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Abstract 
In this paper, we present our design on a simple, 

low-profile wideband planar antenna with a pure 

circular radiator fed by a 50Ω microstrip line. By 

investigating the feeding position and ground plane 

dimensions, the antenna is optimized to have a very 

wide bandwidth that covers the whole FCC-allocated 

ultra-wideband (UWB) spectrum. Because of the 

additional patch beneath the radiator, the bandwidth 

can be further extended towards the lower side of the 

frequency spectrum. This antenna is finally modified to 

have a bandwidth from 2 to 12 GHz, which satisfies 

system requirements for S-DMB, WiBro, WLAN, 

CMMB and the entire UWB with S11 < -10dB. 

 

1. Introduction 
 

Since the Federal Communications Commission 

(FCC) of United States allocated the unlicensed 

frequency spectrum from 3.1 GHz to 10.6 GHz for 

commercial applications of ultra-wideband (UWB) 

technology in 2002 [1], ultra-wideband (UWB) 

technology has gained great popularity in research and 

industrial areas because of its high data rate wireless 

communication capability for various applications. As 

a crucial part of the UWB system, UWB antennas have 

been investigated extensively by researchers and 

numerous proposals for UWB antenna designs have 

been reported [2-5]. In [2], a new ultra-wideband 

antenna consisting of two steps, a single slotted patch 

and a partial ground plane is designed to operate from 

3.2 to 12 GHz. In J. N. Lee’s work [3], an ultra-

wideband antenna composed of a modified trapezoidal 

radiating patch, a PI-shaped matching stub, CPW 

feeding, and two steps for impedance matching has 

been proposed for UWB applications. In [4], an ultra-

wideband microstrip-fed monopole antenna with a 

narrow slit and a modified inverted U-slot on the patch 

is presented.  

Recently, a small planar antenna fed by a microstrip 

line has been investigated and designed to exhibit dual-

band operation for Bluetooth (2.4 - 2.484 GHz) and 

UWB (3.1 - 10.6 GHz) bands [5]. However, many of 

the proposed designs employed slots or other 

complicated modifications in the antenna radiator 

and/or ground plane. These designs may pose 

complications during fabrication of the antenna since 

the tolerance of the increased special features/variables 

could be problematic when it goes to mass production, 

and instability due to the fact that complicated antenna 

structures may also occur in practice. Therefore, we are 

motivated to design a low complexity, low cost and 

compact antenna with wide frequency coverage 

supporting various applications such as Satellite 

Digital Multimedia Broadcasting (S-DMB), Wireless 

Broadband (WiBro), Wireless Local Area Network 

(WLAN), China Multimedia Mobile Broadcasting 

(CMMB) and UWB. 

In this paper, we present a very simple circular 

planar antenna with operating bandwidth ranging from 

2 GHz to 12 GHz by integrating several techniques 

into one compact antenna. The design approach is very 

similar to our previously reported paper [6]. We start 

with a simple circular planar antenna fed by a 50Ω 

microstrip line with a truncated ground plane. Next, 

based on the study of the size of the radiator and 

current distribution, the antenna is designed to have an 

operating bandwidth covering the entire UWB band, i.e. 

3.1 - 10.6 GHz. Then, the study on the size of the 

partial ground plane is conducted to increase the 

bandwidth towards the lower side of the frequency 

spectrum, to cover the bands for WLAN (2.4 - 2.484 

GHz) and CMMB (2.635 – 2.66 GHz). With an extra 

patch printed on the back side of the substrate, 

underneath the circular radiator, the bandwidth can be 

further increased to cover Wibro (2.3 - 2.4 GHz) and 

S-DBM (2.17 -2.2 GHz) without significantly 

influencing other frequency bands. Thus the proposed 

antenna can be used for various applications such as S-
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DMB, Wibro, WLAN, CMMB and the

operating bands are evaluated using 

with the criterion of having return loss S11 less than 

10 dB. Simulated radiation patterns over the whole 

frequency bands are acceptable.

 

2. Antenna configuration and design
 

Fig. 1 shows the top, bottom and side views of the 

proposed antenna as well as its dimensions. As stated 

before, the antenna structure comes from a 

conventional design: a simple pure circular planar 

monopole antenna. The radius of the radiator R

critical parameter associated with the operating 

frequencies and input impedance of the antenna.

Fig. 1.  Configuration of the proposed antenna where 

 

Accordingly, 

value at f

frequency of the UWB band.  A good starting point for 

the dimension is as follows:

 

where c is the speed of light in vacuum and 

dielectric constant of the substrate. 

have reasonable return loss for the whole frequency 

band. 

Following optimization of R
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B. Studying the size of the truncated ground plane
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length of the ground plane which determines the lowest 

usable frequency. When L

radiator is set to 10.8 mm, as seen from Fig. 3, the 

antenna is designed to cover 2.37 GHz 

which is then able to include the ban

CMMB and WLAN applications. 
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Comparison between the optimized design and the 

one without the extra patch in terms of the return loss 

is given in 

The antenna is then fabricated and 
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Fig. 12.  Comparison of radiation patterns at 10 GHz.
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