ТЕЛЕКОММУНИКАЦ<u>И</u>И

УДК 621.372+521.91

ДИНАМИЧЕСКАЯ ВИЗУАЛИЗАЦИЯ ИНФОРМАЦИОННЫХ ХАРАКТЕРИСТИК ЭЛЕКТРОМАГНИТНОЙ ОБСТАНОВКИ В 4-СПУТНИКОВОЙ СИСТЕМЕ СВЯЗИ

КУРМАНОВ А.С., МАЗМАНИШВИЛИ А.С., СЛИПЧЕНКО Н.И.

Строится программное средство расчета и визуализации региональных карт вероятности ошибок передачи бинарных символов. Приводятся примеры расчета упрощенной системы связи из 4 спутников для двух регионов на широте 0° и 30° .

1. Современное состояние сетей связи ориентировано на информационное обеспечение потребителей в регионе и базируется на использовании спутниковретрансляторов [1-3]. Возрастание нагрузок на прием и передачу приводит к увеличению и усложнению спутниковых систем связи, что, в свою очередь, вызывает трудности при синтезе оптимальной конфигурации системы. В настоящей работе рассмотрен эффективный метод оценки вероятности ошибки в заданном регионе для выбранной конфигурации системы спутниковой связи (ССС). С помощью разработанного числового метода возможно сопоставлять различные варианты ретрансляции и приема в регионе. Рассмотрение ограничено цифровыми системами связи на геостационарной орбите (ГО), образованными из четырёх спутников-ретранслято-

ров. В результате расчета вероятности ошибки P_{eM} формируется набор региональных вероятностных карт, анализ которых позволяет делать выводы об электромагнитной обстановке в системе связи.

2. Основная формула расчета вероятности ошибки при передаче одного бинарного символа в точке региона с координатами (x, y) в условиях множественных помех имеет вид:

$$P_{eM}(x, y) =$$

= E[erfc($\rho(x, y)$ sin(π/M) + $\rho(x, y)Z(x, y)$)], (1)

где **E**[.] — символ безусловного математического ожидания; erfc($_x$) — дополнительная функция ошибок; $\rho(x, y) = P_s / P_n$ — величина отношения сигнал/ шум по мощности в точке приема; P_s — мощность сигнала на входе приемника; P_n — полная мощность

шума на входе приемника; M — число положений фаз при фазовой манипуляции; Z — случайная величина, описывающая влияние помехи. Для помехи, связанной с соседними спутниками, эта случайная величина Z следующая (далее указания на координаты (x, y) опущены):

$$Z = \sum_{j \in C}^{K} R_j \cos(\varphi_j).$$
 (2)

При этом каждая из величин φ_j случайна и равномерно распределена на интервале $(0,2\pi)$, K-число мешающих космических станций (KC), а набор амплитуд $\{R_j\}$ вычисляется по следующему выражению:

$$R_{j} = \sqrt{\frac{\left[G_{es}(\theta_{j})G_{ss}(\beta_{j})P_{j}\right]}{\left[G_{es,\max}(\theta_{j})G_{ss,\max}(\beta_{j})P_{0}\right]}}.$$
(3)

Здесь $G_{es \max} = \eta (\pi D / \lambda)^2 -$ коэффициент усиления мощности антенны земной станции (3C); η – коэффициент использования поверхности антенны ЗС; D/λ – отношение апертуры к длине волны 3С; θ_i - топоцентрический угол разноса между "полезным" и *j*-м "мешающим" спутником на ГО; $G_{ac}(\theta_i)$ – соответствующий коэффициент усиления мощности антенны ЗС в направлении на *j*-й источник мешающего сигнала при угловом смещении θ_i ; $G_{\rm ss\ max} = 44,44 - 20 \lg \gamma$ – максимальное усиление антенны КС в основном лепестке, dB; γ — угловой размер сечения луча антенны КС; $G_{ss}(\beta_i)$ – соответствующий коэффициент усиления мощности *j*-й "мешающей" КС в направлении на ЗС под углом β_i от направления максимального излучения (точки прицеливания); P_0 – мощность бортового передатчика "полезной" КС; P_j – мощность бортового передатчика *j*-й "мешающей" КС.

Соотношения (2) и (3) дают возможность полностью математически поставить задачу нахождения вероятности ошибки P_{eM} (1).

3. Искомая величина P_{eM} (1) является безусловным математическим ожиданием относительно всех возможных реализаций случайной величины Z (2). В работе был использован метод статистических испытаний, который часто применяется при моделировании случайных явлений (см., например, [4,5]).

При расчете вероятности ошибки величина $P_{eM}(x, y)$ находилась путем вычисления оценки P_{eM} относительно реализаций случайной величины P_{eM} заданного выборочного объема N. Объем

выборки для любых координат (x, y) и любого значения ρ подбирался таким образом, чтобы относительная погрешность оценки P_{eM} не превосходила заданной величины α , которая в этой работе составляет 5%.

Здесь рассмотрено случайное событие, заключающееся в том, что относительная погрешность оценки P_{eM} величины P_{eM} не превышает α , и получена следующая зависимость объема выборки N от физических параметров задачи:

$$N \approx 2\rho^2 \Omega_C \Big(\sin(\pi / M) + \Omega_C \Big) (\gamma / \alpha)^2.$$
 (4)

В этом выражении $\Omega_C = \sum_{j \in C}^K R_j$; q - вероят-

ность указанного события; $\gamma = \Phi^{-1}(q)$; $\Phi(q)$ - функция Лапласа.

На базе статистического алгоритма расчета вероятности ошибки $P_{eM}(x, y)$ и распространения его на набор пространственных узлов $\{(x, y)\}$ были разработаны числовой алгоритм и программное обеспечение для расчета и визуализации информационных карт вероятности ошибок при выбранной конфигурации системы связи в заданном регионе (Украина, Россия, Западная Европа и др.).

4. Перейдем к численным результатам. На рис. 1,2 приведены две группы (из трёх информационных вероятностных карт для $P_{eM}(x, y)$ каждая), отвечающие географическим регионам, которые имеют размеры в градусах (-5.0°; 5.0°) по долготе и (-5.0°; 5.0°) по широте. На рис. 1 четыре спутника расположены на ГО (3,0°з.д., 1,0°з.д., 3,0°в.д. и 1,0°в.д. соответственно). Первые три из них нацелены в точки (2,5°ю.ш, 3,0°з.д), (2,5°с.ш, 0,0°в.д.) и (2,5°ю.ш., 3,0°в.д.). Угол раскрыва индикатрис антенн этих передатчиков составляет 0,7°. Четвёртый спутник отсутствует на первой карте (рис. 1, a), а при расчете второй и третьей карт (рис. 1, б, в) имеет координаты нацеливания (1,5°ю.ш., 0,0°в.д.), при этом угол раскрыва индикатрисы антенны его передатчика увеличивается от 0,3° до 0,5°. Из рис. 1 можно сделать вывод, что помеховая обстановка существенно определяется пространственной конфигурацией системы приёма/передачи. Особо отчетливо это проявляется во влиянии периферийных передатчиков на внутренний (четвертый), который, в свою очередь, искажает их информационные зоны.

На рис.2 показана та же система связи с теми же характеристиками, как и выше, но как целое смещенная на 30,0° на север. Хотя на такой широте триангуляционные искажения не столь значительны, как на более высоких широтах, вид информационных

карт $P_{eM}(x, y)$ заметно изменился, что связано с увеличением проекций зон облучения в широтном направлении. Видно, что во-первых, увеличены пограничные слои помехового взаимовлияния, вовторых, это влияние более выражено у спутников с одинаковой долготой. С ростом широты это влияние

Рис.1. Информационные карты вероятности ошибки $P_{eM}(x, y)$ для 4-спутниковой ССС, широта региона – 0°

ещё более усиливается. На основании приведенных рисунков можно сделать вывод о том, что помеховая обстановка существенно меняется при введении в регион дополнительного спутника-ретранслятора, тем более расположенного между имеющимися.

При моделировании были использованы данные, наиболее характерные для эксплуатируемых в настоящее время систем. Приведем основные характеристики рассматриваемой системы:

- тип модуляции – фазовая с M=2;

Рис.2. Информационные карты вероятности ошибки $P_{eM}(x, y)$ для 4-спутниковой ССС, широта региона — 30°

– коэффициент использования поверхности антенны 3С η =0,5;

- отношение апертуры к длине волны ЗС

 $D/\lambda = 100;$

– полная мощность шума на входе приемника $P_n = 40 \text{ dBW};$

- угловой размер сечения луча антенн КС $\gamma = 1^{\circ}$; - мощность бортовых передатчиков КС P = 100 W. Как видно из рис. 1, 2, имеется возможность надежного информационного обеспечения при передаче со спутников на ГО, что и делается на практике. Важным оказывается то обстоятельство, что между зонами уверенного приема располагаются промежуточные зоны, прием в которых всегда заведомо хуже вследствие взаимовлияния передатчиков. Уменьшить эти зоны информационной недостаточности при одночастотном режиме передачи возможно лишь путем улучшения угловой избирательности прием-ника, что, однако, сопряжено с техническими затруднениями [2].

Полученные численные характеристики вероятности ошибки позволяют оценить степень помехозащищенности системы при передаче и приеме сигналов потребителями в регионе. На основе таких характеристик можно решать задачу синтеза оптимальной конфигурации системы спутниковой связи.

Литература: 1. Калашников Н.И. Основы расчета электромагнитной совместимости систем связи через ИСЗ. М.: Связь, 1970. 204 с. 2. Кантор Л.Я., Тимофеев В.В. Спутниковая связь и проблема геостационарной орбиты. М.: Радио и связь, 1988. С. 29-37. 3. Jeruchim M.C. A survey of interference problems and applications to geostationary satel-lite networks// Proc. IEEE, 1977, 65, №3. Р.317-331. 4. Мазманишвили А.С., Рафалович О.Я. Численные модели помехоустойчивости для украинских региональных сетей спутниковой связи// Космическая наука и технология. 1998, 4. №1, С.92-101. 5. Бусленко Н.П., Шрейдер Ю.А. Метод статистических испытаний. М.: ФМГ, 1961. 312 с.

Поступила в редколлегию 03.12.1998 **Рецензент:** д-р техн. наук Поповский В.В.

Курманов Алексей Сергеевич, аспирант кафедры САУ ХГПУ. Научные интересы: теория связи, прикладная математика. Адрес: Украина, 310002, Харьков, ул. Фрунзе, 21, тел. 40-00-56.

Мазманишвили Александр Сергеевич, д-р физ.-мат. наук, профессор кафедры САУ ХГПУ. Научные интересы: теория цифровой связи, статистическая радиофизика, прикладная математика. Адрес: Украина, 310002, Харьков, ул. Фрунзе, 21, тел. 40-00-56, e-mail: mazmani@kpi.kharkov.ua.

Слипченко Николай Иванович, доцент кафедры МЭПУ ХТУРЭ. Научные интересы: разработка теории многофункциональных частотных элементов, спутниковых комплексов и систем. Адрес: Украина, 310726, Харьков, пр. Ленина, 14, тел. 47-01-07.