R (29); A
b) to account pdfs (37) of matrix Q elements.
In order for the first of them to be solved, it is

enough to take into account that Jacobian of trans-
~ |2k

form (29) is equal to ‘Q‘

8+2 ‘

o _dnd
_ 111 ‘222 (37)

‘2’

and consequently for k =2

-1
—(8+4) { ( A
A 5+2 | A exp |-tr\Q-Q )}

e ‘ ‘ ) . (38
ol)-1a1 [0 e 9
The second problem is more chalenging. It re-

quires rather nontrivial transforms, calculations of
their Jacobians and integrals containing special func-

tions some of which are reduced to the reference ones
[31].
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Omitting details, we give the “final” joint pdfs of
values fully defining sought random SFs §> and S
(37):

N-v
Pe(Va,v3)=dyy -exp{— " : }X
3

N-v, N-v,
-2 L. - , (39
xexp{ 1+C3-v3} LS“{ C3-v3~(1+C3-v3)} (39)

3+2
IS BV Ol (-

Here, L,(e) is the Laguerre polynomial of de-
gree n |31],

v, =S2/S2, v,=C,/C;, Cy=5;-1 (39b)
are the random SFs values normalized to the “true”
ones.

Integrating (39a) over v, (v;) from 0 to o, ob-
tain the pdfs p, (x) of normalized SFs v=v; (v=v,).
The integral over v, is written as

P (x)=py, (x)=C7-(8+1)x

3+1 3

a, x
X . _ ,
nZ:(:)C" (1+(1+C)ox)b+2+" (“0)
5+1+n)!
g BN o (o) =5 (a)-1.

(n!)2 ~(6+1—n)!’
Attempts to obtain an explicit expression for the
integral

P, (%)=, (x)=[ p.(x,3) dy
0
failed, the pdf p,, (x) of the LP methods is therefore
defined with numerical integration methods.

E. The analysis carried out in Section V for es-
timation of methods (1) resolution by statistical res-
olution-detection criteria is based on exact formulas
(34), (40), (41)Aand empirica}l laws of distribution “at

point” of SFs §,(a) and S5(a) of the BL and TN
methods, obtained with models tested by exact for-
mulas.

(41)

V. COMPARATIVE ANALYSIS
OF RESOLUTION BY STATISTICAL
RESOLUTION-DETECTION CRITERIA
A. Assume a decision on signal detection from
the o€ (ay,,0, )- direction to be made by results of a
comparison of the random SFs S (o) of methods (1)

with the threshold v (o). Their resolution in this case
is subject to FAP F and PDP D:

0

F= j pﬁ(x,SO)dxz Ipv(x,So)dx,

v(a) X0
D= _[ pe(x,Sc)dx=
v(a) x0/(Sc/So)

where S, =8,(a) and S.=8.(o) are the true
SFs S(o) at a point of analysis o in the absence

0

P, (x,8¢0)dx,, (42)

11
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and presence of a source in the o-direction;
xy =v(a)/S, () is the scalar that shows an excess of
the threshold
v(a)=x, S, (o) (43)
overa S, (a) value providing a specified FAP F . The
second equalities in (42) are resulted from (33).
It is easy to show that the ratio
Sc /Sy =S¢ ()/Sy(a) entering the lower limit of
the second integral in (42) for all the methods (1) is
the same, and in the o=f,-directions ({el,n) of
sources location equals (see (17), (21))
Sc _Sc(B)

So So(By)
i.e. it is defined by the same OSIR p, as that at the
optimal processing under conditions of full a priori
definiteness (Section III).
B. Let us begin from the analysis of Capon’s
method resolution. As follows from the comparison
of (34) with (15), for this method, according to (42),

F=f,(N-x,), D=f5{i\:xoj, teln (45)

l+u,, w,=q,-k,, (eln (44)

14
where f;(x) is the “survival” function of Erlang’s
distribution with the unit scale parameter but unlike
(19) with the shape parameter d+1.

In combination with (20), this means that
Capon’s method under conditions of (6), (3) theo-
retically provides exactly the same statistical perfor-
mance of resolution-detection as optimal processing
(13) of the K-variate input realization Y ={y; l’i , if
the sample size N in ML estimate (27) satisfies the
condition =K -1=N-M ,i.e. when

N=K +¢g, e=M-1. (46)

The ¢ value defines a “payment” for the a priori
lack of knowledge of CM @ (4), which is required
when using Capon’s method on the basis of ML es-
timates (6), (7), (27). In particular, the K value in
Fig. 1ashould be increased by ¢ in order to define this
method statistical performance in LUAA for n=2
and a=0, (fel,n).

C. The corresponding “payment” of other
methods (1) can be significantly higher. We will il-
lustrate this first on an example of MCA with SF
C(a)=8 (o)1 with pdf (40) and the true values
C(a)=C, and C(a)=C, given o#f, and o=,
(e 1,n) respectively.

It can be shown that in this case the threshold
constant x, in (43) is the root of the equation

3+1
CO 5+1 an
F= ThC (8+1)- Z_C” 1,(x0,Cy), (47)

n=0 “

and PDP of the source signal acting from the o.=f3,-
direction (£ 1,n ) equals

D=(C,/(1+C))™" -(5+1)x

S+1
Xz,an'[n(xo/(l"‘w) G ), Ci=Co/(1+n,),
n=0

where /,(x,c) denotes the integral [31]

(48)

12

z(x,c)
L(x.c)= [ "(1-1)dr=2""(x,c)x
. Ok( ) (49)
k) 7" (x.c 1
—lk‘ . 5 -
*2(1) (8] ek T

m o
and [ denotes the number of combinations by m
n

of n.
Consider first a “small” effective sample size &
scenario when

(6+1)~ (6+2)<C0, S5=N-M (50)
As the analysis shows, in this case, a decisive

contribution to sums in (47), (48) is made by the first
summands only, so that

[ G VT s

Dz{mco)- (1+w)]6+1_F

(51

1+Cy-(1+u,)

It follows from the first equality that under con-
ditions of (50) when 8 << C,

= d+1 ]
"7 1+C, '

For the probabilities F <10 being of primary
interest, this x, value can significantly exceed x, in
(45) for Capon’s method what demonstrates that dis-
tribution (40) has essentially “heavier tails” than dis-
tribution (34).

It can be seen from the second equation in (51)
that for small OSIR values u, <1, D~ Fwhat is quite
natural. However, under conditions of (50) even at
arbitrary large u, — e, PDPis

1 S+1
D:[1+—J F=
C

(52)

0

=~ 1+E F< 1+L -F,
G 8+2

i.e. not more than 1.5 times exceeds FAP F .

This effect that seems to be paradoxical at first
sight can be formally explained when analyzing pdf
(40) transformation under conditions of (50) when
OSIR is varied u=p,. Fig. 2a shows a family of de-

pendences g(x,C,)=4/p,(x,C,),* C,=C,-(1+u) for
asetofvalues u=0,1,9,99 (C, =C,, 2-C,, 10-C,,
100-C,) given C, =15 and §=2, when “small sam-
ple” conditions (50) are satisfied.

It is well seen that with the increase in p the pdf
P, (x,C,) biases to the domain of lesser x values,
and due to this, the probability to obtain values v>1
decreases. By virtue of (33a), (39b), (40), this means

2 The use of the root of p,(x, C)) is inspired solely by a
quest for image visualization. Otherwise it is inconveniently
to simultaneously observe significantly “different in size”
curves. With the same aim, a logarithmic scale on the x-axis
is used that enables one to observe functions p,(x, C,) being
significantly different in width for different values of C,.

(33)

MpuknagHas pagmnoanekTpoHuka, 2015, Tom 14, Ne 1



Lekhovytskiy D. I., Shifrin Ya. S. Rapidly convergent «superresolving» direction-of-arrival estimation of noise radiation sources in adaptive arrays

20

\/ Pv(x’ Cl)

\

T I
Sy=15, 6=2

15 H#=99

\

3 T T
MAVAN S, =15, §=100
2.5
/ u=99
2

\ ?

L
7 AN\

y
X/ 0

0
10° 10° 10* 10° 102 10" 10°

| SN,

0; /W
NIIRVIV/A ;

102 10" 10° 10! 10

0
100 107

Fig. 2. (a) Pdf (40) transformation under conditions (50), when OSIR changes w=u, .
(b) Pdf (40) transformation, when conditions (50) are not fulfilled and OSIR changes u=u, .

that the probability to obtain the values of random

SFs C;(a) (S5(a)) being close to their true values
Cs(a) (S5(a)) is the less the more these true values
are. In this case, due to the pointed out “bias to the
left”, the area under curve p,(x,C;) to the right of
the point x=x,/(1+u) defining D (see (42), (44))
remains practically the same as that under curve
2, (x,Cy) to the right of the point x = x, defining F .
This constitutes the fundamental difference between
MCA and Capon’s MV method pdf (34) of whose nor-
malized SF (33a) does not depend on the absolute true
SF S(a) level (the latter circumstance was noted as
early asin [22, 23]).

As the effective sample size & grows (conditions
(50) are violated), the “bias to the left” of densities
P, (x,C)) (40) decreases with the increase in p, what
is clearly seen in Fig. 2b given §=100. Under these
conditions, with the increase in p, PDP D also in-
creases, however, rather slowly, and for each &, the
boundary value u =y, exists whose exceeding in prac-
tice already does not increase the value D= D, . The
d and p are related by the inequality

(8+1)-(8+2)<C =Cy-(1+n). (54)

When the inequality is satisfied, the first sum-
mand mainly contributes to sum (48), whereas con-
tribution of the rest of summands can be neglected.
In this case,

D=D,< 1-(Cy-x, /(1+Cy-x)) . (55)

In particular, under conditions of the example
in Fig.2b for F=10"* (x,=100), it follows that
D,<0.06 atany w— co.

In this connection, requirements to the sample
size for MCA can be significantly higher than those for
the MV method. This is illustrated by the MCA detec-
tion characteristics shown in Fig. 3. Comparing them
with the analogous curves in Fig. la for §=K -1, it
is easy to make sure that in the given examples, the
performance provided by Capon’s method already for
6=0, 4, 19, is provided by MCA for &>200, 400,
1000 respectively.

D. Figs. 4a,b show the families of LP method
pdfs like those in Figs. 2a, b, calculated by (39), (41).
Figs. 5a, b display the empirical cumulative distri-
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bution functions (cdfs) obtained with a mathemati-
cal model for distributions of SFs (1) normalized as
(33a) of the BL and TN methods under conditions of
Figs. 2 — 4. It is seen that the “bias to the left” effect
with the icrease in p is to this or that extent inherent in
pdfs (cdfs) of normalized SFs of all the methods. The
requirements to the effective sample size & for them,
aswell as for MCA, appear therefore to be significantly
higher than those for the MV method. Reasons of the
difference are discussed in Section VII.

1 T

D 1 TTTTT T T ==c
L |
. soto | |11y 400 '
| 200
0.6 ; > \>//
F=10"8,=15 y
0.4 TTTITIT / .
Y /
100
0.2 ; 1T —
ML N
0 ‘ L1 — i
107" 10° 10' 10°

Fig. 3. Detection characteristics of MCA

E. The Capon’s MV method merits established
compared with other methods (1) could become a
decisive argument when choosing a direction find-
ing method under conditions of the a priori uncer-
tainty if a procedure of random SFs (1) comparison
with the threshold v(o) was practically realized at
all the analysis points o€ (0,0, ). As follows from
(43), this threshold is defined by a value of the true SF
Sy =38, (oc) of corresponding method, i.e. by its value
in the absence of source in the direction of analysis o
. The comparison with the threshold solely will pro-
vide the “record” (with minimum “payment” ¢ (46))
statistical detection performance of Capon’s method
in the presence of source in the analyzed o- direction.

But §, is defined by CM @, (12) being a priori
unknown and in reality this or that its estimate should
be used instead of it. However unlike estimate (6)
of CM @ (4), (9) as a whole, it is extremely diffi-
cult or even impossible to obtain estimate @) of CM
@, for all the ae (a0, ) including =P, (¢€l,n)

13
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Fig. 4. (a) Pdfs of LP method under conditions (50), when OSIR changes u=u, .
(b) Pdfs of LP method, when conditions (50) are not fulfilled and OSIR changes u=u,
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Fig. 5. (a) Empirical cdfs of normalized SFs of the BL method.
(b) Empirical edfs of normalized SFs of the TN method

having available the non-classified at o=, sample
Y={Y,} Y, only. Namely this can explain a wide
spread in practice of other (non-statistical) resolution
procedures and criteria, in particular the Rayleigh cri-
tgrion not related to the threshold processing of SF

S(o) at all the points a of the analysis interval. The
statistical analysis of methods (1) resolution by the
(non-statistical) Rayleigh criterion is given below.

VI. STATISTICAL ANALYSIS OF RESOLUTION
BY THE RAYLEIGH CRITERION

A. Procedures for sources direction finding (the
spatial spectral analysis) with methods (1) usually

imply corresponding SFs S (o) formation at points
o of chosen sector (a,,0, ) and a consequent search
for their local maxima. The number of maxima is then
identified with the number » of sources in this sec-

tor, whereas their coordinates o, and values S (o, )
(£e1,n) are identified with the sources directions and
relative intensities [1, 5, 6, 14, 25]. Resolution by the
Rayleigh criterion is defined in a test scenario of two
(n=2) equipotent (g, =g, =g ) sources assumed to
be resolved if the “notch-depth” between two maxima

of §(o,), ¢=1,2, characterized by the parameter

G= AS(O%')
S (o

)
mean ~ 2 ’

, el 2, (56)

mean )

14

exceeds the apriori chosen threshold vy, (usually
Yo =(1...3)dB) [, 14, 25].

The goal of the following analysis is to compare
resolutions of methods (1) on the basis of ML esti-
mates (27), (6), (3) by criterion (56).

B. First, note that the (forced) proceeding from
statistically optimal procedures and criteria to non-
statistical ones inevitably entails additional energy
consumption for resolution. For each of methods (1),
the consumption is different. It is minimum under hy-
pothetical conditions of infinite sample size N — oo,

when the random SFs § (oc) can be considered as
coinciding with the true SFs S(a) (by virtue of the
asymptotic unbiasedness and consistency of ML esti-
mates (27), (6)).

As is shown in [16-19], under these conditions,
MCA is the “best” of methods (1), wheras the MV
method is the “worst”. The asymptotic (for N — )
difference between them is quantitatively illustrated
by Fig. 6 that shows OSNR ¢ (23) values for each of
two equipotent sources with angular distance A (25)
between them necessary for their resolution in LUAA.

Curves 1, 2, 3 here correspond to the MV method;
curves 4, 5, 6 to MCA. In this case, curves 1, 4 are for
y=1 and curves 2, 5 for y=2. Curves 3, 6 specify the
boundary values ¢ = g, at which the second derivatives
d*S(o)/do? at point o=a,,,, (56) of correspond-
ing true SFs S(o) are equal to zero [25]. For ¢ < g,,
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these SFs have a single maximum at point o.=a,,,,,
so, by criterion (56), the sources are not resolved.
They “start being resolved” when [16—19, 25]

o A, = 1.17/4 q, for the MV method,
A, =0.95/3g, for MCA.

100 .
q,dB}. 1
80

(37)

7
)

60

40

20

A2/ 4P

0 A
0.01 0.1 1

Fig. 6. Values of OSNR ¢ (23) being necessary to resolve
two equipotent sources with angular distance A

The g, values for the rest of methods (1) are
somewhat higher than those for MCA.

It is seen from a comparison of (57) with (26) that
when using criterion (56), the less distance A between
sources, the higher additional energy consumption.
In particular, for small A<0.1, it can constitute
10...20 dB and more.

In a real finite N scenario, the consumption is
even more due to resolution parameter y (56) ran-
domness. It depends on statistical properties of 7 .
The properties are significantly different for methods
(1). This is demonstrated by the exact and experimen-
tal results to be discussed below.

C. For the MV method, the pdf p, (x) ofthe nor-
malized random parameter

S(on)

=?(ocl,ocz) (o0 )ZS(OLI)
v(ogon) S(a,) S(as)

given arbitrary o, # o, and =0 equals [15]
2\5t2 5.
r(2-s+4) (1=Inf) " x*"-(1+x)

:(r®+2»2 «1+xf—44nf~x

(38)

v

y(oy,0n)=

.(39)

v )6+2.5

Here
n=x"(oy)-¥-x(at,)-

Si(0)=(x" (o) -¥-x(at,)) s i=1,2
is the “generalized” spatial correlation coefficient
of radiations from directions o, and a,, which
coincides with (24) for ®=¥=1I,, and the vector
x (o) in the form of (2).

At §>>1, forthe mean v, and variance 03 of pa-
rameter v (58), the following equalities are valid:

3 ! _| n |2 22 2
V~1+T, GQ~5(1—|T]| )

An example of pdfs (59) for |n|=0.2 and differ-
ent & values is given in Fig. 7a.

An important property of the MV method fol-
lows from analysis (59). It consists in that the random
parameter y(a,,0,) given any effective sample sizes
820 and values o, #a, will be not less than its true
value y(a,0, ) (58) with the fixed probability P=0.5.
This statement is a consequence of the valid for (59)
equality

SICHRNC: (60)™

(61)

1 1

pA(X)=F‘pO = (62)

v

which means coincidence of pdfs (59) for positive
random value v>0 (58) and its inverse y=1/v.
This also means that, given any o, #a,, the point
x=x,=11s the pdf (59) median, i.c.

j p,(x)dx= j p,(x)dx=1/2. (63)
Indeed, by the normahzatlon condition,
_[ p X)dx= '[ p x)dx + J. p x)dx=1.

X0
But the first summand, by virtue of (62), is equal
to

oo

_[l/x P, (l/x)dx—J. p,(x)dx

1/xg

and consequently,

3" A shape of density (59) keeps also being invariable when
using ML estimates of persymmetric CMs in centrosym-
metrical AA but in this case, § = N-(M+1)/2 [16 — 19].

3

py(x)

1

0.5

Fig. 7. (a) Pdfs (59) at |n | =0.2 and different & . (b) The family of cdfs corresponding to pdfs P, (x) (59)

MpuknagHas pagnoanekTpoHuka, 2015, Tom 14, Ne 1

15



Lekhovytskiy D. I., Shifrin Ya. S. Rapidly convergent «superresolving» direction-of-arrival estimation of noise radiation sources in adaptive arrays

f py(x)dx+ J.po(x)dx:l ,

1/x X0
whence equality (63) immediately follows. In
combination with (58), it means that in the MV
method,

P(021)=P(?2y0 =y)=0.5 forany §>0. (64)

These results were for the first time obtained in
[15] and later corroborated in [48].

Equality (64) is a mathematical formulation of the
described MV method property. It is illustrated by a
family of the cdfs shown in Fig. 7b

/Yo o
£ (/)= ,[ py(x) dx = .[ po(x)dx:P(QZYo) 65)
0 /Yo

accounted for the pdfs p, (x) (Fig. 7a).

By virtue of (62), these cdfs de facto describe the
I'=vy/y, dependence of the probability P(y=1y,)
that the random parameter ¥=7y(o,0,) will be not
less than the specified threshold v, .

As is seen from Fig. 7b, with the increase in the
effective sample size &, the probability P(y2vy,)
grows if y>vy, , keeps being invariable and equals 0.5
if y=1v, , and decreases if y <y, . The formal reason of
this is in transformation of pdf p, (x) (59) (Fig. 7a),
which, as & grows, “gathers” to the point x, =1: its
mean ¢ (61) tends to the median (the distribution
“symmetrizes”), and the variance g2 decreases. This
means that with the 5 growth, realizations ¥ concen-
trate in the more and more narrow vicinity of the true
vy value. This increases (decreases) the probability
that value y exceeds the threshold vy, being smaller
(larger) than y. However if vy, =v, the probability
P(y2y,=v)=0.5 is constant forany §>0.

Hence it follows that if a decision on resolution
in a test (bisignal) scenario is made under condition
that at least one of values at points o, of SF ()
maxima is y, =5(a, )/Smean (a)2y, (£=1,2), then
the resolution probability P. by criterion (56), given
Y=y, , will be equal to

1 e
f‘;(X) /,f:.:r ;
¢S ;
0.8 £
5=2 A
N [
0.6f—25PF—H
= :
50 N
0.4 R ,'\
LP LN MV
0 2 | K
' { (!} ¢
(N
0 / ’f-‘.' 4 X
10 10* 107 10° 10°
a

P <P(y,27) - P(y,<yo)+
+P (Y, <v0)- P(y, 2 7v9) + P(y, 27v9)- P(1,27¢) =

=P(y270) (2= P(y27,))=0.75,
where (64) and the evident equalities
P, <vo)=1-P(¥,27o) , P(¥, 2vo)=P(127,),

¢=1,2, are taken into account.

An approximate nature of (66) is related to as-
sumption of the events y, 2y, and ¥, >y, independ-
ence, which is invalid in the general case (at small
A<<1), as well as the non—ur}it probability of occur-

rence of two maxima in SF S, (o) at any >0 even
given g >gq, (57).

It follows hence that curves 1, 2, 3 in Fig. 6 not
only define the asymptotic (at 8 — < ) Capon’s MV
method resolution, but also set requirements to the
energy of two equipotent sources spaced at a distance
A <1 which for y, =y will provide their resolution by
the Rayleigh criterion with the probability

0.5<P.<0.75

(66)

(67)
atany 6>0.

D. It should be expected that, by virtue of asymp-
totic unbiasedness and consistence of ML estimates
(6), (3), analogous properties (64), (67) for § — o
will also be inherent in other methods (1) for which
the exact pdfs of parameter v (58) similar to (59) are
not obtained yet. However, given finite § , attainment
of “starting” probability P. (67) on their basis is pos-
sible for the threshold y, <y only. Physical reasons of
this are discussed in Section VII. Here, this statement
is illustrated by the results of mathematical simula-
tion.

Figs. 8a, b show families of the cdfs

fo(x)=[p(y) dy
0
of parameter v (58) of the LP, MCA and MV

methods, given §=0, 25, 50, for their pdfs p,(y)
obtained experimentally.

(68)

1 -

0.8 S
0=2 \/ I}

0.6|—25 H

0.4

NN AN

5 A A ; X

16° 10° 107

MV

Fig. 8. Families of cdfs of parameter v (58): (a) for the LP and MV methods; (b) for the MCA and MV methods
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The scenario is simulated for two (n=2) equi-
potent sources with the relative distance A=0.1 be-
tween them for g, =¢, =¢=50.5 (dB). Under these
conditions, the true y values are equal to 2 (3 dB) for
the MV method and y>10° (30 dB) for the LP and
MCA methods.

It is clearly seen that for the MV method the pa-
rameter v (58) median is equal to x=Xx, =1 regard-
less of & , what fully conforms to the above theory. At
the same time, medians of distribution functions (67)
of the LP and MCA methods are located significantly
more to the left of the point x, =1 (x, =5-10™ for
8=2 and x,=5-10" for §=50). Therefore, prob-
ability P. (67) of resolution with these methods is
provided when choosing the threshold v, = x, -y <<y
even for 6>50. The BL and TN methods also yield
the results close to aforementioned.

Hence, it follows that asymptotic (5 — o ) energy
gains of methods (1) compared to the MV methods,
which ensue from Fig. 6, by no means guarantee that
their resolution probability by Rayleigh criterion (56)
under realistic conditions of finite & will be higher
than that obtained with the MV method.

The results of experimental comparison of meth-
ods (1) under these conditions are given in Fig. 9 in
the form of dependences P, (3) given A=0.8, g=10
dB and the resolution threshold y,= 1.5 (=1.8 dB)
that coincides with the y value of the MV method.
The y values of the rest of methods are given in
brackets under their abbreviatures.

T
0.9 F—mca— Lp —
(19.9) (262) R

19
07 >’ - -
% \ Yo=15
0.5 Py = —
T N
03|—= =

-----

-
—
-
-

> = MV BL —
obazz==""1 = \(1.5) (569 &5
) 5 10 15 20

Fig. 9. The results of experimental
comparison of methods (1)

As is seen from the figures, in the MV method,
as & grows, the resolution probability monotonically
increases from P,~0.5 to P,~0.75, that is namely so as
it has to theoretically vary at y, =y . At the same time
the rest of methods at small § <10 either insignifican-
Ity exceed (LP) or are even worse in efficiency than
the MV method, although the values corresponding
tothem are y>vy, .

Thus for finite &, all the methods (1) have es-
sentially worse statistical properties than Capon’s
MY method. Their real resolution by both statistical
(Section V) and non-statistical (Section VI) criteria
under these conditions is therefore significantly worse
than the asymptotic one (at 8 — < ).

Reasons of the difference and ways following
from them for enhancement of methods (1) “robust-
ness” are discussed below.
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VII. REASONS OF DIFFERENCE IN
STATISTICAL PROPERTIES AND WAYS
OF THEIR IMPROVEMENT

A. The above established “special” place of
Capon’s MV method among methods (1) under con-
ditions of finite effective sample size >0 can be
explained using interrelation between their SFs as
well as the specific SF property of the MV method it-
self. These interrelation and property are commonly
known (see, e.g., [1 —6, 14, 27, 32 etc.]) and, as a
rule, used for explanation of the difference between
corresponding methods under hypothetic conditions
of exact CM @ (4), (9).

Let us begin from this situation, considering the
“true” SFs S (o) obtained by replacing matrix ¥ (3)

A

in random SFs S (o) by “true” matrix ¥ (11).4)
B. Introduce the m th (me 1, M ) order SF of the
MYV method

S (oc,m)=(x;(oc) W X, ((x))

Xm (OL) :{xi (OC)},W; ’ \Pm = q)';l’ (Dm ={(pi/ }i,jzl :

The SF S(a,M-1) is related to the SF
S, (o) =S, (a, M) by the equality [1, 3,17, 27, 32]

St (00 M) =8 (M 1)+ S (@)

Sye(a)=

-1

(69)

m

Oym
ey (o) ¥-x,, (o)
where S, () is SF of Burg’s “maximum entropy”
(ME) method [24, 32], which given m =M coincides
with the SF S, (o) of LP method (1).

Hence and from a comparison of the first three
SFsin (1), it follows that

Sue (o) =85 (o) Sy (o, M) =

=8, (a), m=M, (70)

|2

(71a)
=C ()-8 (o, M =1)=8,(ax), m=M,
o) S, (o, M -1)
$3() S, (o, M ~1)-S, (o, M)’ (71b)
Cy(a)=e M) g (y-1,

Sy (o, M ~1)=58, (o, M)

Consider functions S;(o) or Cj(a) more in
detail. Let us begin from their values at points o =0,
(e 1,n) of sources location when the steering vector
x(0)=G-e, coincides with the ¢th column of matrix
G (9). As follows from (69), (11), in this case,

S (B M) =€1-Q:(1,=T) e,

-(1+hQ)"), =66

4" Note that here we for the first time use in the theoretical
treatment the specific peculiarities of structures of CM ®
(9) and ¥ (11) (which are used above for quantitative assess-
ment only). All the analytical results of Sections IV — VI are
therefore true not only for these CMs, but also for arbitrary
CMs of Gaussian processes (e.g., corresponding to corre-
lated radiations, spatially distributed radiation sources (re-
flections), etc.)
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Let maximum eigenvalue A
=(h- Q)f1 satisfy the condition
P (W) =2 (W) =0 (h-Q) << 1, (73)

whereat for matrix T the following approximate
equality is valid:

W) of matrix

max (

T=I,-(h-Q)"

Then S;'(B,,M)=e,-h™"-e,, so in the consid-
ered case of independent radiations (diagonal matrix

h (9))
Sy (B, M)~ h (74)

Equality (74) had been repeatedly mentioned in
the literature, but its fulfilment had been linked either
to the presence of distinct maxima in SF S, (o) in the
vicinity of points 3, (£ 1,n) or to even more rigor-
ous requirement /4, — oo [6]. It is essential, however,
that it is valid in the “preasymptotic” domain as well,
i.e. at smaller OSNR values g, than it is required for
the occurrence of these maxima in the SF S, (at) .

Let us show this on the example of the M-
element LUAA in the (n=2, A</, h=h1,,
¢, =¢,=q=M-h) test scenario In this case,
Amin (1-Q)=g-(1-p), so condition (73) is equivalent
to the condition g>>(1 —p)_]
ered as satisfied already with

q=M-h=q0210~(1—p)_1,

,, Leln.

which can be consid-

1) (m-A)” (75)

= 2 (2-i+1)!

The less A, the larger g, (75) values but given
small A<0.5, when for p the presentations

p=1-m*-A?/6=1-1.5-A%, 1-p=1.5-A> (76)
are valid, requirement (73), which leads to equality
(74), for g, > 7/A? is also satisfied. This value of q, is
approximately (2-A)_2 times less than ¢, (57) of the
MY method.

Growth of OSNR ¢ to higher values than
“boundary” value g, (15) practically does not change
S(B,), ¢eln (74), so for any

q9>4qy, dp <4y,

smnA

Mz

the normalized SF S, (o, M)/h at points o=, of
sources location equals
)/h=1.

Sn (B():Sl (stM (77)

Fig. 10a shows a family of normalized SFs (77)
for the test scenario in LUAA given A=0.1, when
¢o~700 (28 dB). The ¢ge[20,56] dB serves as the
family parameter; sources location is shown by ar-
rOWS.

It is well seen that

S,(B,)>1 for g<gq,, qy<4q,., (78)

but with increase in g>g,, values S, (B,) approach
from top to unit (“stick together”) at points of true
location of sources [17] even before the occurrence of
“distinct” maxima in the .S, (o) .

Now let us pay attention that condition (73) and
equalities (74), (77), (78) ensuing from it are formu-
lated for OSNR ¢, but not for its multipliers in (75)
apart. Even for the fixed SNR 4, =/ at the points
o=p,, SFs of all the orders m<M of MV methods,
whereat equalities g,, =m-h=q, (75) are satisfied, are
therefore close to each other (“stick together”).

Hence, it follows that when M >>1 and (73),
(75) are valid,

S (o, M -1)=8, (o, M )20, a=B,, L€1l,n, g=q,(79)

and the more ¢q > g, , the closer this positive difference
to null.

The small difference in denominators of the MCA
SFs S;(a) or C;(a) (71b) under conditions (79) en-
tails the distinct maxima in these SFs (resolution by
criterion (56)) with less OSNR ¢ values than those
required for the MV method SFs S, (o) being basic
for the MCA SFs. This reveals itself when comparing
families of SF C; (o) (71b) shown in Fig. 10b with
families of SF S, (o) shown in Fig. 10a, as well as
curves 4, 5, 6 with curves 2, 3 in Fig. 6.

By virtue of equalities (71a), the ME method
given exact CM has the performance being close to
that of MCA by criterion (56) and significantly ex-
ceeding that of the basic MV method. Besides, the
established in [27] relations between SFs of the ME
(LP) and TN methods show that the latter, being
insignificantly worse than the ME method, under

2500

Swuea (@) A= 0.1

2000

-1500

Fig. 10. (a) Family of normalized SFs (77). (b) Family of SF C; (OL) (71b)
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these conditions can also significantly exceed the MV
method. The same concerns the BL method whose
SF S, (o) in the “liaison”

S5(0)= S ()5, (@) (30)

between SFs Ss(o) and S (o) of the TN and MV
methods plays the same role as SFs S;(a) or C;(at)
of MCA in “liaison” (71a).

Thus, in each of methods (1), there is used to
this or that extent property (74), (77) of “sticking to-
gether” of SFs S| (o) of the MV method of orders M
and M -1 at points a=f,, ¢€1,n of sources loca-
tion under conditions (73), (75). It is not used in the
MY method itself only, and namely for this reason in
the hypothetic situation of exactly known CM @ (4),
(9) it has the “worse” resolution performance by cri-
terion (56) than that of the rest of the methods (see
Section VI-B, Fig. 6).

C. HoweverA, in the realistic situation of the es-
timation CMs @ (6), (27) and the finite size §>0
samples, fine “sticking together” effects (79) can be
breakdown by random errors of CM estimation. These
“destructions” can be of two kinds.

First, the random difference

S (0, M -1)-8, (o, M)20, (81)
which keeps being non-negative, with the non-zero
probability can beless than true one (79) in the absence
of sources in the direction of analysis o.. Namely this
makes heavier tails in distribution (40) and requires
to significantly increase the threshold constant X, to
fix FAP F for the MCA method as well as for the LP,
BL, TN ones (Section V-C, D).

Second, random difference (81), which is defined
by the CM estimation errors, can be larger than true
one (79) and independent of it at an arbitrary level of
radiation in the direction of analysis a=f,, (f€ L,n
). This explains the “bias to the left” of the aforemen-
tioned methods pdfs and cdfs (Sections V, VI), as well
as the paradoxial, at first sight, constancy of the PDP
level D in MCA at arbitrarily large values of . The
smaller effective sample size §>0, the smaller D
(Section V-C).

Namely for this reason Capon’s MV method,
wherein the easily destructible “sticking together” ef-
fects are not used, appear to be the most “robust” un-
der these conditions.

The analytical and experimental results of
Sections V, VI yield the quantitative characteris-
tics of the described consequences of the conditions
(79), (74) “breakdown” subject to the effective sam-
ple size >0 for each of methods (1). Allowance for
them and the understanding of the described physi-
cal mechanism enable us to propose simple modifi-
cations of SFs (1) with significantly better statistical
characteristics.

VIII. KINDS OF “SUPERRESOLVING”
DOA ESTIMATORS

A. At the beginning, note that values of SFs S (o)
(1) of the MV, LP methods and MCA at an arbitrary
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point a.€[o,,0, | of analysis can be obtained combin-
ing squared modules of elements of the vector

p=p(0)={p, ()} ¥, =H -x,

x:x((x), o€ oy, |

(82)

Here x(o) is the steering vector similar to (2);
H={h,}"_ the MxM lower (h, =0 for ¢>)tri-
angular matrix that is Cholesky multiplier of ¥ (3)
presented as

Ax A

v-H H (83)

which under conditions (5) exists forany 6=N - M >0 .
It is easy to make sure that in these designations

Si(@)=("-p)" (2“””'} T (8da)

=(piM'p—M+|pM|2) Py ={Patua’s

R . -
S me (o) = |]7M| (p P-Pu p—M) =
. , (84b)
=82(a), m=M,
S3(o,M)=2R _C5(a)+1,
2] (84c)
C (oc)—p‘M pz‘M, m=M.
||

When deriving (84b), it is taken into account that
by virtue of (83),

~ A2 * o *
Opar =l s €y - H =hyp, €y

B. Asisseenfrom (84b), SF S ur (o) = S e (o, M )
(70) is defined by squared module of a single (last) el-
ement p,, of the vector p={p, } . (82), whereas

the SF S, () is defined by squared modules of all the
vector elements. The squared m th element module
as a function of o has a meaning of radiation pattern
(RP) of the m—1 order spatial linear prediction filter
with minimum RMS in the m- element AA with the
decreased (in the case of LUAA, M/m times) aper-
ture size. The less m , the “smoother” these RPs as

functions of o (in particular, the SF |p, |72 do not
depend on o at all). Namely this full accumulation

of the all the orders me1,M SFs S (o,m) with
different degrees of smoothing explains both asymp-
totically (at N — o) minimum Capon’s method res-
olution compared to other methods (1) by Rayleigh
criterion (Section VI-B) and its maximum “robust-
ness” under conditions of small effective sample size
d=N-M =0 (Sections V-B, VI-C, VII). And vice
versa, namely the full absence of accumulation of the
smoother m < M order SFs S, (o, m) causes signifi-
cantly higher resoltion, by the Rayleigh criterion, of
the ME method given N — « due to the “sticking to-
gether” effect, as well as its minimum “robustness” in
conditions of small >0 when the effect breakdowns
(Sections V-D, VI-D, VII).
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In this connection, in real scenarios of finite-
size sample, more useful can be “intermediate” SFs

Sint () looking like [33]
N * * _l * _l
S'int (OC) = (p P=Pym Pym ) =(pmr 'pint) >
Pt ={Pu il Pine ={Pu} mripnr-
They are formed by the “intermediate” number
ny =(1-x) -M, xe0,(M-1)/M (85b)
of last components of the vector p or, what is equiva-

lent, its first - M components are excluded from
them. In the boundary cases =0 and =(M -1)/M ,

(852)

o 3‘1 (O(‘)v

Sint (Oc) =

-0, =M,
% Mt =05 85¢),

S p(a), x=(M-1)/M, n,, =1.

“Intermediate” variants of MCA SF (84c), for
whose designation we use (~) instead of ("), take the
form:

S5(0)=p"-B/Piw Piw =C5 () 41,
C5 () =Pyar “Prat /P i

C. The proceeding from SFs (84) to “interme-
diate” SFs (85) is accompanied by two “fighting”
effects. On the one hand, their asymptotic (N — oo
) resolution increases to be the closer to the ME
method (84b) resolution, the closer value y is to the
upper bound y=(M -1)/M . On the other hand,
their “robustness” decreases in conditions of small
effective size =N - M >0, when the “sticking to-
gether” effect breakdowns (Section VII). Therefore,
an expediency of intermediate SFs (85) depends on
which of effects stronger reveals itself.

A comparative theoretical analysis of the effects
impact [33] has shown that there exists a rather wide
parameter domain O<y<(M -1)/M wherein “in-
termediate methods (85a), (85d) under conditions
of small size sample appear to be significantly more
efficient than their “boundary” analogues (84), (85¢)
with x=0 or x=(M-1)/M .

As an example, for the M =16-element
LUAA given different values of the parameter

1 RETTIA A mipgiiepye
Pr .—\;.";—") ”//

0.9
0.8}~ NS\

(85d)

3 \
0744 A——
0.6 ""/ \\\ iz ol
s \\z=075

2" M=16 \
04}-A=0.5 \\Oi
03)a~20dB \O0-25

| 7o=2dB S
0.2 :

0 5 10 15 20

a

x€0,(M—1)/M =0.94, Fig. 11 shows modeling de-
pendences of the resolution probability P, (3) given
the resolution threshold vy, =vy,,, =2 dB (Section VI-
C, D) for SFs §,,(a) (85a) (Fig. 11a) and @(oc)
(85d) (Fig. 11b).

It can be seen that, already with small effective
sample sizes =N —M >0, the “intermediate” SFs

S'i,,, (o) provide resolution by the Rayleigh criterion
with such a probability that is either provided by their
“boundary” kinds (85c) given significantly larger

sample size §>>1 (S (o)) or not provided at all (
S y(a)). Itis also seen that the “intermediate” SFs
C;(o) are more efficient than the “intermediate”

SFs S, (o) given small values >0 and not worse
than they at any 6>>1.

D. Of a great many of possible in principle filters

with MIC H, the most interesting are adaptive lat-
tice filters (ALF) [37 — 40]. Having the input steering
vector x(oc), simply combining squared modules of
output signals of the tuned ALFs, it is possible to real-
ize not only considered SFs (1), (85) but a diversity
of their kinds with practically useful properties. In
typical cases of M >>1 their aggregate forms a rather
capacious “bank” of noneigenstructure (NES) meth-
ods of DoA estimation. On its basis, the proposed by
A. Gershman idea [12, 43 — 46] of combined direc-
tion finding with an aggregate of “superresolving”
DoA estimators can be easily realized. He has shown
that in this case, using a respective strategy, it is possi-
ble to obtain the higher efficiency of DoA estimation,
and besides to reduce requirements to the sample size
compared with each of the “bank” methods apart.

E. Specificity of the “banks” proposed in [12,
43 — 46] is in insertion in them of DoA estimators real-
izing “eigenstructure (ES)” methods of MUSIC type
[1—4, 7]. Their high potential efficiency is based on
allowing for the a priori information that a signal con-
stituent rank of the correlation matrix of M >1 spatial
receive channels output signals is equal to the num-
ber n< M of external independent sources. However,
such an equality corresponds to an idealized scenario

1
09— i
0.8} '(\:Q
AN\
\

\\ 7=0.75

0.7

0.6 7

0.5 M=16

04F—A=0.5 \\'f'ﬁ

03|_g~20dB \025
"l y,=2dB 5
0.2 :
0 5 10 15 20
b

MCA

Fig. 11. The results of experimental comparison of methods (85)
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of exact matching of a CM model used as the basis for
the ES methods synthesis and the real CM that can
differ from the model for a number of reasons.

One of reasons of this is practically inevitable
non-identity of frequency (pulse) characteristics
of spatial receive channels. As a special testing has
shown [41, 42], this effect essentially differently im-
pacts on efficiencies of “ES-bank” and ALF-based
“NES-bank”. The “ES-bank” can become practi-
cally unserviceable at such a level of non-identity
whereat the “NES-bank” efficiency decreases insig-
nificantly. Therefore, it is expedient to use namely
the ALF-based bank when realizing in practice fruit-
ful Gershman’s idea of combined DoA estimation for
point sources radiation.

CONCLUSIONS

The paper is devoted to the investigations of a
number of known “superresolving” methods resolu-
tion for DoA estimation of point sources noise radia-
tion in an M-element antenna array (AA) given a
finite-size sample, and to substantiation on this basis
of their new variants with heightened efficiencies un-
der these conditions.

I. From the Shirman’s statistical theory posi-
tions, potentialities of resolution-detection are defined
for Gaussian noise signals of point sources against the
background of Gaussian self-noise of M receive chan-
nels. They are provided under hypothetic conditions
of full a priori definiteness and optimal processing of
available K- variate sample of M - variate vectors of
complex amplitudes of the additive signal and noise
mixture at the receive channel outputs. Shirman’s
classic results related to the case of K =1, are gen-
eralized to the case of arbitrary K . It is shown that
in the test n=2 equipotent sources with SNR ¢ sce-
nario a minimum angular distance between sources

under resolution for D=0.5 and F =107 is inversely

proportional to \/E if K=1andto ¢q if K>30.In
real conditions of the a priori uncertainty, additional
signal energy consumption is needed for resolution
(Section III).

2. A degree of proximity to the established po-
tentialities is estimated for efficiencies of five known
“noneigenstructure” (NES) methods of spectral
analysis (SA). Their spectral functions (SF) are de-
fined by a matrix being inverse to the maximum like-
lihood (ML) estimate of the correlation matrix (CM)
of the input mixture under analysis. It is assumed that
it is formed by a N > M -size sample and has well-
known Wishart’s complex distribution. The sample
size¢ N>M dependence of these methods resolu-
tion-detection by the statistical criterion is estimated.
It is shown that “payment” ¢ for the a priori lack of
knowledge of CM is minimum in Capon’s method.
Given already N = K +¢ with e= M -1, this method
provides the same statistical characteristics of the
threshold detection as those provided by the opti-
mal threshold processing of the K- variate sample in
the absence of the a priori ucertainty (given exactly
known CM by hypotheses of the presence and absence
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of “useful” signal). In the rest of the methods, “pay-
ment” for a lack of knowledge is significantly higher,
what is explained by the revealed effect of these SFs
distribution densities “bias to the left” with growth of
radiation intensity (Sections IV, V).

3. It is difficult to realize in real conditions of the
a priori uncertainty the established Capon method ad-
vantages, since the information necessary for setting a
corresponding detection threshold is usually absent.
In this connection, there is analyzed resolution of the
methods under consideration by the widely used non-
statistical Rayleigh criterion for two equipotent har-
monics resolution.

It is shown that in a hypothetic asymptotic sce-
nario (N — ), the best of the considered methods
by this criterion is the Modified Capon Algorithm
(MCA). When using it, a distance between resolvable
harmonics is inversely proportional to the cubic root
of their relative intensity g. The worst of them is the
Capon method (the distance is inversely proportional
to the fourth root of g). However, under real condi-
tions of finite N > M they can “switch places”. This
is related to the specificity of distribution density of
ratio of Capon method SF values at two points, which
consists in that this (random) ratio given any sample
size N > M with the fixed probability P=0.5 is not
less than its true value in the absence of the a priori
uncertainty.

In order to provide such a probability with other
methods, much larger-size samples are needed.
In real situations of finite size samples, the Capon
method resolution can therefore be not less and even
higher than that of the rest of methods (Section VI).

4. Physical reasons of better statistical properties
ofthe Capon method SF are explained. Itis shown that
the rest of the methods to this or that extent use the
“sticking together” effect of exact different order SFs
of the Capon method at points of true sources loca-
tion even before distinct maxima occur in these SFsin
the sources directions. This property is not used in the
Capon method itself only. And namely for this reason
under hypothetic asymptotic conditions ( N — ), it
has worse resolution characteristics by the Rayleigh
criterion than the rest of methods. But having a real
finite size sample, when fine effects of “sticking to-
gether” breakdown due to estimation errors, their ad-
vantages compared with the Capon method disappear
and the latter appears to be the most “robust” in these
conditions (Section VII).

5. New kinds of “superresolving” DoA estimation
methods with essentially better statistical characteris-
tics are proposed. It is shown that on their basis, al-
ready with small effective sample sizes =N - M >0,
the sources are resolvable by the Rayleigh criterion
with such a probability that on the basis of known
methods is either provided given much larger sample
sizes d >>1 or not provided at all.

The possibility of aggregate (“bank”) of proposed
NES methods realization on the unified structurally
algorithmic basis of adaptive lattice filters (ALF) is
noted. The corresponding “ALF-bank” is signifi-
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cantly more robust to impact of various decorrelating
factors than “banks” of ES methods of MUSIC type.
Therefore namely the “ALF-bank” is most suitable for
practical realization of Gershman’s idea [12, 43 — 46]
about direction finding using high-resolution bearing
estimators of various types (Section VIII).
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IIBuaKonitoyi «HAAPO3AiNAIOYi» METOIU OUIHIOBAHHS
HANPSMKIB JpKepes IYMOBUX BUNPOMiHIOBAHD B AIANITUBHUX
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[MopiBHIOETHCS €(PEKTUBHICTD AESIKUX «HATPO3MIISAIO-
YX» METO/IIB OlliHIOBaHHsI B AP IIpocTopoBOro criekrpa ra-
YCiBCBKMX IIYMOBUMX BUITPOMiHIOBaHb MPU KiHIIEBOMY 00-
Cs13i HaBYar04yoi BUOIpKM B MaKCUMaJIbHO IIPaBOOMNOMiOHII
OLHII 1X KOopensLiitHuX Matpulib. [TopiBHSIHHS 0a3yeTbes
Ha aHaJIi3i TOYHMX a00 eMITipUYHUX 3aKOHIB PO3TOIiTy BU-
MaJKOBMX ITapaMeTpiB, 110 BM3HAYAIOTh PO3IAUIbHY 34aT-
HiCTb BiINOBITHMX METOIiB 32 CTATUCTUYHUMU Ta HECTATHC-
TUYHUMU KpuTepissMu. I1okazaHo iCTOTHY BiIMiHHICTb LIUX
3aKOHIB JIJISI Pi3HUX METO/IB, Y 3B’SI3KY 3 SIKOIO BUCHOBKH,
sIKi 0a3yIOThCSI Ha aHali3i aCUMIITOTUYHUX BJIACTUBOCTEIA
LIMX METOiB, MOXYTb 3MiHUTHUCS Ha MIPOTUJICXKHI B peaslb-
HUX YyMOBaX BMOIpoK Mayioro o0csry. BcTraHOBIOIOTHCS
MPUYMHU IUX BIAMIHHOCTEH Ta, BUILIMBAIOYH 3 1X aHAJIi3Yy,
MOXJIMBOCTI ITiIABUIIEHHS «IIIBUIKOIIl» afallTUBHUX METO-
ITiB TIeJICHTALIil IxKepes IIyMOBUX BUIIPOMiHIOBaHb B AP.

Karouoei croea: oLliHIOBAaHHSI HATIPSIMKY MOIIMPEHHS,
«HAIPO3UISIIOYN» TTPOCTOPOBO-YACOBUI CITEKTPaTbHUI
aHaJji3, LIBUAKOMISI, CTAaTUCTUYHUU aHalli3, PO3MiICHHS,
BUOipKa 0OMEXXEHOro o0CATY, afalTUBHUI pelliTyacThit
GiIbTp.

In.: 11. Bi6aiorp.: 50 Haiim.
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BeicTponeiicTByIomme «cBepXpa3peniaionme» MeToIbl
OLICHWBAHMS HANPABJIEHWH WCTOYHUKOB IMYMOBbIX H3JTyde-
Hmii B anantuBHbix AP / JI. U. Jlexopuukuii, S1. C. [lud-
puH // TlpuknamHasi pamgMoO3JIEKTPOHMKA: HaAyy.-TEXH.
KypHai. — 2015. —T. 14. — Ne 1. — C. 7-23.

CpaBHuBaetcs: 3 (GEeKTUBHOCTb psila «CBepxpas3pe-
IIAIOLINX» METOAOB OlieHMBaHMSI B AP IpocTpaHCTBeH-
HOTO CIIeKTpa TrayCCOBCKMX IIYMOBBIX WM3JIyYEHU TMpU
KOHEYHOM 00beMe 00yJaroleil BHIOOPKU B MAaKCUMAaJIbHO
MPaBAONOAOOHBIX OLIEHKAX UX KOPPEJSLIMOHHBIX MaTPUIL.
CpaBHeHUe 6a3upyeTcs Ha aHAIM3e TOUHBIX WM SMITUPU -
YeCKMX 3aKOHOB pacTpeesieHUs CyJYaiiHbIX TapaMeTpOB,
ONpEeNeISIIONIMX Pa3pellialollyl0 CIIOCOOHOCTb COOTBET-
CTBYIOIIMX METOMOB 10 CTATUCTUYECKUM U HECTATUCTHU-
YeCKUM KpuTepusiM. [TokazaHbl CyllIeCTBEHHbIE Pa3INYUsI
9TUX 3aKOHOB, B CUJIY KOTOPBIX BBIBOJBI O CPAaBHU-TEJb-
HBIX JIOCTOMHCTBAaX pa3JIMuYHbIX METOJOB, OCHOBaHHbIE Ha
aHaJIM3e UX aCUMITOTUYECKUX CBOMCTB, MOTYT MEHSITbCSI
Ha TIPOTUBOITOJIOXKHBIE B PeaTbHBIX YCJIOBUSIX BBHIOOPOK
Majoro oobeMa. YCcTaHaBAMBAIOTCS MTPUUUHBI 9TUX OTJIU-
YU ¥ BBITEKAIONIE U3 UX aHAIM3a BO3MOXHOCTH TTOBbI-
IIEHUS «ObICTPOACCTBUSI» aJaNTUBHBIX METOIOB TeJIeH-
raliu KICTOYHUKOB IITYMOBBIX U3ITy4eHUI B AP.

Katouesble crosa: olleHMBaHNE HATIPaBICHUST TTPUXO-
114, «CBepXpaspeliaronnii» MpoCcTpaHCTBEHHO-BPEMEHHOM
CIIeKTPaIbHBIN aHaIu3, OBICTPONENCTBHUE, CTaTUCTUYEC-
KU aHaIu3, paspelieHre, BHIbopKa KOHEYHOro oobema,
aJIalITUBHBIN pereTyaThlii (GUIbTP.

Puc.: 11. bubauorp. : 50 Ha3B.
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