
7Прикладная радиоэлектроника, 2015, Том 14, № 1

UDC 621.396.965

Rapidly convergent «superresolving» direction-of-arrival 
estimation of noise radiation sources in adaptive arrays

D. I. LEKHOVYTSKIY, Ya. S. SHIFRIN

The paper summarizes and develops the results obtained by the authors in [11, 33, 49, 50]. We compare the 
efficiencies of some “superresolving” methods for estimation of a spatial spectrum of Gaussian noise in an 
antenna array for the case of a finite-size sample in maximum likelihood estimates of their correlation matri-
ces. The comparison is based on an analysis of exact and empirical random parameters distribution laws that 
determine the methods resolution by statistical and non-statistical criteria. Significant differences in these 
laws are shown owing to which conclusions about comparative merits of different methods, based on their 
asymptotic properties analysis, can change to opposite ones under conditions of small samples. Causes of 
the difference and the possibilities following from their analysis to improve the convergence rate of adaptive 
methods for noise sources direction-of-arrival estimation are studied.

Keywords: direction-of-arrival estimation, «superresolving» space-time spectral analysis, convergence rate, 
statistical analysis, resolution, finite sample, adaptive lattice filter.

I. Introduction and Statement  
of the Problem

Practical needs for “super-Rayleigh” noise radia-
tion sources resolution and heightening their angular 
coordinates measurements accuracy have stimulated 
the development of a great amount of “superresolv-
ing” methods of direction of arrival (DoA) estima-
tion in antenna arrays (AA) [1 – 19, etc]. Yacov D. 
Shirman was first who established the “superresolu-
tion” fundamental possibility, sense and extreme per-
formance for different applications [20, 21, 34, 35]. 
An important role in the development of this line of 
investigation was played by works of J.P. Burg [24] 
and J. Capon [36]. A flow of publications on this topic 
including those of review nature, that then followed, 
goes far beyond the works referred to in this paper.

Merits of the “superresolving” methods have 
been provided by the processing optimization (by 
these or those criteria) based on statistical character-
istics of AA output signals (multivariate probability 
density functions). Under typical in practice condi-
tions of parametric a priori uncertainty, in synthe-
sized algorithms, instead of a priori unknown true 
parameters, these or those their estimates obtained 
by finite-size training samples are used. Stipulated by 
this randomness of the estimates entails randomness 
of parameters characterizing efficiencies of methods 
used. Their statistically correct comparison therefore 
has to be based on an analysis of distribution laws of 
relevant random parameters.

Great attention in the literature is paid to the 
statistical investigations of “superresolving” methods 
of space-time spectral analysis (ST SA) [1 – 16, 22, 
26, etc] including those for solving problems of point 
noise sources direction finding in AA. Nevertheless, 
due to a lot of the methods, problems solved with 
them, and criteria used, the investigations can not 
be considered as completed. As a development of 
[15 – 19], in the paper, exact or empirical (by simula-
tion results) distribution laws are analyzed for spectral 
functions (SF) of some known ST SA methods given 

a finite size sample in the maximum likelihood (ML) 
estimate of the correlation matrix (CM) of Gaussian 
noise at AA outputs.

Beside of self-importance, the analysis allows 
substantiating the simple modifications of considered 
methods which significantly improve their statistical 
properties [33].

The paper is organized as follows. Initial mod-
els and assumptions are formulated in Section II. 
Potentialities of Gaussian noisy (in time) quasi-
harmonic (in space) signals resolution-detection by 
means of optimal (by the Neyman-Pearson crite-
rion) processing under hypothetic conditions of full 
a priori definiteness are considered in Section III. In 
Section IV, after the technique is briefly described, 
exact probability density functions (pdf) of random 
SFs are presented for some space-time spectral analy-
sis methods given different training sample (herein-
after termed sample) sizes in ML estimates of CM. 
Their resolutions on this basis are compared by sta-
tistical (Section V) and non-statistical (Section VI) 
criteria. Reasons of the difference and following from 
them ways to improve statistical properties of consid-
ered ST SA methods are discussed in Section VII. In 
Section VIII, new kinds of “superresolving” ST SA 
methods being highly efficient under conditions of 
small-size samples are substantiated.

II. Initial Relationships,  
Models and Assumptions

A. Random spectral functions (SF) 
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The SF S
^

1 α( )  corresponds to Capon’s “Minimum 
Variance“ (MV) method [1 – 6, 14, 22, 25]; S

^
2 α( )  

to Burg’s “Linear Prediction” (LP) method [1, 2, 

6, 24, 27]; S
^

3 α( )  to one of the “Modified Capon’s 

Algorithms” (МCА) variants [16 – 19]; S
^

4 α( )  to 
Borgiotti-Lagunas’s method (BL) [3, 6], S

^
5 α( )  to the 

“Thermal Noise (ТN)” one [6, 14, 27].
In all the SFs, x α α( ) = ( ){ } =x M

� � 1  is the non-
random M  variate steering vector (in α direction) 
subject to M  receive AA elements (modules) spacing 
and performance. In particular, for a linear uniform 
AA (LUAA) consisting of identical isotropic elements
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where θ  is the direction of search counted from the 
AA normal; d  is the distance between adjacent AA el-
ements; λ  is the wavelength.

The em  in (1) denotes the m th ( m M∈1, ) col-
umn of a M M×  identity matrix iM  (the M  variate 
vector with a single non-zero ( m th) element equal to 
unit); (*)  is a sign of Hermitian conjugation.

B. Statistical properties of SFs (1) are defined by 
the properties of the random M M×  matrix

	 ΨΨ ΦΦ^ ^
,

^={ } ==
−ωij i j

M
1

1
,	 (3)

being inverse to the used estimate ΦΦ^ ^
,={ } =ϕij i j

M
1  of the 

a priori unknown spatial CM

	 ΦΦ ={ } = ⋅ ∈=ϕij i j
M L,
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of M  variate random vectors y�
�={ }( )

=yi i
M

1  of com-
plex amplitudes of AA output signals at the discrete �
th ( �∈1,N ) time moment.

As usually [3 – 14], assume these vectors to be 
normal (Gaussian), interindependent, with a zero 
mean and the same CM (4):

y y y y� � � � �~ , , , , , , .*CN m Nm m0 0 1ΦΦ ΦΦ( ) = ⋅ = ⋅ ∈ δ  (5)

Here, δ�m  is the Kroneker delta; the bar, like in 
(4), symbolizes the statistical averaging.

Formed by N M≥  size sample y y={ } =� � 1
N , the 

random matrix
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under conditions (5), as is well known, is the ML es-
timate of unknown CM (4). Namely its use in (3) is 
implied below when analyzing statistical properties of 
methods (1). The analysis is essentially based on the 
known property of estimate (6) related to that the ran-
dom M M×  matrix that defines it
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given N M≥  has the complex Wishart distribution 
[23] with the pdf
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Here, c  and tr c( )  are the matrix c  determi-
nant and trace;
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is the normalizing multiplier; Γ x( )  the Gamma 
function [31] that for integer x m= ≥1  is equal to 
Γ m m( ) = −( )1 ! .

The pdf parameters in (8) are δ = − ≥N M 0  (ef-
fective sample size) and true CM ΦΦ  (4), what is re-
flected in the designation p a; ,ΦΦ δ( ) .

C. We suppose that for the true CM admissible is 
the presentation [4 – 14, 19]
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It implies interindependence of M  receive ele-
ments self-noise with the same variance (power) (as-
sumed to be unit) and noncorrelatedness of radiations 
of n  external sources with relative (with respect to a 
level of the elements self-noise) intensities (SNR) hi  
( i n∈1, ). The M  variate vector-columns x βi( )  of 
M n×  matrix g  (9) describe the aperture amplitude-
phase distribution of radiations from the βi -direc-
tions ( i n∈1, ). For LUAA, in particular, they look like 
(see (2))
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where θi  is the direction to the i th source counted 
from the AA normal.

Matrix YY  being inverse to ΦΦ  (9) equals

	ΨΨ ΦΦ={ } = = − ⋅ + ⋅( ) ⋅=
− − −

ωij i j
M

M,
* *

1
1 1 1

i g h g g g . (11)

The latter equality in (5), as well as (9) and (10) 
reflect a noisy in time and quasi-harmonic in space 
character of point sources signals, and, for brevity, 
hereinafter they are therefore termed noisy quasi-
harmonic signals. Besides, by virtue of unambigu-
ous relation between true ( θ )- and “generalized”  
(α β, )-directions, the latter ones only, without re-
serve and quotes, are used below.

III. Potentialities of Noisy  
Quasi-harmonic Signals  

resolution-detection

A. Shirman’s statistical theory developed in 
works [20, 21, 34] treats various kinds and criteria 
of resolution. Here, concepts of the quasi-complete 
resolution-detection theory are used. According to it, 
n  signals in noise are considered as resolved if the sta-
tistical characteristics of detection (conditional false 
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alarm probabilities (FAP) F  and proper detection 
probability (PDP) D ) of each of them by turns play-
ing a role of useful signal in the presence of the rest  
( n −1 ) signals playing a role of interfering ones, re-
main not worse than an admissible limit.1

In such a statement, a procedure of spatial res-
olution is reduced to testing the hypotheses: either 
H1  about the presence or H 0  about the absence of a 
source in successively or simultaneously tested signal 
directions α  of sector α αb e,( )  chosen. The resolu-
tion-detection potentialities are provided by the op-
timal processing of received realization under hypo-
thetic conditions of full a priori definiteness.

B. As applied to the models of Section II, the 
latter means a knowledge of α dependent CMs ΦΦ1  
and ΦΦ0  of vectors y�  (5) by hypotheses H1  and H 0 . 
They are related to CM ΦΦ  (9) by the equalities
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In this case, the optimal (by the Neyman-Pearson 
criterion) processing of the K-variate realzation of in-
put process y y={ } =� � 1

K  is reduced to formation of the 
statistic [18, 34]
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and to its comparison with the threshold v0 α( )  
providing the specified FAP
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Here, p xξ0
( )  and p xz0

( )  denote pdfs of the sta-
tistics ξ α( )  and z α( )  under hypothesis H H= 0  of 
the absence of sources in the direction under analysis.

Using (8) with M =1 and N K=  and taking 
into account (12), it is easy to make sure [19] that 
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is pdf of Gamma-distibution with the integer shape 
parameter K  (Erlang’s distribution [30]) and the 
scale parameter
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It follows from (14) – (16) that the required 
threshold level equals

1	 Works [2, 4, 7 – 14 etc.], wherein resolution is 
linked to an angular coordinates estimation accuracy (with 
a degree of errors proximity to the Cramer-Rao bound), 
from positions of the theory of [20, 21, 34] concern quasi-
complete resolution-measurement.

	 v0 α σ α( ) = ⋅ ( )x K0 0
2 	 (18)
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is the “survival function” [30] of Erlang’s distribution 
with σ2 1= . Herewith PDP of the signal (from the 
direction of search α ) given α β= �
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fully depends on the detection parameter m�  (17). It has 
an evident sense of “optimal” signal to interference 
(a mixture of interfering signals from the β αi ≠  
directions and receive channels noise) power ratio 
(OSIR) after the optimal processing. It is convenient 
to write it down as

µ
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where q�  is the OSIR in the absence of “interfering” 
signals (in the presence of self-noise solely) to be 
henceforth termed OSNR in order to emphasize 
its dissimilarity from SNR h�  in the AA elements; 
ke ≤ 1 is the “useful” signal energy utilization factor 
[20] characterizing the loss due to the presence of 
“interfering” signals.

In particular, for LUAA given n = 2  and α β= i  
when, by virtue of (9) – (12),

g x i x x= ( ) = = −
+

⋅ ( ) ⋅ ( )β β β2 0
2

2
2 21
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from (21) obtain [18 – 21, 34]
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Here,

ρ β β π π= ( ) ⋅ ( ) ≈ ⋅( ) ⋅( )x x* sin1 2 r ∆ ∆         (24)

is the spatial correlation factor of “useful” and 
“interfering” signals subject to the relative angular 
distance between them

∆ ∆ ∆= −( ) = ⋅β β π2 1 0 0 2, M ;                (25)

D0 is the first nulls radiation pattern (RP) half-
width of the synphase M  element LUAA.

The approximate equality in (24) is valid under 
conditions of M >>1  and ∆ ≤1 to be of key interest 
for the later discussion.

C. Fig. 1a shows families of the dependences
D D= ( )µ , with µ = ⋅q ke  and q q= 1 , accounted by 
(20), (19) for different values of F  and sizes K  of 
the analyzed input process realization y y={ } =� � 1

K .  
Fig. 1b shows dependences ke ∆( )  (23) – (25) for a 
set of OSNR values q qM = 2  of “interfering” signal. 
They allow defining the statistical detection charac-
teristics ( F D, ) of the signal with OSNR q  versus the 
angular distance ∆ ≤1 between them and, hence, the 
possibilities of their angular resolution-detection.
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Let, e.g., q = 20  (13 dB), K = 5 , and PDP have 
to be not less than D Dallow≥ = 0 5.  for FAP F = −10 6 .  
As follows from Fig. 1a, µ ≥ 4  and hence ke .≥ 0 2  
(-7 dB) are required for this. According to Fig. 1b, 
this ke  value is provided for ∆ ≥ 0 19.  if qM =10 dB, 
and for ∆ ≥ 0 22.  if qM =15 dB. When ∆ ≥ 0 23. , it is 
provided even if qM →∞ . The corresponding lower 
bound ∆ ∆= min , as is seen from the given examples 
and was shown as early as in [20], can be less than 
the Rayleigh limit ∆ ∆= ≈R 1 . This bound is provided 
solely under hypothetic conditions of full a priori def-
initeness with optimal processing (13) of the signals 
described in Section II and therefore characterizes 
their resolution-detection potentialities.

The “super-Rayleigh” resolution is “purchased” at 
the expense of the increase µ q k= −

e
1  times in the signal 

threshold power. However, under optimal processing 
(13), power loss (21), (23) is minimum, or, what is the 
equivalent, the power is used for resolution as much ef-
fectively as possible. For example, in a test scenario of 
two ( n = 2 ) equipotent LUAA signals, Dmin is inversely 
proportional to q  given “small” K , and to q  given 
the “large” K . A boundary between the “small” and 
“large” K  is subject to D  and F . It can be shown, in 
particular, that for D = 0 5.  and F = −10 6  [18, 19],

	  ∆min
for ,

. for .
= ≈ ≤

≤ ≥






1 5

0 577 35

q K

q K
            (26)

D. The processing under real conditions of a priori 
uncertainty is inevitably related to an additional signal 
loss and (or) aggravation of requirements to the sam-
ple size (observation interval). These loss and require-
ments being a “pass” for these or those methods to the 
work under corresponding conditions are defined by 
distribution laws of statistics formed by the methods. 
Below, a role of the statistics is played by random SFs 
of methods (1), wherein instead of unknown CMs (9), 
(11) their ML estimates (6), (3) are used.

IV. Distribution Laws of Spectral 
Functions “at Point”

A. In an optimal resolution-detection procedure, 
statistic (13) at points of analysis α α α∈( )b e,  is com-
pared with threshold (18), (19) (for the moment (until 
Section VI) we assume that necessary thresholds can 
be formed).

The statistical characteristics of the threshold 

processing of random SFs S
^ α( )  (1) are defined by 

distribution laws of their values at these points.
When deriving the laws, assume ML estimates 

(6), (3) to be formed by the N M≥  sample y y={ } =� � 1

N
 

of vectors y�  with properties (5), so matrix A  (7) has 
the Wishart distribution (8):

a y y a a= ⋅ ( ) = ( ) = − ≥*, ; , ,p p N MΦΦ δ δ 0 .   (27)

Having no possibility to give here complicated 
and bulky computations, we restrict ourselves by a 
brief description of a procedure and results of exact 
computation of the pdf for the first three SFs (1) only 
that are direct subject to matrix YY^ . The pdfs of the 
two latter SFs dependent on the squared matrix are 
unknown for the authors. Their empirical distribution 
laws are obtained below with the help of a mathemati-
cal model pretested with exact results.

B. The essence of the technique is in the follow-
ing [15]. Let us introduce the k k×  Hermitian matrix

Q Z a Z Z Z

Z z
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where A is random matrix (27); Z the non-random full 
column-rank matrix (with k ≤ M linearly independent 
М-variate columns zi , i k=1, ).

It can be shown [47] that the k k×  matrix
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−
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under conditions of (27) has the Wishart distribution
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with the k k×  non-random matrix of parameters W-1,
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Given k M=  and Z i= M , when ΩΩ ΨΨ= , 

ΩΩ ΦΦ− =1 , Q a
^
= −1  and hence R a

^
= , distribution (30) 

turns into (8).
C. Let k =1  and Z z x= = ( )1 α . In this case, ma-

trices (28) – (30) are transformed into the scalars
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a                                                                             b
Fig. 1. (a) Dependences D D= ( )µ . (b) Dependences ke ∆( )  (23) – (25) for a set of q2
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and distribution (30) takes the form

p R S R S R S
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1
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method therefore equals
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1

1

1 1 1

( ) = ⋅ ( ) ⋅
⋅
( )









 ⋅ − ⋅

( )










δ α α α

δ


  (32)

where S1 α( )  is the “true” value of SF (given YY YY
^ = ).

In this case, the “normalized” SF, being more 
convenient for the further analysis,
	 ν α α= ( ) ( )S S

^
	 (33a)

with the pdf
	 p x S p S x

Sν α α( ) = ( ) ⋅ ( ) ⋅( )^ ,	 (33b)

for the MV method equals

p x p x N N x N xν ν
δδ( ) = ( ) = ( ) ⋅ ⋅ ⋅( ) ⋅ − ⋅{ }−

1

1
! exp . (34)

Pdfs (32), (34) were first obtained as early as in 
[22] and then “re-derived” in [23]. In [19, 28], they 
were obtained also for ML estimates of persymmetri-
cal CMs being possible, in particular, in AAs with the 
central symmetry in spacing of pairwise identical re-
ceive elements (modules) [3, 18]. Discussion on pe-
culiarities related to this CM specificity as well as to 
other ones is a subject for a separate publication.

Let now k = 2 , and Z z z={ }1 2,  be the M ×2  
matrix with the columns

z e z x1 2 1= = ( ) ∈m m M, , ,α .             (35)

In this case, pdf (30) of the 2 2×  matrix 

R
^
={ } =r ij i j

^
, 1

2  equals

p trR R R

Z Z

^ ^ ^( ) = ⋅ ⋅ +( )( ) ⋅ ⋅ ⋅ − ⋅( ){ }
= ⋅ ⋅

− +π δ δ δ δ
! ! exp ,

,*

1
1 2ΩΩ ΩΩ

ΩΩ ΨΨ  (36)

and the first three SFs of (1) are related to 2 2×  matrix 
Q
^

 (28) elements as

S
N q

S
q

N q
S

q q

q

^

^

^
^

^

^
^ ^

^
, ,1

22

2
11

12

2 3
11 22

12

2

1=
⋅

=
⋅

=
⋅

 
    (37)

(for the moment, for designation simplicity, argument 
α  of the SFs is omitted).

D. Therewith the problem to be solved is reduced 
to solving two subproblems:

a) to find pdf of 2 2×  matrix Q
^

 (28) via pdf (36) 
of matrix R

^
 (29);

b) to account pdfs (37) of matrix Q
^

 elements.
In order for the first of them to be solved, it is 

enough to take into account that Jacobian of trans-

form (29) is equal to Q
^ 2⋅k

 and consequently for k = 2

p
tr

Q Q
Q^ ^
^

( ) = ⋅ ⋅
− ⋅( ){ }
⋅ ⋅ +( )

+
− +( )

−

ΩΩ
ΩΩδ

δ

π δ δ
2

4
1

1

exp

! !
.   (38)

The second problem is more chalenging. It re-
quires rather nontrivial transforms, calculations of 
their Jacobians and integrals containing special func-
tions some of which are reduced to the reference ones 
[31].

Omitting details, we give the “final” joint pdfs of 
values fully defining sought random SFs S

^
2  and S

^
3  

(37):

p d
N

N

C
L

c ν ν
ν

ν

ν
ν δ

2 3 23
2

3

2

3 3
11

, exp

exp

( ) = ⋅ −
⋅







×

× −
⋅

+ ⋅







⋅ + −−

⋅
⋅ ⋅ + ⋅( )













=
⋅ ⋅

⋅ ⋅ ⋅+ +

N

C C

d
C

N

ν
ν ν

δ ν
νδ δ

2

3 3 3 3

23
3 3

2
2

2
1

1

1

,

!

CC

C
3

3 3

2

1+ ⋅










+

ν

δ

.

 (39а)

Here, Ln •( )  is the Laguerre polynomial of de-
gree n  [31],

ν ν2 2 2 3 3 3 3 3 1= = = −S S C C C S
^ ^ ^ ^

, ,      (39b)

are the random SFs values normalized to the “true” 
ones.

Integrating (39a) over ν2  ( ν3 ) from 0 to , ob-
tain the pdfs p xν ( )  of normalized SFs ν ν= 3  ( ν ν= 2 ). 
The integral over ν2  is written as

p x p x C

a

C

x

C x

a

n
n n

n

n

ν ν
δ

δ

δ

δ

δ( ) = ( ) = ⋅ +( )×

× ⋅
+ +( ) ⋅( )

+

+ +
=

+

∑

3

1

2
0

1

1

1 1
,

==
+ +( )

( ) ⋅ + −( )
= = ( ) = ( ) −

δ

δ
α α

1

1
1

2 3 3 3

n

n n
C C C S

!

! !
, .

(40)

Attempts to obtain an explicit expression for the 
integral

	 p x p x p x y dycν ν( ) = ( ) = ( )
∞

∫2
0

, 	 (41)

failed, the pdf p xν2
( )  of the LP methods is therefore 

defined with numerical integration methods.
E. The analysis carried out in Section V for es-

timation of methods (1) resolution by statistical res-
olution-detection criteria is based on exact formulas 
(34), (40), (41) and empirical laws of distribution “at 

point” of SFs S
^

4 α( )  and S
^

5 α( )  of the BL and TN 
methods, obtained with models tested by exact for-
mulas.

V. Comparative Analysis  
of Resolution by Statistical 

Resolution-Detection Criteria

А. Assume a decision on signal detection from 
the α α α∈( )b e,  direction to be made by results of a 

comparison of the random SFs S
^
α( )  of methods (1) 

with the threshold v α( ) . Their resolution in this case 
is subject to FAP F  and PDP D :

F p x S dx p x S dx

D p x S dx p x

S
v

v
x

S C
v

v

= ( ) = ( )

= ( ) =

( )

∞ ∞

( )

∞

∫ ∫

∫

^

^

, , ,

,

0 0

0α

α

,, ,S dxC
x S SC

( )
( )

∞

∫ 1

0 0

   (42)

where S S0 0= ( )α  and S SC C= ( )α  are the true 
SFs S α( )  at a point of analysis α  in the absence 
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and presence of a source in the α direction; 
x S0 0= ( ) ( )v α α  is the scalar that shows an excess of 
the threshold
	 v α α( ) = ⋅ ( )x S0 0 	 (43)

over a S0 α( )  value providing a specified FAP F . The 
second equalities in (42) are resulted from (33).

It is easy to show that the ratio 
S S S SC C0 0 = ( ) ( )α α  entering the lower limit of 
the second integral in (42) for all the methods (1) is 
the same, and in the α β= � directions ( �∈1,n ) of 
sources location equals (see (17), (21))

S

S

S

S
q k nC C

e
0 0

1 1=
( )
( ) = + = ⋅ ∈
β
β

µ µ�

�
� � � �, , ,    (44)

i.e. it is defined by the same OSIR m�  as that at the 
optimal processing under conditions of full a priori 
definiteness (Section III).

B. Let us begin from the analysis of Capon’s 
method resolution. As follows from the comparison 
of (34) with (15), for this method, according to (42),

F f N x D f
N x

n= ⋅( ) =
⋅
+









 ∈δ δ µ0

0

1
1, , ,

�

�     (45)

where f xδ ( )  is the “survival” function of Erlang’s 
distribution with the unit scale parameter but unlike 
(19) with the shape parameter δ +1.

In combination with (20), this means that 
Capon’s method under conditions of (6), (3) theo-
retically provides exactly the same statistical perfor-
mance of resolution-detection as optimal processing 
(13) of the K  variate input realization y y={ } =i i

K
1  if 

the sample size N  in ML estimate (27) satisfies the 
condition δ = − = −K N M1 , i.e. when

	 N K M= + = −ε ε, 1 .	 (46)

The ε  value defines a “payment” for the a priori 
lack of knowledge of CM ΦΦ  (4), which is required 
when using Capon’s method on the basis of ML es-
timates (6), (7), (27). In particular, the K  value in 
Fig. 1a should be increased by ε  in order to define this 
method statistical performance in LUAA for n = 2  
and α β= �  ( �∈1,n ).

C. The corresponding “payment” of other 
methods (1) can be significantly higher. We will il-
lustrate this first on an example of MCA with SF 

C S
^ ^
α α( ) = ( ) −1  with pdf (40) and the true values 

C Cα( ) = 0  and C Cα( ) = 1  given α β≠ �  and α β= �   
( �∈1,n ) respectively.

It can be shown that in this case the threshold 
constant x0  in (43) is the root of the equation

F
C

C

a

C
I x Cn

n n
n

=
+









 ⋅ +( ) ⋅ ⋅ ( )

+

=

+

∑0

0

1

0
0 0

0

1

1
1

 

  
δ δ

δ , ,   (47)

and PDP of the source signal acting from the α β= �
direction ( �∈1,n ) equals

D C C

a I x C C Cn n
n

= +( )( ) ⋅ +( )×

× ⋅ +( )( ) = +

+

=

+

∑
1 1

1

0 1
0

1

1 0

1 1

1 1

 

 

δ

δ

δ

µ� , , µµ�( ),
  (48)

where I x cn ,( )  denotes the integral [31]

I x c t t dt z x c

k z x

n
n

z x c
n

k
k

, ,

,

,

( ) = ⋅ −( ) = ( )×

× −( ) ⋅








 ⋅

( )
+∫ 1

1

0

1δ

δ
cc

n k
z x c

c xk

( )
+ +

( ) =
+ +( ) ⋅=

∑ 1
1

1 10

δ
, , ,

 (49)

and 
m

n








  denotes the number of combinations by m  

of n .
Consider first a “small” effective sample size δ  

scenario when

δ δ δ+( ) ⋅ +( ) < = −1 2 0 C N M,              (50)

As the analysis shows, in this case, a decisive 
contribution to sums in (47), (48) is made by the first 
summands only, so that

F
C

C C x

D
C

C

≈
+









 ⋅ +

+ +( ) ⋅

≈
+( ) ⋅ +( )
+ ⋅ +

+
0

0

1

0 0

0

0

1
1

1 1

1 1

1 1

δ
δ

µ
µ

,

 �

�(( )








 ⋅

+δ 1

F .

              (51)

It follows from the first equality that under con-
ditions of (50) when δ <<C0

	 x
C

F0
0

11
1

≈ +
+

⋅ −δ
.	 (52)

For the probabilities F < −10 3  being of primary 
interest, this x0  value can significantly exceed x0  in 
(45) for Capon’s method what demonstrates that dis-
tribution (40) has essentially “heavier tails” than dis-
tribution (34).

It can be seen from the second equation in (51) 
that for small OSIR values µ� <1 , D  F what is quite 
natural. However, under conditions of (50) even at 
arbitrary large µ� →∞ , PDP is

D
C

F

C
F F

≈ +








 ⋅ ≈

≈ + +







 ⋅ ≤ +

+





⋅

+

1
1

1
1

1
1

2

0

1

0

δ

δ
δ

,

                (53)

i.e. not more than 1.5 times exceeds FAP F .
This effect that seems to be paradoxical at first 

sight can be formally explained when analyzing pdf 
(40) transformation under conditions of (50) when 
OSIR is varied µ µ= � . Fig. 2а shows a family of de-

pendences g x C p x C, ,1 1( ) = ( )ν ,2 C C1 0 1= ⋅ +( )µ  for 
a set of values µ = 0 , 1, 9, 99 (C C1 0= , 2 0⋅C , 10 0⋅C , 
100 0⋅C ) given C0 15=  and δ = 2 , when “small sam-
ple” conditions (50) are satisfied.

It is well seen that with the increase in m the pdf 
p x Cν , 1( )  biases to the domain of lesser x  values, 

and due to this, the probability to obtain values ν ≥1  
decreases. By virtue of (33a), (39b), (40), this means 

2 The use of the root of pn(x, C1) is inspired solely by a 
quest for image visualization. Otherwise it is inconveniently 
to simultaneously observe significantly “different in size” 
curves. With the same aim, a logarithmic scale on the x-axis 
is used that enables one to observe functions pn(x, C1) being 
significantly different in width for different values of C1.

Lekhovytskiy D. I., Shifrin Ya. S. Rapidly convergent «superresolving» direction-of-arrival estimation of noise radiation sources in adaptive arrays



13Прикладная радиоэлектроника, 2015, Том 14, № 1

that the probability to obtain the values of random 

SFs C
^

3 α( )  ( S
^

3 α( ) ) being close to their true values 
C3 α( )  ( S3 α( ) ) is the less the more these true values 
are. In this case, due to the pointed out “bias to the 
left”, the area under curve p x Cν , 1( )  to the right of 
the point x x= +( )0 1 µ  defining D  (see (42), (44)) 
remains practically the same as that under curve 
p x Cν , 0( )  to the right of the point x x= 0  defining F .  

This constitutes the fundamental difference between 
MCA and Capon’s MV method pdf (34) of whose nor-
malized SF (33a) does not depend on the absolute true 
SF S α( )  level (the latter circumstance was noted as 
early as in [22, 23]).

As the effective sample size δ  grows (conditions 
(50) are violated), the “bias to the left” of densities 
p x Cν , 1( )  (40) decreases with the increase in m, what 

is clearly seen in Fig. 2b given δ =100 . Under these 
conditions, with the increase in m, PDP D  also in-
creases, however, rather slowly, and for each δ , the 
boundary value µ µ= b  exists whose exceeding in prac-
tice already does not increase the value D Db= . The 
δ  and m are related by the inequality

δ δ µ+( ) ⋅ +( ) < = ⋅ +( )1 2 11 0C C .            (54)

When the inequality is satisfied, the first sum-
mand mainly contributes to sum (48), whereas con-
tribution of the rest of summands can be neglected. 
In this case,

D D C x C xb= ≤ − ⋅ + ⋅( )( ) +
 1 10 0 0 0

1δ
.      (55)

In particular, under conditions of the example 
in Fig. 2b for F = −10 4  ( x0 100= ), it follows that 
Db ≤ 0.06 at any µ→∞ .

In this connection, requirements to the sample 
size for MCA can be significantly higher than those for 
the MV method. This is illustrated by the MCA detec-
tion characteristics shown in Fig. 3. Comparing them 
with the analogous curves in Fig. 1a for δ = −K 1 , it 
is easy to make sure that in the given examples, the 
performance provided by Capon’s method already for 
δ = 0 , 4, 19, is provided by MCA for δ > 200 , 400, 
1000 respectively.

D. Figs. 4a,b show the families of LP method 
pdfs like those in Figs. 2a, b, calculated by (39), (41). 
Figs. 5a, b display the empirical cumulative distri-

bution functions (cdfs) obtained with a mathemati-
cal model for distributions of SFs (1) normalized as 
(33a) of the BL and TN methods under conditions of 
Figs. 2 – 4. It is seen that the “bias to the left” effect 
with the icrease in m is to this or that extent inherent in 
pdfs (cdfs) of normalized SFs of all the methods. The 
requirements to the effective sample size δ  for them, 
as well as for MCA, appear therefore to be significantly 
higher than those for the MV method. Reasons of the 
difference are discussed in Section VII.

Fig. 3. Detection characteristics of MCA

E. The Capon’s MV method merits established 
compared with other methods (1) could become a 
decisive argument when choosing a direction find-
ing method under conditions of the a priori uncer-
tainty if a procedure of random SFs (1) comparison 
with the threshold v α( )  was practically realized at 
all the analysis points α α α∈( )b e, . As follows from 
(43), this threshold is defined by a value of the true SF 
S S0 0= ( )α  of corresponding method, i.e. by its value 
in the absence of source in the direction of analysis α
. The comparison with the threshold solely will pro-
vide the “record” (with minimum “payment” ε  (46)) 
statistical detection performance of Capon’s method 
in the presence of source in the analyzed α direction.

But S0  is defined by CM ΦΦ0  (12) being a priori 
unknown and in reality this or that its estimate should 
be used instead of it. However unlike estimate (6) 
of CM ΦΦ  (4), (9) as a whole, it is extremely diffi-
cult or even impossible to obtain estimate ΦΦ^ 0 of CM 
ΦΦ0  for all the α α α∈( )b e,  including α β= �  ( �∈1,n )  

Fig. 2. (a) Pdf (40) transformation under conditions (50), when OSIR changes µ µ= � . 
(b) Pdf (40) transformation, when conditions (50) are not fulfilled and OSIR changes µ µ= � .
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having available the non-classified at α β= �  sample 
y y={ } =� � 1

N  only. Namely this can explain a wide 
spread in practice of other (non-statistical) resolution 
procedures and criteria, in particular the Rayleigh cri-
terion not related to the threshold processing of SF 

S
^
α( )  at all the points α  of the analysis interval. The 

statistical analysis of methods (1) resolution by the 
(non-statistical) Rayleigh criterion is given below.

VI. Statistical Analysis of Resolution 
by the Rayleigh Criterion

A. Procedures for sources direction finding (the 
spatial spectral analysis) with methods (1) usually 

imply corresponding SFs S
^
α( )  formation at points 

α  of chosen sector α αb e,( )  and a consequent search 
for their local maxima. The number of maxima is then 
identified with the number n of sources in this sec-
tor, whereas their coordinates α�  and values S

^
α�( )   

( �∈1,n ) are identified with the sources directions and 
relative intensities [1, 5, 6, 14, 25]. Resolution by the 
Rayleigh criterion is defined in a test scenario of two  
( n = 2 ) equipotent ( q q q1 2= = ) sources assumed to 
be resolved if the “notch-depth” between two maxima 
of S

^
α�( ) , � =1 2, , characterized by the parameter

γ
α

α
α

α α^

^

^
, ,=

( )
( )

∈ =
+S

S mean

mean
� � 1 2

2
1 2, ,       (56)

exceeds the a priori chosen threshold γ0  (usually 
γ0 1 3= ( )… dB) [1, 14, 25].

The goal of the following analysis is to compare 
resolutions of methods (1) on the basis of ML esti-
mates (27), (6), (3) by criterion (56).

B. First, note that the (forced) proceeding from 
statistically optimal procedures and criteria to non-
statistical ones inevitably entails additional energy 
consumption for resolution. For each of methods (1), 
the consumption is different. It is minimum under hy-
pothetical conditions of infinite sample size N →∞ ,  

when the random SFs S
^
α( )  can be considered as 

coinciding with the true SFs S α( )  (by virtue of the 
asymptotic unbiasedness and consistency of ML esti-
mates (27), (6)).

As is shown in [16-19], under these conditions, 
MCA is the “best” of methods (1), wheras the MV 
method is the “worst”. The asymptotic (for N →∞ )  
difference between them is quantitatively illustrated 
by Fig. 6 that shows OSNR q  (23) values for each of 
two equipotent sources with angular distance D (25) 
between them necessary for their resolution in LUAA.

Curves 1, 2, 3 here correspond to the MV method; 
curves 4, 5, 6 to MCA. In this case, curves 1, 4 are for 
γ =1  and curves 2, 5 for γ = 2 . Curves 3, 6 specify the 
boundary values q qb=  at which the second derivatives 
d S d2 2α α( )  at point α α= mean  (56) of correspond-
ing true SFs S α( )  are equal to zero [25]. For q ≤ qb, 

a                                                                                           b

Fig. 4. (a) Pdfs of LP method under conditions (50), when OSIR changes µ µ= � . 
(b) Pdfs of LP method, when conditions (50) are not fulfilled and OSIR changes µ µ= �

a                                                                              b

Fig. 5. (a) Empirical cdfs of normalized SFs of the BL method.  
(b) Empirical cdfs of normalized SFs of the TN method
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these SFs have a single maximum at point α α= mean ,  
so, by criterion (56), the sources are not resolved. 
They “start being resolved” when [16–19, 25]

∆
∆

∆
≥

≈

≈







b b

b b

q

q

1 17

0 95

4

3

. for the method,

. for

mv

mca .
     (57)

Fig. 6. Values of OSNR q  (23) being necessary to resolve 
two equipotent sources with angular distance D

The qb  values for the rest of methods (1) are 
somewhat higher than those for MCA.

It is seen from a comparison of (57) with (26) that 
when using criterion (56), the less distance D between 
sources, the higher additional energy consumption. 
In particular, for small ∆ ≤ 0 1. , it can constitute 
10…20 dB and more.

In a real finite N  scenario, the consumption is 
even more due to resolution parameter γ^  (56) ran-
domness. It depends on statistical properties of γ^ . 
The properties are significantly different for methods 
(1). This is demonstrated by the exact and experimen-
tal results to be discussed below.

C. For the MV method, the pdf p x
ν̂ ( )  of the nor-

malized random parameter

ν
γ α α
γ α α

γ α α
α

α
γ α α

α^
^

^

^

^

,

,
, , , ,=

( )
( ) ( ) = ( )

( )
( ) = ( )1 2

1 2
1 2

1

2

1 2
1S

S

S

SS α2( )  (58)

given arbitrary α α1 2≠  and δ ≥ 0  equals [15]

	 p x
x x

x
ν

δ
δ

δ

δ

η

η
^ ( ) = ⋅ +( )

+( )( )
⋅

−( ) ⋅ ⋅ +( )

+( ) − ⋅ ⋅

+
+

Γ

Γ

2 4

2

1 1

1 4
2

2 2
1

2 2 
xx( ) +δ 2 5.

. (59)

Here

	
η α α α α

α α α

= ( ) ⋅ ⋅ ( ) ⋅ ( ) ⋅ ( )

( ) = ( ) ⋅ ⋅ ( )( )−
x x

x x

*

*

,

,

1 2 1 1 1 2

1

1

YY

YY

S S

S i i i ii =1,2
 (60)3*)

is the “generalized” spatial correlation coefficient 
of radiations from directions α1  and α2 , which 
coincides with (24) for ΦΦ ΨΨ= = iM  and the vector 
x α( )  in the form of (2).

At δ >>1 , for the mean ν^  and variance σν̂
2  of pa-

rameter ν̂  (58), the following equalities are valid:

ν
η
δ

σ
δ

ην
^

^≈ +
−

≈ ⋅ −( )1
1 2

1
2

2 2
, .         (61)

An example of pdfs (59) for η = 0 2.  and differ-
ent δ  values is given in Fig. 7a.

An important property of the MV method fol-
lows from analysis (59). It consists in that the random 
parameter γ α α^ ,1 2( )  given any effective sample sizes 
δ ≥ 0  and values α α1 2≠  will be not less than its true 
value γ α α1 2,( )  (58) with the fixed probability P = 0 5. .  
This statement is a consequence of the valid for (59) 
equality

	 p x
x

p
xν ν^ ^( ) = ⋅ 





1 1
2

 	 (62)

which means coincidence of pdfs (59) for positive 
random value ν̂ > 0  (58) and its inverse χ ν^ ^/=1 .  
This also means that, given any α α1 2≠ , the point 
x x= =0 1  is the pdf (59) median, i.e.

	 p x dx p x dx
ν ν^ ^( ) = ( ) =∫ ∫

∞

0

1

1

1 2 .	 (63)

Indeed, by the normalization condition,

p x dx p x dx p x dx
x

x
ν ν ν^ ^ ^( ) = ( ) + ( ) =

∞ ∞

∫ ∫ ∫
0 0

0

0

1 .

But the first summand, by virtue of (62), is equal 
to

1 12

0 1

0

0

x p x dx p x dx
x

x

⋅ ( ) = ( )∫ ∫
∞

ν ν^ ^

and consequently,

3*) A shape of density (59) keeps also being invariable when 
using ML estimates of persymmetric CMs in centrosym-
metrical AA but in this case, d = N - (M + 1)/2 [16 – 19].

a                                                                                           b

Fig. 7. (a) Pdfs (59) at η = 0 2.  and different δ . (b) The family of cdfs corresponding to pdfs p xν̂ ( )  (59)
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p x dx p x dx
x x

ν ν^ ^( ) + ( ) =
∞ ∞

∫ ∫
1 0 0

1 ,

whence equality (63) immediately follows. In 
combination with (58), it means that in the MV 
method,

P Pν γ γ γ^ ^ .≥( ) = ≥ =( ) =1 0 50   for any  δ ≥ 0 .   (64)

These results were for the first time obtained in 
[15] and later corroborated in [48].

Equality (64) is a mathematical formulation of the 
described MV method property. It is illustrated by a 
family of the cdfs shown in Fig. 7b

	 f p x dx p x dx Pν ν

γ γ

ν
γ γ

γ γ γ γ0
0

0

0

0

( ) = ( ) = ( ) = ≥( )∫ ∫
∞

^ ^
^

 

 65)

accounted for the pdfs p x
ν̂ ( )  (Fig. 7a).

By virtue of (62), these cdfs de facto describe the 
Γ = γ γ0  dependence of the probability P( )γ̂ γ≥ 0  
that the random parameter γ γ α α^ ^ ,= ( )1 2  will be not 
less than the specified threshold γ0 .

As is seen from Fig. 7b, with the increase in the 
effective sample size δ , the probability P( )γ̂ γ≥ 0  
grows if γ γ> 0 , keeps being invariable and equals 0.5 
if γ γ= 0 , and decreases if γ γ< 0 . The formal reason of 
this is in transformation of pdf p xν ( )  (59) (Fig. 7a), 
which, as δ  grows, “gathers” to the point x0 1= : its 
mean n̂  (61) tends to the median (the distribution 
“symmetrizes”), and the variance σν̂

2  decreases. This 
means that with the δ  growth, realizations γ̂  concen-
trate in the more and more narrow vicinity of the true 
γ  value. This increases (decreases) the probability 
that value γ̂  exceeds the threshold γ0  being smaller 
(larger) than γ . However if γ γ0 = , the probability 
P( ) .γ̂ γ γ≥ = =0 0 5  is constant for any δ ≥ 0 .

Hence it follows that if a decision on resolution 
in a test (bisignal) scenario is made under condition 
that at least one of values at points α�  of SF S α( )  
maxima is γ α α γ^ ^ ^

� �= ( ) ( ) ≥S S mean 0  ( � =1 2, ), then 
the resolution probability Pr  by criterion (56), given 
γ γ= 0 , will be equal to

P P P

P P P P

r ≤ ≥ ⋅ < +

+ < ⋅ ≥ + ≥ ⋅

( ) ( )

( ) ( ) ( ) (

^ ^

^ ^ ^ ^

γ γ γ γ

γ γ γ γ γ γ γ

1 0 2 0

1 0 2 0 1 0 22 0

0 02 0 75

≥ =

= ≥ ⋅ − ≥ =

γ

γ γ γ γ

)

( ) ( ( )) . ,^ ^P P
 (66)

where (64) and the evident equalities 

P P( ) ( )^ ^γ γ γ γ� �< = − ≥0 01 , P P( ) ( )^ ^γ γ γ γ� ≥ = ≥0 0 ,

� =1 2, , are taken into account.
An approximate nature of (66) is related to as-

sumption of the events γ γ^
1 0≥  and γ γ^

2 0≥  independ-
ence, which is invalid in the general case (at small 
∆ <<1 ), as well as the non-unit probability of occur-
rence of two maxima in SF S

^

1 α( )  at any δ ≥ 0  even 
given q qb>  (57).

It follows hence that curves 1, 2, 3 in Fig. 6 not 
only define the asymptotic (at δ→∞ ) Capon’s MV 
method resolution, but also set requirements to the 
energy of two equipotent sources spaced at a distance 
∆ <1 which for γ γ0 =  will provide their resolution by 
the Rayleigh criterion with the probability

	 0 5 0 75. .≤ <Pr 	 (67)

at any δ ≥ 0 .
D. It should be expected that, by virtue of asymp-

totic unbiasedness and consistence of ML estimates 
(6), (3), analogous properties (64), (67) for δ→∞  
will also be inherent in other methods (1) for which 
the exact pdfs of parameter n^  (58) similar to (59) are 
not obtained yet. However, given finite δ , attainment 
of “starting” probability Pr  (67) on their basis is pos-
sible for the threshold γ γ0 <  only. Physical reasons of 
this are discussed in Section VII. Here, this statement 
is illustrated by the results of mathematical simula-
tion.

Figs. 8a, b show families of the cdfs

	 f x p y dy
x

ν ν( ) = ( )∫ ^

0

	 (68)

of parameter n^  (58) of the LP, MCA and MV 
methods, given δ = 0 , 25, 50, for their pdfs p yν̂ ( )  
obtained experimentally.

a                                                                                          b

Fig. 8. Families of cdfs of parameter ν̂  (58): (a) for the LP and MV methods; (b) for the MCA and MV methods
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The scenario is simulated for two ( n = 2 ) equi-
potent sources with the relative distance ∆ = 0 1.  be-
tween them for q q q1 2 50 5= = = .  (dB). Under these 
conditions, the true γ  values are equal to 2 (3 dB) for 
the MV method and γ >103  (30 dB) for the LP and 
MCA methods.

It is clearly seen that for the MV method the pa-
rameter n^  (58) median is equal to x x= =0 1  regard-
less of δ , what fully conforms to the above theory. At 
the same time, medians of distribution functions (67) 
of the LP and MCA methods are located significantly 
more to the left of the point x0 1=  ( x0

45 10≈ ⋅ −  for 
δ = 2  and x0

35 10≈ ⋅ −  for δ = 50 ). Therefore, prob-
ability Pr  (67) of resolution with these methods is 
provided when choosing the threshold γ γ γ0 0= ⋅ <<x  
even for δ ≥ 50 . The BL and TN methods also yield 
the results close to aforementioned.

Hence, it follows that asymptotic ( δ→∞ ) energy 
gains of methods (1) compared to the MV methods, 
which ensue from Fig. 6, by no means guarantee that 
their resolution probability by Rayleigh criterion (56) 
under realistic conditions of finite δ  will be higher 
than that obtained with the MV method.

The results of experimental comparison of meth-
ods (1) under these conditions are given in Fig. 9 in 
the form of dependences Pr δ( )  given ∆ = 0 8. , q =10
dB and the resolution threshold γ0 1 5=  .  (≈1.8 dB) 
that coincides with the γ  value of the MV method. 
The γ  values of the rest of methods are given in 
brackets under their abbreviatures.

Fig. 9. The results of experimental  
comparison of methods (1)

As is seen from the figures, in the MV method, 
as δ  grows, the resolution probability monotonically 
increases from Pr ≈ 0.5 to Pr ≈ 0.75, that is namely so as 
it has to theoretically vary at γ γ0 = . At the same time 
the rest of methods at small δ ≤10  either insignifican-
lty exceed (LP) or are even worse in efficiency than 
the MV method, although the values corresponding 
to them are γ γ> 0 .

Thus for finite δ , all the methods (1) have es-
sentially worse statistical properties than Capon’s 
MV method. Their real resolution by both statistical 
(Section V) and non-statistical (Section VI) criteria 
under these conditions is therefore significantly worse 
than the asymptotic one (at δ→∞ ).

Reasons of the difference and ways following 
from them for enhancement of methods (1) “robust-
ness” are discussed below.

VII. Reasons of Difference in 
Statistical Properties and Ways  

of Their Improvement

A. The above established “special” place of 
Capon’s MV method among methods (1) under con-
ditions of finite effective sample size δ ≥ 0  can be 
explained using interrelation between their SFs as 
well as the specific SF property of the MV method it-
self. These interrelation and property are commonly 
known (see, e.g., [1 – 6, 14, 27, 32 etc.]) and, as a 
rule, used for explanation of the difference between 
corresponding methods under hypothetic conditions 
of exact CM Ф (4), (9).

Let us begin from this situation, considering the 
“true” SFs S α( )  obtained by replacing matrix YY^  (3) 

in random SFs S
^ α( )  by “true” matrix YY  (11).4*)

B. Introduce the m th ( m M∈1, ) order SF of the 
MV method

S m

x

m m m

m i i

m
m m m

1

1

1
1

α α α

α α

, ,

, ,

*( ) = ( ) ⋅ ⋅ ( )( )
( ) = ( ){ } =

−

=
−

x x

x

  ΨΨ

ΨΨ ΦΦ ΦΦ =={ } =
ϕij i j

m

,
.

1

   (69)

The SF S M1 1α, −( )  is related to the SF 
S S M1 1α α( ) = ( ),  by the equality [1, 3, 17, 27, 32]

S M S M S

S S

ME

ME
MM

M M

1
1

1
1 1

2

1− − −( ) = −( ) + ( )

( ) =
( ) ⋅ ⋅ ( )

=

α α α

α
ω

α α

, , ,

*e xYY
22 , ,α( ) =m M   (70)

where SME α( )  is SF of Burg’s “maximum entropy” 
(ME) method [24, 32], which given m M=  coincides 
with the SF S2 α( )  of LP method (1).

Hence and from a comparison of the first three 
SFs in (1), it follows that

S S S M

C S M S m M
ME α α α

α α α

( ) = ( ) ⋅ ( ) =
= ( ) ⋅ −( ) = ( ) =

3 1

3 1 21

,

, , ,
       (71a)

S
S M

S M S M

C
S M

S M S

3
1

1 1

3
1

1 1

1

1

1

α
α

α α

α
α

α

( ) = −( )
−( ) − ( )

( ) = ( )
−( ) −

,

, ,
,

,

, αα
α

,
.

M
S( ) = ( ) −3 1

  (71b)

Consider functions S3 α( )  or C3 α( )  more in 
detail. Let us begin from their values at points α β= �   
( �∈1,n ) of sources location when the steering vector 
x g eα( ) = ⋅ �  coincides with the � th column of matrix 
g  (9). As follows from (69), (11), in this case,

S M n

n

1
1

1 1

−

− −

( ) = ⋅ ⋅ −( ) ⋅

= + ⋅( )( ) = ⋅

β� � �, ,

, .

*

*

e Q i t e

t i h Q Q g g
              (72)

4*) Note that here we for the first time use in the theoretical 
treatment the specific peculiarities of structures of CM Ф 
(9) and Y (11) (which are used above for quantitative assess-
ment only). All the analytical results of Sections IV – VI are 
therefore true not only for these CMs, but also for arbitrary 
CMs of Gaussian processes (e.g., corresponding to corre-
lated radiations, spatially distributed radiation sources (re-
flections), etc.)

Lekhovytskiy D. I., Shifrin Ya. S. Rapidly convergent «superresolving» direction-of-arrival estimation of noise radiation sources in adaptive arrays



18 Прикладная радиоэлектроника, 2015, Том 14, № 1

Let maximum eigenvalue λmax W( )  of matrix 

W h Q= ⋅( )−1
 satisfy the condition

λ λ λmax min minW W h Q( ) = ( ) = ⋅( ) <<− − −1 1 1 1,      (73)

whereat for matrix t  the following approximate 
equality is valid:

t i h Q≈ − ⋅( )−n
1

.

Then S M1
1 1− −( ) ≈ ⋅ ⋅β� � �, *e h e , so in the consid-

ered case of independent radiations (diagonal matrix 
h  (9))
	 S M h n1 1β� � �, ,( ) ≈ ∈, .	 (74)

Equality (74) had been repeatedly mentioned in 
the literature, but its fulfilment had been linked either 
to the presence of distinct maxima in SF S1 α( )  in the 
vicinity of points β�  ( �∈1,n ) or to even more rigor-
ous requirement h� →∞  [6]. It is essential, however, 
that it is valid in the “preasymptotic” domain as well, 
i.e. at smaller OSNR values q�  than it is required for 
the occurrence of these maxima in the SF S1 α( ) .

Let us show this on the example of the M 
element LUAA in the ( n = 2 , ∆ ≤1 , h i= ⋅h 2 ,  
q q q M h1 2= = = ⋅ ) test scenario In this case, 
λ ρmin h q⋅( ) = ⋅ −( )Q 1 , so condition (73) is equivalent 

to the condition q >> −( )−1
1ρ  which can be consid-

ered as satisfied already with

q M h q

i

i i

i

= ⋅ = ≥ ⋅ −( )

=
⋅( )

⋅
=

−( ) ⋅ ⋅( )
⋅ +( )

−

− ⋅

0
1

2

10 1

1

2 1

ρ

ρ
π

π
π

,

sin

!

∆
∆

∆

==

∞

∑
0

.
          (75)

The less D, the larger q0  (75) values but given 
small ∆ < 0 5. , when for ρ  the presentations

ρ π ρ≈ − ⋅ ≈ − ⋅ − ≈ ⋅1 6 1 1 5 1 1 52 2 2 2∆ ∆ ∆. , .      (76)

are valid, requirement (73), which leads to equality 
(74), for q0

27≥ ∆  is also satisfied. This value of q0  is 

approximately 2
2⋅( )−∆  times less than qb  (57) of the 

MV method.
Growth of OSNR q  to higher values than 

“boundary” value q0  (15) practically does not change 
S β�( ) , �∈1,n  (74), so for any

q q q qb> <0 0, ,

the normalized SF S M h1 α,( )  at points α β= �  of 
sources location equals

	 S S M hn β β� �( ) = ( ) ≈1 1, .	 (77)

Fig. 10a shows a family of normalized SFs (77) 
for the test scenario in LUAA given ∆ = 0 1. , when  
q0 ≈ 700 (28 dB). The q∈[ ]20 56,  dB serves as the 
family parameter; sources location is shown by ar-
rows.

It is well seen that

Sn β�( ) >1   for  q q q qb< <0 0, ,           (78)

but with increase in q q≥ 0 , values Sn β�( )  approach 
from top to unit (“stick together”) at points of true 
location of sources [17] even before the occurrence of 
“distinct” maxima in the Sn α( ) .

Now let us pay attention that condition (73) and 
equalities (74), (77), (78) ensuing from it are formu-
lated for OSNR q , but not for its multipliers in (75) 
apart. Even for the fixed SNR h h� =  at the points 
α β= � , SFs of all the orders m ≤ M of MV methods, 
whereat equalities q m h qm = ⋅ ≥ 0  (75) are satisfied, are 
therefore close to each other (“stick together”).

Hence, it follows that when M >>1  and (73), 
(75) are valid,

S M S M n q q1 1 01 0 1α α α β, , , , , ,−( ) − ( ) ≥ = ∈ ≥� � (79)

and the more q q≥ 0 , the closer this positive difference 
to null.

The small difference in denominators of the MCA 
SFs S3 α( )  or C3 α( )  (71b) under conditions (79) en-
tails the distinct maxima in these SFs (resolution by 
criterion (56)) with less OSNR q  values than those 
required for the MV method SFs S1 α( )  being basic 
for the MCA SFs. This reveals itself when comparing 
families of SF C3 α( )  (71b) shown in Fig. 10b with 
families of SF S1 α( )  shown in Fig. 10a, as well as 
curves 4, 5, 6 with curves 2, 3 in Fig. 6.

By virtue of equalities (71a), the ME method 
given exact CM has the performance being close to 
that of MCA by criterion (56) and significantly ex-
ceeding that of the basic MV method. Besides, the 
established in [27] relations between SFs of the ME 
(LP) and TN methods show that the latter, being 
insignificantly worse than the ME method, under 

a                                                                                                            b

Fig. 10. (a) Family of normalized SFs (77). (b) Family of SF C3 α( )  (71b)
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these conditions can also significantly exceed the MV 
method. The same concerns the BL method whose 
SF S4 α( )  in the “liaison”

	 S S S5 4 1α α α( ) = ( ) ⋅ ( ) 	 (80)

between SFs S5 α( )  and S1 α( )  of the TN and MV 
methods plays the same role as SFs S3 α( )  or C3 α( )  
of MCA in “liaison” (71a).

Thus, in each of methods (1), there is used to 
this or that extent property (74), (77) of “sticking to-
gether” of SFs S1 α( )  of the MV method of orders M  
and M −1  at points α β= � , �∈1,n  of sources loca-
tion under conditions (73), (75). It is not used in the 
MV method itself only, and namely for this reason in 
the hypothetic situation of exactly known CM ΦΦ  (4), 
(9) it has the “worse” resolution performance by cri-
terion (56) than that of the rest of the methods (see 
Section VI-B, Fig. 6).

C. However, in the realistic situation of the es-
timation CMs ΦΦ^  (6), (27) and the finite size δ ≥ 0  
samples, fine “sticking together” effects (79) can be 
breakdown by random errors of CM estimation. These 
“destructions” can be of two kinds.

First, the random difference

	 S M S M
^ ^

, ,1 11 0α α−( ) − ( ) ≥ ,	 (81)

which keeps being non-negative, with the non-zero 
probability can be less than true one (79) in the absence 
of sources in the direction of analysis α . Namely this 
makes heavier tails in distribution (40) and requires 
to significantly increase the threshold constant x0  to 
fix FAP F  for the MCA method as well as for the LP, 
BL, TN ones (Section V-C, D).

Second, random difference (81), which is defined 
by the CM estimation errors, can be larger than true 
one (79) and independent of it at an arbitrary level of 
radiation in the direction of analysis α β= � , ( �∈1,n
). This explains the “bias to the left” of the aforemen-
tioned methods pdfs and cdfs (Sections V, VI), as well 
as the paradoxial, at first sight, constancy of the PDP 
level D  in MCA at arbitrarily large values of ∝. The 
smaller effective sample size δ ≥ 0 , the smaller D  
(Section V-C).

Namely for this reason Capon’s MV method, 
wherein the easily destructible “sticking together” ef-
fects are not used, appear to be the most “robust” un-
der these conditions.

The analytical and experimental results of 
Sections V, VI yield the quantitative characteris-
tics of the described consequences of the conditions 
(79), (74) “breakdown” subject to the effective sam-
ple size δ ≥ 0  for each of methods (1). Allowance for 
them and the understanding of the described physi-
cal mechanism enable us to propose simple modifi-
cations of SFs (1) with significantly better statistical 
characteristics.

VIII. Kinds of “Superresolving”  
DoA Estimators

А. At the beginning, note that values of SFs S
^
α( )  

(1) of the MV, LP methods and MCA at an arbitrary 

point α α α∈[ ]b e,  of analysis can be obtained combin-
ing squared modules of elements of the vector

p p h x

x x

= ( ) = ( ){ } = ⋅

= ( ) ∈[ ]
=α α

α α α α

pm m
M

b e

1
^

,

, , .

 
                (82)

Here x α( )  is the steering vector similar to (2); 
h
^

,
={ } =hi i

M
� � 1

 the M M×  lower ( hi� = 0  for � > i ) tri-
angular matrix that is Cholesky multiplier of YY

^
 (3) 

presented as
	 YY

^
h h= ⋅^ * ^

	 (83)

which under conditions (5) exists for any δ=N M− ≥ 0 .
It is easy to make sure that in these designations

S p

p p

m
m

M

M M M M m

^ * 2

* 2
,

1
1

1

1

1
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


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    (84а)

S p

S m M

ME M M M
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^
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α

α

( ) = = ⋅ − ⋅( ) =

= ( ) =

−
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,   (84b)

S M
p

C

C
p

m M

M

M M

M

^
*

^
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, ,

, .

3 2 3

3 2

1α α
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( ) = ⋅ = ( ) +

( ) = ⋅
=− −

p p

p p
             (84с)

When deriving (84b), it is taken into account that 
by virtue of (83),

ω̂ ^ * ^ * *,MM MM M MM Mh h= ⋅ = ⋅
2

e h e .

B. As is seen from (84b), SF S S MME ME
^ ^

,α α( ) = ( )  
(70) is defined by squared module of a single (last) el-
ement pM  of the vector p ={ } =pm m

M
1  (82), whereas 

the SF S
^

1 α( )  is defined by squared modules of all the 
vector elements. The squared m th element module 
as a function of α  has a meaning of radiation pattern 
(RP) of the m −1  order spatial linear prediction filter 
with minimum RMS in the m element AA with the 
decreased (in the case of LUAA, M m  times) aper-
ture size. The less m , the “smoother” these RPs as 

functions of α  (in particular, the SF p1
2−

 do not 
depend on α  at all). Namely this full accumulation 
of the all the orders m M∈1,  SFs S mME

^
,α( )  with 

different degrees of smoothing explains both asymp-
totically (at N →∞ ) minimum Capon’s method res-
olution compared to other methods (1) by Rayleigh 
criterion (Section VI-B) and its maximum “robust-
ness” under conditions of small effective sample size 
δ = − ≥N M 0  (Sections V-B, VI-C, VII). And vice 
versa, namely the full absence of accumulation of the 
smoother m M< order SFs S mME

^
,α( )  causes signifi-

cantly higher resoltion, by the Rayleigh criterion, of 
the ME method given N →∞  due to the “sticking to-
gether” effect, as well as its minimum “robustness” in 
conditions of small δ ≥ 0  when the effect breakdowns 
(Sections V-D, VI-D, VII).
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In this connection, in real scenarios of finite-
size sample, more useful can be “intermediate” SFs 

S int
^

α( )  looking like [33]

S

p

int M M int int
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They are formed by the “intermediate” number

n M M Mint , ,= −( ) ⋅ ∈ −( )1 0 1χ χ      (85b)

of last components of the vector p or, what is equiva-
lent, its first χ ⋅M  components are excluded from 
them. In the boundary cases χ = 0  and χ = −( )M M1 ,

S
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“Intermediate” variants of MCA SF (84с), for 
whose designation we use (~) instead of (^), take the 
form:
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С. The proceeding from SFs (84) to “interme-
diate” SFs (85) is accompanied by two “fighting” 
effects. On the one hand, their asymptotic ( N →∞
) resolution increases to be the closer to the ME 
method (84b) resolution, the closer value χ  is to the 
upper bound χ = −( )M M1 . On the other hand, 
their “robustness” decreases in conditions of small 
effective size δ = − ≥N M 0 , when the “sticking to-
gether” effect breakdowns (Section VII). Therefore, 
an expediency of intermediate SFs (85) depends on 
which of effects stronger reveals itself.

A comparative theoretical analysis of the effects 
impact [33] has shown that there exists a rather wide 
parameter domain 0 1< < −( )χ M M  wherein “in-
termediate methods (85a), (85d) under conditions 
of small size sample appear to be significantly more 
efficient than their “boundary” analogues (84), (85с) 
with χ = 0  or χ = −( )M M1 .

As an example, for the M =16 element 
LUAA given different values of the parameter 

χ∈ −( ) ≈0 1 0 94, .M M , Fig. 11 shows modeling de-
pendences of the resolution probability Pr δ( )  given 
the resolution threshold γ γ0 2= =MV dB (Section VI-
C, D) for SFs S int

^
α( )  (85a) (Fig. 11а) and �C3 α( )  

(85d) (Fig. 11b).
It can be seen that, already with small effective 

sample sizes δ = − ≥N M 0 , the “intermediate” SFs 

S int
^

α( )  provide resolution by the Rayleigh criterion 
with such a probability that is either provided by their 
“boundary” kinds (85c) given significantly larger 
sample size δ >>1  ( S E

^
α( ) ) or not provided at all (

S V
^

α( ) ). It is also seen that the “intermediate” SFs 
�C3 α( )  are more efficient than the “intermediate” 

SFs S int

^
α( )  given small values δ ≥ 0  and not worse 

than they at any δ >>1 .
D. Of a great many of possible in principle filters 

with MIC h
^

, the most interesting are adaptive lat-
tice filters (ALF) [37 – 40]. Having the input steering 
vector x α( ) , simply combining squared modules of 
output signals of the tuned ALFs, it is possible to real-
ize not only considered SFs (1), (85) but a diversity 
of their kinds with practically useful properties. In 
typical cases of M >>1  their aggregate forms a rather 
capacious “bank” of noneigenstructure (NES) meth-
ods of DoA estimation. On its basis, the proposed by 
A. Gershman idea [12, 43 – 46] of combined direc-
tion finding with an aggregate of “superresolving” 
DoA estimators can be easily realized. He has shown 
that in this case, using a respective strategy, it is possi-
ble to obtain the higher efficiency of DoA estimation, 
and besides to reduce requirements to the sample size 
compared with each of the “bank” methods apart.

E. Specificity of the “banks” proposed in [12, 
43 – 46] is in insertion in them of DoA estimators real-
izing “eigenstructure (ES)” methods of MUSIC type 
[1 – 4, 7]. Their high potential efficiency is based on 
allowing for the a priori information that a signal con-
stituent rank of the correlation matrix of M >1 spatial 
receive channels output signals is equal to the num-
ber n M<  of external independent sources. However, 
such an equality corresponds to an idealized scenario 

a                                                                                                      b

Fig. 11. The results of experimental comparison of methods (85)
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of exact matching of a CM model used as the basis for 
the ES methods synthesis and the real CM that can 
differ from the model for a number of reasons.

One of reasons of this is practically inevitable 
non-identity of frequency (pulse) characteristics 
of spatial receive channels. As a special testing has 
shown [41, 42], this effect essentially differently im-
pacts on efficiencies of “ES-bank” and ALF-based 
“NES-bank”. The “ES-bank” can become practi-
cally unserviceable at such a level of non-identity 
whereat the “NES-bank” efficiency decreases insig-
nificantly. Therefore, it is expedient to use namely 
the ALF-based bank when realizing in practice fruit-
ful Gershman’s idea of combined DoA estimation for 
point sources radiation.

Conclusions
The paper is devoted to the investigations of a 

number of known “superresolving” methods resolu-
tion for DoA estimation of point sources noise radia-
tion in an M  element antenna array (AA) given a 
finite-size sample, and to substantiation on this basis 
of their new variants with heightened efficiencies un-
der these conditions. 

1. From the Shirman’s statistical theory posi-
tions, potentialities of resolution-detection are defined 
for Gaussian noise signals of point sources against the 
background of Gaussian self-noise of M receive chan-
nels. They are provided under hypothetic conditions 
of full a priori definiteness and optimal processing of 
available K  variate sample of M  variate vectors of 
complex amplitudes of the additive signal and noise 
mixture at the receive channel outputs. Shirman’s 
classic results related to the case of K =1 , are gen-
eralized to the case of arbitrary K . It is shown that 
in the test n = 2  equipotent sources with SNR q  sce-
nario a minimum angular distance between sources 
under resolution for D = 0 5.  and F = −10 6  is inversely 
proportional to q  if K =1  and to q  if K > 30 . In 
real conditions of the a priori uncertainty, additional 
signal energy consumption is needed for resolution 
(Section III).

2. A degree of proximity to the established po-
tentialities is estimated for efficiencies of five known 
“noneigenstructure” (NES) methods of spectral 
analysis (SA). Their spectral functions (SF) are de-
fined by a matrix being inverse to the maximum like-
lihood (ML) estimate of the correlation matrix (CM) 
of the input mixture under analysis. It is assumed that 
it is formed by a N M≥  size sample and has well-
known Wishart’s complex distribution. The sample 
size N M≥  dependence of these methods resolu-
tion-detection by the statistical criterion is estimated. 
It is shown that “payment” ε  for the a priori lack of 
knowledge of CM is minimum in Capon’s method. 
Given already N K= + ε  with ε = −M 1 , this method 
provides the same statistical characteristics of the 
threshold detection as those provided by the opti-
mal threshold processing of the K  variate sample in 
the absence of the a priori ucertainty (given exactly 
known CM by hypotheses of the presence and absence 

of “useful” signal). In the rest of the methods, “pay-
ment” for a lack of knowledge is significantly higher, 
what is explained by the revealed effect of these SFs 
distribution densities “bias to the left” with growth of 
radiation intensity (Sections IV, V).

3. It is difficult to realize in real conditions of the 
a priori uncertainty the established Capon method ad-
vantages, since the information necessary for setting a 
corresponding detection threshold is usually absent. 
In this connection, there is analyzed resolution of the 
methods under consideration by the widely used non-
statistical Rayleigh criterion for two equipotent har-
monics resolution.

It is shown that in a hypothetic asymptotic sce-
nario ( N →∞ ), the best of the considered methods 
by this criterion is the Modified Capon Algorithm 
(MCA). When using it, a distance between resolvable 
harmonics is inversely proportional to the cubic root 
of their relative intensity q. The worst of them is the 
Capon method (the distance is inversely proportional 
to the fourth root of q). However, under real condi-
tions of finite N M≥  they can “switch places”. This 
is related to the specificity of distribution density of 
ratio of Capon method SF values at two points, which 
consists in that this (random) ratio given any sample 
size N M≥  with the fixed probability P = 0 5.  is not 
less than its true value in the absence of the a priori 
uncertainty.

In order to provide such a probability with other 
methods, much larger-size samples are needed. 
In real situations of finite size samples, the Capon 
method resolution can therefore be not less and even 
higher than that of the rest of methods (Section VI).

4. Physical reasons of better statistical properties 
of the Capon method SF are explained. It is shown that 
the rest of the methods to this or that extent use the 
“sticking together” effect of exact different order SFs 
of the Capon method at points of true sources loca-
tion even before distinct maxima occur in these SFs in 
the sources directions. This property is not used in the 
Capon method itself only. And namely for this reason 
under hypothetic asymptotic conditions ( N →∞ ), it 
has worse resolution characteristics by the Rayleigh 
criterion than the rest of methods. But having a real 
finite size sample, when fine effects of “sticking to-
gether” breakdown due to estimation errors, their ad-
vantages compared with the Capon method disappear 
and the latter appears to be the most “robust” in these 
conditions (Section VII).

5. New kinds of “superresolving” DoA estimation 
methods with essentially better statistical characteris-
tics are proposed. It is shown that on their basis, al-
ready with small effective sample sizes δ = − ≥N M 0 ,  
the sources are resolvable by the Rayleigh criterion 
with such a probability that on the basis of known 
methods is either provided given much larger sample 
sizes δ >>1  or not provided at all.

The possibility of aggregate (“bank”) of proposed 
NES methods realization on the unified structurally 
algorithmic basis of adaptive lattice filters (ALF) is 
noted. The corresponding “ALF-bank” is signifi-
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cantly more robust to impact of various decorrelating 
factors than “banks” of ES methods of MUSIC type. 
Therefore namely the “ALF-bank” is most suitable for 
practical realization of Gershman’s idea [12, 43 – 46] 
about direction finding using high-resolution bearing 
estimators of various types (Section VIII).
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Швидкодіючі «надрозділяючі» методи оцінювання 

напрямків джерел  шумових випромінювань в адаптивних 
АР / Д.  І. Леховицький, Я.  С. Шифрін // Прикладна  
радіоелектроніка: наук.-техн. журнал. – 2015. – Т. 14. – 
№ 1. – С. 7–23.

Порівнюється ефективність деяких «надрозділяю-
чих» методів оцінювання в АР просторового спектра га-
усівських шумових випромінювань при кінцевому об-
сязі навчаючої вибірки в максимально правдоподібній 
оцінці їх кореляційних матриць. Порівняння базується 
на аналізі точних або емпіричних законів розподілу ви-
падкових параметрів, що визначають роздільну здат-
ність відповідних методів за статистичними та нестатис-
тичними критеріями. Показано істотну відмінність цих 
законів для різних методів, у зв’язку з якою висновки,  
які базуються на  аналізі асимптотичних властивостей 
цих методів, можуть змінитися на протилежні в реаль-
них умовах вибірок малого обсягу.  Встановлюються 
причини цих відмінностей та, випливаючи з їх аналізу, 
можливості підвищення «швидкодії» адаптивних мето-
дів пеленгації джерел шумових випромінювань в АР.

Ключові слова: оцінювання напрямку поширення, 
«надрозділяючий» просторово-часовий спектральний 
аналіз, швидкодія, статистичний аналіз, розділення, 
вибірка обмеженого обсягу, адаптивний решітчастий 
фільтр.
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УДК 621.396.965
Быстродействующие «сверхразрешающие» методы 

оценивания  направлений  источников шумовых излуче-
ний в адаптивных АР / Д. И. Леховицкий, Я. С. Шиф-
рин // Прикладная радиоэлектроника: науч.-техн. 
журнал. – 2015. – Т. 14. – № 1. – С. 7–23.

Сравнивается эффективность ряда «сверхразре-
шающих» методов оценивания в АР пространствен-
ного спектра гауссовских шумовых излучений при 
конечном объеме обучающей выборки в максимально 
правдоподобных оценках их корреляционных матриц. 
Сравнение базируется на анализе точных или эмпири-
ческих законов распределения случайных параметров, 
определяющих разрешающую способность соответ-
ствующих методов по статистическим и нестатисти-
ческим критериям. Показаны существенные различия 
этих законов, в силу которых выводы о сравни-тель-
ных достоинствах различных методов, основанные на 
анализе их асимптотических свойств, могут меняться 
на противоположные в реальных условиях выборок 
малого объема. Устанавливаются причины этих отли-
чий и вытекающие из их анализа возможности повы-
шения «быстродействия» адаптивных методов пелен-
гации источников шумовых излучений в АР. 

Ключевые слова: оценивание направления прихо-
да, «сверхразрешающий» пространственно-временной 
спектральный анализ, быстродействие, статистичес
кий анализ, разрешение, выборка конечного объема, 
адаптивный решетчатый фильтр.
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