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Abstract . In this work we obtained the solution of 

increasing of adequacy of models of multicriteria 

evaluation for the project and management decision 

support systems. Modifications of the utility functions of 

partial criteria and the procedure for calculating their 

values are proposed, which makes it possible to improve 

the accuracy of approximation of the preferences of the 

person making the decision, as well as significantly 

reduce the time for calculating their values. For the 

parametric synthesis of universal multicriteria estimation 

models based on the Kolmogorov-Gabor polynomial, an 

improvement in the method of comparator identification 

by calculating the Chebyshev point and the discrepancy 

vector is proposed.  

Key words: decision support, multi-criteria 

optimization, utility function of partial criteria. 

 

INTRODUCTION 

 

One of the most important tasks of modeling 

intellectual activity is the task of studying the processes of 

multifactorial evaluation and decision-making by man. 

Formalization of these processes allows to improve 

existing and create new intellectual decision support 

systems (DSS). This contributes to improve the quality of 

decisions in control systems and automated design of 

anthropogenic objects systems [1-3]. This systems are 

important in the design and management of complex 

large-scale objects [4-6]. Using this systems in selecting 

of effective design and management solutions allows to 

significantly reduce the cost of the creation and operation 

of such facilities, providing the required levels of their 

functional characteristics [7-8]. 

At the heart of modern models of decision-making 

lies the paradigm of maximizing utility [9]. It is believed 

that the person making the decision (DM), when choosing 

options from a set of allowable Xx  ascribes to them 

some utility P( x ) , the quantitative values of which 

determine its choice: 
 

o

x X
x arg max P( x ).


                           (1)  

 

General utility functions (GUF) P( x )  are formed on 

the basis of the utility functions of the partial criteria 

(UFPC) i i i[ k ( x )] ( x )  , mi ,1 (where m  is the 

number of partial criteria )(xki ). The synthesis of the 

GUF )(xP  is reduced to solve a set of problems of 

structural and parametric identification. 

In the general case, in the process of identifying the 

preferences of DM, it is necessary to solve questions 

related to the choice of similarity criteria, input signals, 

structure and parameters of the model, an estimation of its 

accuracy and adequacy [10]. The most interesting, both 

theoretically and in practice, are the problems of choosing 

the structure of a function P( x )  and its parameters 

(parameters of utility functions of partial criteria and their 

weight coefficients) [9]. 

 

ANALYSIS OF THE MODERN CONDITION  

OF THE PROBLEM 
 

The methodology of modern DSS is based on the 

theory of multicriteria decision making [1-3, 9-10]. The 

choice of the best solution from the set of effective ones 

only in the simplest situations can be carried out by a 

decision maker without the use of formal methods [11]. 

To automate the procedures for evaluating multicriteria 

solutions, it is necessary to involve additional information 

on the value of individual formalized properties (partial 

criteria) and their meanings. The most important task of 

formalizing the decision-making during of multicriteria 

optimization is to determine the metric for ranking 

options [9]. As a methodological basis for constructing a 

metric, the utility theory is traditionally used, according to 

which for each of the variants from the admissible set the 

value of its utility can be determined P[ ( x ), ]   

(where: i( x ) [ ( x )]  i 1,m
 
– vector of UFPC 

i[ ], i 1,m;    i[ ], i 1,m    – vector of weight 

coefficients of partial criteria ik ( x ), i 1,m ). It is 

considered that for all x, y X : 
 

x y  P[ ( x ), ] P[ ( y ), ]    ;       (2) 

x y  P[ ( x ), ] P[ ( y ), ]    ;         (3) 

x y  P[ ( x ), ] P[ ( y ), ].             (4) 
 

In view of the incomplete certainty of the 

requirements to the properties of solutions as a function of 

general utility P[ ( x ), ]   it is proposed to use the 

membership function to the fuzzy set "best option".  In 

this case, the fuzzy set "best option" can be represented as 

a set of ordered pairs [12]: 
 

«Best option» { x, P[ ( x ), ] }    , 
 

where: x X  – a variant of the set of 

admissible; P[ ( x ), ]   – the degree of membership of 
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the variant to the "best option" fuzzy. 

The definition of the metric for ranking options 

x X is the solution of the task of identification of 

preferences and reduces to solving problems of structural 

and parametric synthesis of the function P[ ( x ), ]   

[13]. In general, it involves choosing the type and 

parameters of the functions i ( x ) , mi ,1 , P[ ( x ), ]   

and the vector of weight coefficients i[ ]  , mi ,1 .  

As the criteria of identification (similarity of models), 

depending on the conditions of the problem,  a minimum 

of the total (mean, maximum, total quadratic) absolute, 

relative error of the estimation of the general utility 

P[ ( x ), ]  , the maximum strength of preferences, the 

midpoint, the maximum of the correctness of choice, or 

the minimum of the error of restoring order on subsets of 

admissible variants X X { x }    [10]. 

UFPC i ( x ) , mi ,1  in this case are considered as a 

membership function to a diffuse set of "best option" 

according to partial criteria ik ( x ), i 1,m . They 

implement mappings 1

i i: k ( x ) E , i 1,m    and should 

be universal, well-adapted to take into account the 

characteristics of specific situations of multi-criteria 

choice. They are presented with a number of requirements 

[9]: monotonicity and dimensionlessness; a single change 

interval (from 0 to 1); invariance to the form of extremum 

of a particular criterion (min or max); The possibility of 

mapping linear and non-linear dependencies on the values 

of a partial criterion. 

The greatest distribution in the practice of 

multicriteria optimization was obtained by the 

membership functions of the form [9]: 
 

i

i i

i

i i

k ( x ) k
( x )

k k






 

 
  

 
, i 1,m ,             (5) 

 

where: 
i i ik ( x ), k , k   – the value of the i-th partial 

criterion for variant x , the best and the worst values of 

the i-th criterion, i 1,m ; i – parameter defining the 

form of dependence ( i 1  – linear, i0 1   – 

concave, i 1   – convex).  

The disadvantage of functions of the form (5) is the 

impossibility of realizing S- and Z-shaped dependencies 

on the values of the partial criterion. Free from this 

drawback are the gluing of power functions from [12], the 

Gaussian function, Harrington function, the logistic 

function, and their modifications [14]. However, 

computer procedures for calculating their values have a 

sufficiently high temporal complexity. 

The most universal among the functions for 

multifactor estimation is a function constructed on the 

basis of the Kolmogorov-Gabor polynomial [9]: 
 

m m m

i i ij i i

i 1 i 1 j i

m m m

ijl i j l

i 1 j i l j

P[ ( x ), ] ( x ) ( x ) ( x )

( x ) ( x ) ( x ) ... ,

      

   

  

  

  

 

 


   (6) 

where: 
i ij ijl, ,    – weight coefficient of partial criteria  

and their product; 
i j l( x ), ( x ), ( x )    – UFPC’s ik ( x ),  

j lk ( x ),...,k ( x ) .  

If a vector of parameters   is defined and the form 

of the utility functions of the partial criteria is known 

i ( x ) , i 1,m , then the problem of choosing the best 

variant for models of the form (6) can be reduced to an 

optimization problem of the form (1). 

The task of determining the vector of weighting 

coefficients   for models of the form (6) it was 

traditionally solved by expert methods by ranking 

methods, assigning points, consecutive preferences, pair 

comparisons [11]. The disadvantages of these methods are 

the complexity and relatively low accuracy of estimates. 

As an alternative to expert estimation of parameters, the 

technology of comparator identification is increasingly 

being used [9-10, 14-15]. 

The review of the current state of the problem of 

identification of preferences of decision-makers in DSS 

shows that by now it is far from its solution and requires 

further research. The questions of estimating the time 

complexity of procedures for calculating the values of 

UFPC and improving them in the direction of reducing 

the time for calculating their values remain practically 

unexplored. The theory of structurally-parametric 

identification of preferences of decision-makers with the 

use of universal models of multicriteria estimation 

requires further development. 

 

OBJECTIVES 
 

The aim of the research is to increase the 

effectiveness of multi-criteria evaluation procedures in 

decision support systems. 

To achieve this goal, it is necessary: 

– to develop a procedure for the formation of 

monotonic membership functions for fuzzy sets "best 

option" by partial criteria, reducing the time complexity 

of calculating their values; 

– to develop a method of parametric synthesis of 

universal models of multicriteria estimation and choice of 

decisions; 

– to carry out a comparative analysis of the time 

complexity and accuracy of approximation of the 

preferences of the decision-maker using universal models 

of multifactor estimation and decision-making. 

 

FORMALIZATION OF PREFERENCES OF DM 

UNDER THE VALUE OF PARTIAL CRITERIA 

 

To simplify the universal membership functions of 

fuzzy sets "best option" we use the procedure of linear 

normalization of the partial criteria (5) for i 1  : 
 

i i
i

i i

k ( x ) k
k ( x )

k k



 





, i 1,m .                (7) 

 

This without loss of accuracy will simplify the 

universal membership functions, which allow to realize 

linear and nonlinear (including S- and Z-shaped) 

dependencies on the values of partial criteria.    
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Taking into account the normalization (7), the most 

commonly used membership functions [10, 12, 14] will 

have the following form: 

 – Gaussian function [14]: 

 
2( k( x ) 1)

( x ) exp
c


 

  
 

,                    (8) 

 

where: c 0  – a parameter that defines a particular type 

of dependency; 

– logistic function [14]: 

 

1
( x )

( k( x ) a )
1 exp

b

 
 

  
 

,           (9) 

 

where: a – abscissa of inflection point; b – parameter that 

defines a particular type of dependency; 

       – Harrington function [14]: 

 

 ( x ) exp exp ( g k( x ) a )     
 

,        (10) 

 

where: g  – nonlinearity parameter; a / g  – determines 

the inflection point; 

– modified Gaussian function [14]: 

 
2( k( x ) 1)

( x ) exp
c




 

  
 

,                  (11) 

 

where: c 0  – parameter that defines a particular type of 

dependency;   – nonlinearity parameter  

      – gluing function of power functions [14]: 
 

1

2

a

a

a
a

a

k( x )
a , 0 k( x ) k ;

k
( x )

k( x ) k
a (1 a ) , k k( x ) 1,

1 k





  
       

 
  
     
   

  (12) 

 

where: ak , a   – normalized values of the coordinates of 

the point of gluing the function, a0 k 1  , 0 a 1  ; 

1 2,   – coefficients that determine the form of the 

dependence on the initial and final segments of the 

function; 

– gluing function of power functions, built on the 

basis of a function [12]: 

 
p

p 1

p

p 1

2 k( x ) , 0 k( x ) 0.5;

( x )
0.5 k( x )

1 2 , 0.5 k( x ) 1,
0.5







    
 


   
     
  

   (13) 

 

where: p  is a parameter that determines the form of 

dependence.  

 

Functions (8) – (13) strongly change their values at 

the entrance to the dead zones (approaching the partial 

characteristics of the variants to the worst and best values 

k( x ) 0  и k( x ) 1 ). This can lead to significant 

errors in determining the properties of the variants 

according to partial criteria and have a significant effect 

on the error in calculating of the general estimation  

P[ ( x ), ]   (6). 

To overcome these shortcomings, a modification 

of the gluing function (12) with a smaller dead zone  

(Fig. 1) is proposed: 
 

1 1 1

a

a

2

a

2 2

a

a

k( x )
a (b 1) 1 b / b ,

k

0 k( x ) k ;

( x ) a (1 a ) ( b 1)

k( x ) k
1 b / b ,

1 k

k k( x ) 1,



    
               

  


     

   
            


 

   (14) 

 

where: 1b , 2b   – parameters that determine the form of 

the dependence on the initial and final segments of the 

function. 
 

 
Fig. 1. The type of UFPC (14) for different values of the 

parameters ak , a  , 1b , 2b  

 

It is established that the accuracy of approximating 

the preferences of the decision-maker with the help of the 

function (12) and the proposed modification (14) is 

several times higher than using the functions (8) - (11) 

and (13). In this case, the procedures for calculating the 

values of the functions (13) and (14) have much less time 

complexity than the values of the functions (8) - (11) and 

(13). 

To further reduce the time complexity of the 

procedures for calculating the values of the function (14), 

its piecewise linear approximation is performed with a 

uniform approximation on the segments 1[0,k ],  

1 2[ k ,k ] , …, n 1[ k ,1] : 
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1 2

1

n 1

n 2 n 1

k k

1 1 2 2

0 k

k 1

n 1 n 1 n n

k k

(x) d k( x ) h dk (x) d k( x ) h dk;

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(x) d k( x ) h dk (x) d k( x ) h dk ,

 

 


 

 


      





       



 

 

(15) 

 

where: , , ,i id h i 1 n  – scaled for the i-th interval 

parameters of linear functions.  

The solution of the system of integral equations (15) 

makes it possible to determine the best coordinates of the 

nodes , ,i ih k i 1 n  and parameters , , ,i ih h i 1 n  for 

piecewise-linear approximation of the function (14): 

 

11 1

1 22 2

nn n

d k( x ) h , 0 k( x ) k ;

d k( x ) h , k k( x ) k ;
( x )

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

d k( x ) h , k k( x ) 1.



    


   
 

    

          (16) 

 

To reduce the number of operations required for 

calculating function values ( x ),  it is proposed to use a 

single preliminary calculation of their parts that do not 

change when the values of the particular criterion k( x )  

change. This allows to reduce the calculation time for 

function values by 25,9%. 

The accuracy of the approximation obtained from 

relation (15) increases with the number of nodes, but the 

number of computer operations for calculating the values 

of the function increases. When approximating the 

preferences of individual DM with the use of four nodes, 

the required order of accuracy is preserved, and the 

calculation time of the function values is reduced by 

19,7%. 

 

PARAMETRIC SYNTHESIS OF THE MODEL OF 

MULTI-CRITERIAL ESTIMATION 

 

The parametric synthesis problem is considered for 

the multicriterion estimation model (6). As its 

components, the universal utility function i ( x ) , i 1,m
 

(14) of partial criteria is used, allowing to realize linear, 

convex, concave, S- and Z-shaped dependences on the 

values of partial criteria
 

ik ( x ) , i 1,m . 

To solve the problem, we use the technology of 

comparator identification, the essence of which is the 

following [9-10]. A subset of the set of admissible 

variants is given X X   and the corresponding values of 

partial criteria  ik ( x ) , i 1,m .  

On it it is necessary to allocate a subset of Pareto-

optimal variants 
СX X  . DM analyzes pairs of options 

Cx,y X , which form in his mind some subjective 

assessments of utility P[ ( x ), ]   and P[ ( у ), ]  , 

whose values can not be measured. On the basis of these 

assessments, the DM gives an opinion on the equivalence 

or preferences of the variants (forms binary equivalence 

relations, strict or non-strict preferences): 

–  С С

ER ( X ) x,y : x,y X , x y     ; 

–  С С

SR ( X ) x,y : x,y X , x y    ; 

–  С С

NR ( X ) x,y : x,y X , x y    .  

 

For them, the corresponding systems of equations 

and inequalities are composed: 

 
С

EP[ ( x ), ] P[ ( у ), ], x,y R ( X )      ,     (17) 

С

SP[ ( x ), ] P[ ( у ), ], x,y R ( X )      ,     (18) 

С

NP[ ( x ), ] P[ ( у ), ], x,y R ( X )      ,     (19) 

 

where:   – the required vector of the GUF parameters. 

The problem of parametric identification of the GUF 

is reduced to the determination of the vector N

i i 1[ ]    

(where N  – number of model parameters), satisfying the 

system of equations and inequalities (17), (18) or (19). In 

this case, the generated systems of inequalities or 

equations can be inconsistent or have an infinite number 

of solutions. 

Let’s choose as a criterion for identifying preferences 

of the DMs, the minimum of the error of recovery of the 

order of the preferences of the variants and the minimum 

of the sum of the squares of the error of estimates of the 

utility of the variants. The number of terms of the model 

(6) is chosen proceeding from the required accuracy of 

restoring the preferences of the DM, the dimension of the 

problem and the available computing resources. The 

maximum number of terms is n

m nN C 1   (where 

m is number of partial criteria; n is power of polynomial 

model).  

Let’s introduce the following notation:  

 

1 1 m 1( x ) ( x ) ( x )     , 1,1 m 1   ,      

1 2 m 2( x ) ( x ) ( x )     , 1,2 m 2   , … .        (20) 

 

Taking into account the introduced notation (20), the 

function (6) can be represented in the additive form: 

 
N

i i

i 1

P[ ( x ), ] ( x )   


 .                    (21) 

 

The requirement that pairs of variants belong to a 

subset of Pareto optimal Cx,y X , is due to the fact that 

taking into account the dominant variants from the subset 

of the consent 
S CX X \ X  when forming binary 

relations strictly SR ( X )  and nonstrict NR ( X )  

preferences does not bear useful information, i.e. x у  

Cx X   and Sy X  . This is a consequence of the fact 

that relations of strictly and unstrict preferences for 

dominant variants are fulfilled for any values of weighting 

coefficients i ,
 
i 1,N . 

From the equivalence relation С

ЕR ( X )  for the 

model (21) from condition (17) we obtain a system 

including En  equations:  
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N N

j i i i i

i 1 i 1

C

Е E

( ) ( x ) ( y );

x, y R ( X ), j 1,n ,

     
 


 


  

 
            (22) 

 

and also the equation for normalizing the weight vector of 

partial criteria: 
 

E

N

n 1 i i

i 1

( ) 1, 0, i 1,N   



    , 

 

where: С

E Еn Card R ( X )  – equivalence power 

С

ЕR ( X ) . 

From relations of strict С

SR ( X )  and nonstrict 

С

NR ( X )  preferences we obtain systems of nonlinear 

inequalities and normalizing conditions: 
 

S

N N

j i i i i

i 1 i 1

C

S S

N

n 1 i i

i 1

( ) ( x ) ( y );

x, y R ( X ), j 1,n ;

( ) 1, 0, i 1,N;

     

   

 






 



  

    


 



        (23) 

 

N

N N

j i i i i

i 1 i 1

C

N N

N

n 1 i i

i 1

( ) ( x ) ( y );

x, y R ( X ), j 1,n ;

( ) 1, 0, i 1,N ,

     

   

 






 



  

    


 



       (24) 

 

where: С

S Sn Card R ( X ) , С

N Nn Card R ( X )  – 

power relationship’s С

SR ( X ) and С

NR ( X ) . 

The resulting systems of equations and inequalities 

(22) - (24) are homogeneous and define sets of planes 

passing through the origin. The second part of them in the 

form of normalizing conditions 
N

i i

i 1

1, 0, i 1,N 


    

define secants.  

One way to solve such systems is to search for the 

Chebyshev point [9-10]. It allows us to reduce the initial 

problems to problems of linear programming. To do this, 

we introduce an additional variable N 1   into the system 

of equations (22) for the resulting equivalence relation 
С

ЕR ( X )  and form a system of limitations 

j N 1( ) ,     Ej 1,n  as: 

 

E

j N 1

j N 1 E

N

n 1 i i

i 1

( ) 0;

( ) 0, j 1,n ;

( ) 1, 0, i 1, N .

  

  

   










  


  

    




          (25) 

 

Minimization N 1 min    within the constraints 

(25) is a linear programming problem, and provides a 

Chebyshev point of the system (22). Geometrically 

Chebyshev point o  in this case has the smallest 

deviation in absolute value r  from the entire system of 

planes described by the system of equations (22): 
 

o

j j
j j

r mi n ma x ( ) ma x ( ) .


        (26) 

 

Let’s introduce an additional variable N 1   in the 

constraints (23) for the relation С

SR ( X )  and we require 

that the conditions 
j N 1( ) ,     Sj 1,n . Then the 

search for the Chebyshev point of the system of 

inequalities (23) reduces to the problem of linear 

programming: 
 

S

N 1

j N 1 S

N

n 1 i i

i 1

min;

( ) 0, j 1,n ;

( ) 1, 0, i 1,N .



  

   










 

   

    




    (27) 

 

If the system of inequalities (23) is consistent, then 

j
j

r min max ( ) 0


    and the obtained solution o  will 

be maximally stable to possible displacements of the 

planes of constraints. If the system (23) is inconsistent, 

then r 0 , and we obtain the Chebyshev approximation, 

which is the value of the minimal deviation for the 

solution of the system under consideration. In this case, 

for a preference system described by a binary relation 
С

SR ( X ) , there is no single weight vector of partial 

criteria  , satisfying conditions (23). 

Similarly, the problem of linear programming 

reduces to finding a Chebyshev solution (approximation) 

of a system of linear inequalities and constraints for the 

ratio of nonstrict preferences С

NR ( X )  (24).  

The disadvantage of solutions in the form of a 

Chebyshev point is their orientation solely on extreme 

constraints and minimizing the maximum deviation of the 

obtained point from the planes of constraints ( )  . As 

an alternative to solutions in the form of a Chebyshev 

point one can use generalized solutions of systems (22) - 

(24), taking into account the removal (or evasion) of the 

entire set of constraints [16]. In this case, for the 

equivalence relation С

ЕR ( X )  as the solution of the 

system of equations (22) is the vector: 
 

o arg mi n A b


   ,                  (28) 

 

where: A b   – the vector of the discrepancy vector; 

ijA [a ]  – matrix of coefficients for the system (22), 

whose elements are: 
 

 ji i i Ea ( y ) ( x ) , j 1,n , i 1,m     , 

 

where: j  – pair number x,y   with reference to 

С

ER ( X ) ; 
En 1,ia 1, i 1,m;    Tb [0,0,...,1] .   
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The proposed models and methods showed their 

efficiency and effectiveness in solving problems of design 

and management of large-scale objects. 

 

CONCLUSIONS 

 

Within the framework of solving the problem of 

identification of preferences of DM in decision support 

systems, an analysis of existing models of multicriteria 

estimation was carried out. It is established that the 

known utility functions that make it possible to realize S- 

and Z-shaped dependencies on the values of partial 

criteria have a high computational complexity and rapidly 

change their values as the characteristics approach 

extrema. In practice, this can lead to significant errors in 

determining the properties of the variants for individual 

indicators and, as a consequence, to the error of their 

complex multicriteria evaluation. 

To overcome these shortcomings, a modification of 

the gluing function and an efficient procedure for 

calculating its values are proposed, which allow reducing 

the dead zone substantially without loss of accuracy, 

thereby increasing the adequacy of the multifactor 

estimation model and shortening the calculation time of 

its values.  

For the parametric synthesis of universal 

multicriterion estimation models based on the 

Kolmogorov-Gabor polynomial, an improvement in the 

method of comparator identification by calculating the 

Chebyshev point and the discrepancy vector is proposed. 

This allows to cover all practically important situations of 

choosing by DM, described by binary relations of 

equivalence, strict, nonstrict preferences and to increase 

the efficiency of synthesis procedures in comparison with 

the GMDH based on genetic algorithms. 

Practical use of the obtained results in DSS of design 

and management decisions will allow to obtain solutions 

of problems of multifactor estimation and choice of 

solutions of much larger dimension with less expenses of 

computing resources practically without loss of accuracy. 
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