А. В. МАМОНТОВ, Т. Е. СТЫЩЕНКО, П. Н. МАСЛОВ, Р. Ю. АЛЛАХВЕРАНОВ

ПОСТРОЕНИЕ ОПТИМАЛЬНОЙ МОДЕЛИ УПРАВЛЕНИЯ СОТР РЭС С ЦЕЛЬЮ СНИЖЕНИЯ АКУСТИЧЕСКОГО ШУМА

Негативное влияние акустического шума на работу РЭС часто проявляется в электрических шумах, ухудшающих функциональные характеристики. Не менее важной является проблема влияния акустического шума на человека как вредного производственного фактора, снижающего производительность труда, ухудшающего самочувствие и приводящего к профессиональным заболеваниям.

Одними из наиболее распространенных источников акустического шума в РЭС являются системы обеспечения теплового режима (СОТР). Особенно актуальна проблема шума в мощных РЭС с большим тепловыделением. Уровень шума пропорционален потребляемой мощности СОТР, которая в свою очередь пропорциональна требуемой теплоотдаче РЭС. Для СОТР с несколькими приводами хладагента уровень акустического шума является функцией нескольких переменных. Следовательно, снижение уровня шума является оптимизационной задачей, в которой он является целевой функцией, а температура нагретых зон (НЗ) и тепловая мощность — ограничивающими условиями. Оптимизация заключается в построении оптимальной модели управления всеми приводами хладагента, при которой уровень шума в нестационарных тепловых условиях будет минимальным.

На рис. 1 и рис. 2 представлены типовые схемы СОТР, соответственно с воздушным и комбинированным (воздушно-жидкостным) охлаждением.

На рис. 1 обозначены: 1 и 2 — соответственно вытяжной и приточный вентиляторы, 3 — НЗ, 4 — корпус стойки. На рис. 2: 1 — жидкостной насос, 2 — вентилятор, 3 — теплообменник, 4 — НЗ. В первой схеме движение воздуха происходит последовательно от приточного вентилятора к вытяжному. Во второй схеме движение тепла осуществляется последовательно от жидкости, приводимой в движение насосом, к воздуху, приводимому в движение вентилятором. В обоих случаях теплоотдача зависит от эффективности работы каждого источника, приводящего в движение хладагент. Для наибольшей наглядности составлена упрощенная электрическая схема-аналог [1, 2] (рис. 3). На ней обозначены: G1 — источник суммарной тепловой мощности НЗ, R1 — тепловое сопротивление между G1 и остальной частью НЗ, R2 и R3 — тепловые сопротивления между НЗ и окружающей средой, зависящие

соответственно от первого и второго источника движения хладагента, C1 — теплоёмкость H3, U — температура H3, \bot — окружающая среда.

Из рис. З видно, что заданное значение температуры H3(U) в установившемся режиме может быть получено различными сочетаниями сопротивлений R2 и R3. Иначе говоря, заданная температура H3 может быть достигнута различными сочетаниями производительности вентиляторов (вентилятора и насоса).

Для эксперимента были использованы две лабораторные установки, собранные по схемам рис. 1 и рис. 2. В качестве источника воздуха в обеих установках использовались вентиляторы УВО 2,6–6,5 с асинхронным двигателем. В качестве жидкого хладагента был использован тосол АЛ-40, который приводился в движение автомобильным омывателем стекол с двигателем постоянного тока. В ходе эксперимента были получены следующие зависимости: рис. 4 — изотермы напряжения питания вытяжного (U1) и приточного (U2) вентиляторов в установившемся тепловом режиме; рис. 5 — изотермы напряжения питания вентилятора (U3) и напряжения питания жидкостного насоса (U4) также в установившемся тепловом режиме; рис. 6 — зависимость перегрева НЗ (см. рис. 1) от времени переходного процесса (1 - охлаждение без вентиляции; 2 - охлаждение с максимальной вентиляцией; 3 — нагрев без вентиляции; 4 — нагрев с максимальной вентиляцией).

Анализируя полученные зависимости, приходим к выводу, что реальные тепловые процессы могут быть пояснены с помощью эквивалентной электрической схемы (рис. 3). Графики, приведенные на рис. 4 и рис. 5, объясняются гиперболической зависимостью теплового сопротивления от расхода хладагента. Графики, приведенные на рис. 6, иллюстрируют переходные тепловые процессы и приближаются к экспонентам. Погрешность не превышает 5% от максимального значения температуры.

На рис. 7 приведены зависимости расхода воздуха вентилятора от приложенного напряжения (1 – отдельно взятый вентилятор; 2 – вентилятор в схеме по рис. 2; 3 и 4 – соответственно приточный и вытяжной вентилятор в схеме по рис. 1). На рис. 8 приведены зависимости уровня шума вентилятора от напряжения питания.

Как отмечалось выше, необходимо подобрать такой режим работы вентиляторов (вентилятора и насоса), при котором уровень акустического шума будет минимальным, а расход хладагента будет обеспечивать заданную температуру НЗ. Для термостабилизации НЗ в условиях изменяющейся температуры окружающей среды или тепловой мощности необходимо регулировать расход хладагента (V). Возможность такой термостабилизации подтверждается графиками на рис. 6. Однако изменение расхода хладагента означает переход на другую изотерму $\Delta T_i = const$ (рис. 4 и 5), что влечет за собой изменение уровня акустиче-

ского шума. На рис. 9 представлены шумовые характеристики, соответствующие этим изотермам, снятые на установке с воздушным охлаждением (рис. 1). Аналогичный результат получен на установке с комбинированным охлаждением (рис. 2).

Таким образом, минимизация уровня шума от работы СОТР с двумя источниками движения хладагента при изменяющейся тепловой мощности Р и постоянной температуре НЗ сводится к нахождению линии, соединяющей минимальные уровни шума при соответствующих изотермах. Как правило, она носит нелинейный характер, что объясняется нелинейностью происходящих процессов (рис. 7 и 8).

В общем виде задача описывается следующим образом:

T — интегральная температура в системе (средняя в H3) есть функция времени t и вектора напряженности $\vec{U}(t)$ с очевидным ограничением $\frac{\partial t}{\partial U} < 0$, $i=1\dots n$, где n — число вентиляторов (они же источники шума). $J(\vec{U})$ — функционал интегрального шума в системе. При отсутствии интерференции естественно считать

$$J(\vec{U}) = \sum J_i(\vec{U}_i), \tag{1}$$

где J_i – шум от каждого из источников.

Общая задача имеет вид:

$$\min_{t \in [0:t_1]} J(\vec{U}), \tag{2}$$

где t_1 — максимально допустимое время перехода из состояния T в состояние с допустимой температурой T_0 . Минимум в (2) берется по всем кривым такого перехода. Для монотонных зависимостей J(U) можно задать промежуточные точки $T \to T_k \to T_{k+1} \dots \to T_1 \to T_0$, считая задачу квазистационарной (инерционность температурных процессов велика). Тогда в пространстве векторов \vec{U} выделяется линейное многообразие U_{Te} , для каждого T_e на каждом ищется $\min J(\vec{U})$.

Ниже показан дискретный случай такого подхода, когда многообразие аппроксимируется результатами эксперимента для каждой данной точки T_e . При этом предполагается, что вектор \vec{U} min из U_{T_e} действительно приведет систему из состояния T_e в T_{e-1} (в нештатных ситуациях перегрева это предположение может не выполняться).

Следующим шагом является адаптивное управление работой вентиляторов. В простейшем случае имеем:

$$\begin{cases}
U_i = x_i \cdot 1(T - T_0), \\
J = \sum J_i(U_i) + \tau(\vec{U}),
\end{cases}$$
(3)

где $x_i \ge 0$ — вектор управлений; τ — интеграл по времени от положительной, монотонно растущей функции разности ($T-T_0$). Если время регулирования не критично, можно ограничиться выражением (1). Ввиду нелинейности зависимости рис. 8 J будет существенно нелинейной функцией как управляющего параметра \vec{x} , так и отклонения $T-T_0$, и от ПИДрегулятора (3) можно вернуться к классической задаче экстремума функции с параметром \vec{U} . При этом считать процесс квазистационарным. Здесь попутно возникает задача оптимальной частоты опроса датчиков (в данной статье не рассматривается).

Теоретическое решение задачи оптимизации на проектной стадии затруднено множеством трудно учитываемых факторов. Поскольку поверхность отклика I(U1, U2) получена экспериментальным путем, наиболее простым решением авторы считают также экспериментальное, и предлагают следующий алгоритм:

1. Построить изотермы $V_i = const$, каждая из которых представляет зависимость U_1 от U_2 :

$$\begin{cases} U_1 = \varphi_i(U_2), \\ P_j = const, \\ T_j = const, \end{cases}$$

$$\tag{4}$$

где V_i – расход хладагента;

j – номер изотермы, соответствующий заданной температуре H3;

 P_i – тепловая мощность;

T — заданная температура H3.

2. Построить шумовую характеристику I_i для каждой изотермы $\Delta T = const$:

$$\begin{cases} I_{j} = f_{i}(U1; U2), \\ T = const, \\ P_{j} = const. \end{cases}$$
 (5)

3. Построить линию, соединяющую минимальные значения полученных шумовых характеристик I_j :

$$\begin{cases} L = F_{\min} (U1; U2), \\ T = const, \\ P \neq const. \end{cases}$$
 (6)

4. Построенная в ходе эксперимента линия L представляется аналитическим выражением одним из известных способов и может использоваться в СОТР с автоматическим управлением источниками движения хладагента.

Список литературы: 1. Дульнев Г. Н. Тепло- и массообмен в радиоэлектронной аппаратуре. М.: Высш. шк., 1984. 247 с. 2. Веников В. А. Теория подобия и моделирования. М.: Высш. шк., 1976. 479 с.

Харьковский национальный университет радиоэлектроники

Поступили в редколлегию 24.06.2003