ФИЗИКА ПРИБОРОВ И СИСТЕМ

УДК 621.373.826

А. С. ГНАТЕНКО, Ю. П. МАЧЕХИН, д-р техн. наук

УСТОЙЧИВОСТЬ РЕЖИМА ГЕНЕРАЦИИ ВОЛОКОННОГО КОЛЬЦЕВОГО ЛАЗЕРА

Введение

Применение лазеров в информационных технологиях базируется на постоянном их совершенствовании и развитии. Отдельным, самостоятельным направлением в информационных технологиях стало использование волоконных лазеров. Как правило, эти лазеры, активной средой которых является на одномодовое кварцевое волокно, активированное ионами эрбия, работают в диапазоне 1,55 *мкм*.

В последнее время проводятся исследования волоконных лазеров, способных обеспечить физические каналы связи для DWDM систем, основанных на частотном плане, рекомендованном международным стандартом ITU [1]. Традиционный подход, который обеспечивает формирование частотного плана, основан на использовании полупроводниковых лазеров, каждый из которых обеспечивает генерацию в определенном частотном интервале. Но, конечно же большое количество полупроводниковых лазеров с блоками питания и системами контроля частоты излучения, приводит к существенному удорожанию системы. Благодаря использованию дискретного спектра суперконтиниума, генерируемого в кольцевом волоконном лазере обеспечивается реализация частотного плана ITU.

Для обеспечения DWDM систем одним источником излучения можно использовать волоконный фемтосекундный лазер, работающий в режиме генерации суперконтиниума. Работа волоконного, кольцевого лазера, функционирующего в режиме цуга ультракоротких импульсов, определяется наличием жидкокристаллических (ЖК) поляризаторов в составе резонатора. Понимание режима управления пассивной синхронизацией мод с помощью ЖК поляризаторов возможно при условии устойчивого режима работы лазера.

Цель работы – исследование условий устойчивого режима генерации импульсов кольцевого волоконного лазера.

1. Конструкция волоконного кольцевого лазера

В основе конструкции исследуемого лазера используется известная [2] схема волоконного кольцевого лазера (ВКЛ) (рис. 1). Волоконный кольцевой резонатор и активная среда исследуемого лазера сформированы на основе волокна SMF28 (с отрицательной дисперсией групповых скоростей – ДГС) длиной 3,7 м и одного метра кварцевого волокна, легированного эрбием с положительной дисперсией групповой скорости. В состав резонатора входят: мультиплексор (WDM), который обеспечивает ввод излучения полупроводникового лазера накачки, сам лазер накачки работает на длине волны 980 нм. ДГС SMF28 оценивается величиной - $0,023\pm 0,005 \ n\kappa c^2 / M$. ДГС отростка волокна для ввода $-0,007\pm 0,005 \ n\kappa c^2 / M$, и ДГС эрбиевого волокна $0,075\pm 0,005 \ n\kappa c^2 / M$ [3, 4]. Суммарная ДГС в резонаторе оценена как $-0,013\pm 0,005 \ n\kappa c^2 / M$. При расчете ДГС в резонаторе параметры дискретных оптических элементов не учитывались, поскольку их величина практически равна нулю.

Как видно на схеме, концы вывода и ввода излучения из оптических волокон срезаны под определенным углом, это служит для снижения потерь излучения и предотвращения обратного отражения. Далее 7 – линза, служит для направления всей апертуры излучения на пластину 4, которая служит для изменения эллиптической поляризации в линейную, так как на выходе из волокна мы имеем эллиптическую поляризацию в силу эллиптичности сердцевины волокна. Пластина 3 изменяет линейную поляризацию в круговую. При прохождении PBS свет становится линейно поляризованным. Изолятор используется для однонаправленного распространения излучения. Пластина 5 служит для изменения линейной поляризации в эллиптическую, в свою очередь, пластина 6 служит для контроля изменения поляризации в первоначальный вид, который она имела на выходе из волокна. Также волновые пластины служат для настройки режима синхронизации мод в кольцевом резонаторе путем их вращения, после нахождения позиций волновых пластин система работает с хорошей надежностью, если не нарушается позиция волокна.

В конструкции ВКЛ [2] положение полуволновых и четвертьволновых пластин изменяется механическим поворотом в пространстве, в настоящей работе предложено использовать ЖК кристаллы для управления поляризацией излучения с помощью электрических сигналов.

2. Анализ устойчивости

Многие неравновесные явления, такие, как фазовые переходы, и распространение волн в нелинейных оптических волоконах с усилением и фильтрацией спектральногодиапазона может быть описана комплексным уравнением Гинзбурга – Ландау (1) [5]. Это уравнение было применено для исследования устойчивости кольцевых волоконных лазеров на основе иттербиевого волокна в работах [6, 7], в основе которого лежит распространение волн по нелинейной среде, которая включает в себя активное волокно, легированное иттербием, и пассивное волокно SMF-28. Исследуемая в работе схема, рис. 1, также состоит из активного волокна, только легированного ионами эрбия и пассивного волокна SMF-28. Поэтому уравнение (1) применимо для исследования нашей схемы, принципиальное отличие от схем предложенных в работах [6, 7] состоит только в значениях основных параметров активной среды: β_2 – коэффициент групповой скорости; g_1 – линейное усиление; ρ – спектральная фильтрация; D_i – нелинейное усиление; D_r – коэффициент самомодуляции. Это уравнение имеет вид

$$i\frac{\partial\widetilde{F}(t,\varsigma)}{\partial\varsigma} = ig_1\widetilde{F}(t,\varsigma) + \left(\frac{\beta_2}{2} + i\rho\right)\frac{\partial^2\widetilde{F}(t,\varsigma)}{\partial t^2} + \left(D_r + D_i\right)\widetilde{F}(t,\varsigma)\Big|\widetilde{F}(t,\varsigma)\Big|,\tag{1}$$

где β_2 – коэффициент групповой скорости; g_1 – линейное усиление; ρ – спектральная фильтрация; D_i – нелинейное усиление; D_r – коэффициент самомодуляции, $\tilde{F}(t,\varsigma)$ – комплексная энегрия поля.

Стационарное решение (1) имеет вид

$$\widetilde{F}(t,\varsigma) = A(t)e^{-i\omega\varsigma},$$
(2)

где ω – константа, но функция $\widetilde{A}(t)$ комплексная амплитуда поля и может быть записана в виде

$$\widetilde{A}(t) = a(t)e^{i\phi(t)},\tag{3}$$

ISSN 0485-8972 Радиотехника. 2014. Вып. 178

где a(t) – реальная амплитуда поля и $\phi(t)$ – реальные значение фазы как функции от t.

Фаза для нелинейных систем имеет вид [7]:

$$\phi(t) = \phi_0 + d\ln(a(t)), \tag{4}$$

где d – параметр параметр фазовой модуляции, известный в нелинейной оптике, как параметр чирпа [9], ϕ_0 – произвольная фаза, для простоты предлагается принять $\phi_0 = 0$.

При подстановке в (1) (2) и (3) получаем

$$\omega \cdot a(t) = ig_1 \cdot a(t) + \left(\frac{\beta_2}{2} + i\rho\right)\left(\frac{\partial^2 a(t)}{\partial t^2} + 2i\frac{\partial a(t)}{\partial t}\frac{\partial \phi(t)}{\partial t} - a(t)\left(\frac{\partial \phi(t)}{\partial t}\right)^2 + a(t)i\frac{\partial^2 \phi(t)}{\partial t^2}\right) + (D_r + iD_i)a(t)^3$$
(5)

Из уравнения (5) можно получить систему из двух уравнений, составленную из его реальной и мнимой части:

$$\begin{cases} g_{1} \cdot a(t) + \beta_{2} \frac{\partial a(t)}{\partial t} \frac{\partial \phi(t)}{\partial t} + \frac{\beta_{2}}{2} a(t) \frac{\partial^{2} \phi(t)}{\partial t^{2}} + \rho \frac{\partial^{2} a(t)}{\partial t^{2}} - \rho a(t) \left(\frac{\partial \phi(t)}{\partial t}\right)^{2} + D_{i} a(t)^{3} = 0 \\ -\omega \cdot a(t) + \frac{\beta_{2}}{2} \frac{\partial^{2} a(t)}{\partial t^{2}} - \frac{\beta_{2}}{2} a(t) \left(\frac{\partial \phi(t)}{\partial t}\right)^{2} - 2\rho \frac{\partial a(t)}{\partial t} \frac{\partial \phi(t)}{\partial t} - \rho a(t) \frac{\partial^{2} \phi(t)}{\partial t^{2}} + D_{r} a(t)^{3} = 0 \end{cases}$$
(6)

Для удобства записи производим замену: a(t) = a, $\frac{\partial a(t)}{\partial t} = a_t'$, $\frac{\partial^2 a(t)}{\partial t^2} = a_{tt}''$.

Находим все частные производные в уравнениях системы уравнений (6):

$$\begin{cases} g_{1} \cdot a + \beta_{2} a_{t}^{'} \frac{da_{t}^{'}}{a} + \frac{\beta_{2}}{2} a \frac{d(aa_{tt}^{''} - (a_{t}^{'})^{2})}{a^{2}} + \rho a_{tt}^{''} - \rho a \frac{d^{2}(a_{t}^{'})^{2}}{a^{2}} + D_{t} a^{3} = 0 \\ -\omega \cdot a + \frac{\beta_{2}}{2} a_{tt}^{''} - \frac{\beta_{2}}{2} a \frac{d^{2}(a_{t}^{'})^{2}}{a^{2}} - 2\rho a_{t}^{'} \frac{da_{t}^{'}}{a} - \rho a \frac{d(aa_{tt}^{''} - (a_{t}^{'})^{2})}{a^{2}} + D_{r} a^{3} = 0 \end{cases}$$
(7)

Решая систему уравнений (7) с помощью стандартных математических методов, можно найти ω и *d*:

$$\omega = \frac{u_1 g_1 - r_1 g_1}{-(u_2 + r_2)} = \frac{g_1(\frac{\beta_2}{2} - \rho d - \frac{\beta_2 d^2}{2} - \rho d)}{-(\frac{\beta_2 d}{2} + \rho + \frac{\beta_2 d}{2} - \rho d^2)} = \frac{-g_1(\beta_2 d^2 - \beta_2 + 4\rho d)}{2(\rho d^2 - \rho - \beta_2 d)}$$
(8)

$$d = \frac{-3(\beta_2 D_r + 2\rho D_i) \pm \sqrt{9(\beta_2 D_r + 2\rho D_i)^2 + 8(\beta_2 D_i - 2\rho D_r)^2}}{2(\beta_2 D_i - 2\rho D_r)}$$
(9)

При дальнейшей трансформации любого из уравнений системы (8) с учетом полученных ранее результатов:

. .

$$\frac{(a_t')^2}{a^2} + \frac{2(\beta_2 D_i - 2\rho D_r)}{3d(4\rho^2 + \beta_2^2)}a^2 - \frac{g_1}{\rho d^2 - \rho - \beta_2 d} = 0$$
(10)

Уравнение (10) имеет вид дифференциального уравнения с разделяющимися переменными, его решением будет

$$a(t) = \sqrt{\frac{g_1}{\rho d^2 - \rho - \beta_2 d}} \cdot \sqrt{\frac{3d(4\rho^2 + \beta_2^2)}{2(\beta_2 D_i - 2\rho D_r)}} \sec h(\sqrt{\frac{g_1}{\rho d^2 - \rho - \beta_2 d}} \cdot t)$$
(11)

Рис.2. Зависимость амплитуды импульса от времени

Выводы

лить условия устойчивости: импульс существует тогда когда парметры оптической нелинейной системы, в нашем случае рис.1: линейное усиление $g_1 > 0$, коэффициент дисперсии $\beta_2 < 0$ для предотвращения уширения импульса, коэффициент нелинейного усиления $D_i > 0$ и коэффициент фазовой самомодуляции $D_r < 0$. При этих параметрах имеем стабильный импульс схожий с гауссовым, рис.2.

Из выражения (11) можно опреде-

Создана модель кольцевого волоконного лазера, на основе активного волокна, легированного эрбием. Была разработана и исследована математическая модель кольцевого волоконного лазера, в основе которого лежит комплексное уравнение Гинзбурга – Ландау (1). Произведен численный анализ уравнения (1), в результате которого были определены условия устойчивости нелинейной оптической ситемы, рис.1 : линейное усиление $g_1 > 0$, коэффициент дисперсии $\beta_2 < 0$ для предотвращения уширения импульса, коэффициент нелинейного усиления $D_i > 0$ и коэффициент фазовой самомодуляции $D_r < 0$. Эти условия дают возможность получить стабильные импульсы, схожие с гауссовым. Также в дальнейшем эти условия будут исследованы для получения ультракоротких импульсов, которые достигается путем получения пассивной синхронизации мод, за счет активной и пассивной сред и вращения волновых пластин.

Список литературы: 1. Andre Girard. Guide to WDM Technology and Testing, M.: EXFO,2001.P.P.256. 2. K. Tamura, C. R. Doerr, L. E. Nelson, H. A. Haus, and E. P. Ippen. Technique for obtaining high-energy ultrashort pulses from an additive-pulse mode-locked erbium-doped fiber ring laser // Optics letters, Vol. 19, No. 1,1994.P.46-48. 3. Гнатенко, А.С., Дрибноход, Т.Н. Исследование дисперсии оптичнских волокон для проектирования резонаторов волоконных лазеров, материалы трудов XVIII международного форума молодежного форума «Радиоэлектроника и молодежь в XXI веке», 2014. С.263. 4. I.V. Guryev, I.A. Sukhoivanov, A.S. Gnatenko, V.I. Lipkina Multiple plane waves expansion method for dispersive media // Telecommunications and Radio Engineering, Vol. 67, Issue 9, 2008. Pp 833-841. 5. M. Salhi, H. Leblond, and F. Sanchez Theoretical study of the erbium-doped fiber laser passively mode-locked by nonlinear polarization rotation // Physical Review A 67, 2003. P. 013802. 6. M. Salhi, H. Leblond and F. Sanchez, Stability calculations for the ytterbium-doped fiber laser passively mode-locked through nonlinear polarization rotation // Physics optics, 8, 2004. 7. Kristin M. Spaulding, Darryl H. Yong, Arnold D. Kim, J. Nathan Kutz Nonlinear dynamics of mode-locking optical fiber ring lasers // J. Opt. Soc. Am. B, Vol. 19, No. 5, 2002. P.1045.

Харьковский национальный университет радиоэлектроники

Поступила в редколлегию 11.08.2014