
ISSN 0485-8972 Радиотехника. 2015. Вып. 183 53

UDC 621.372

O. B. TKACHOVA, Ph.D., ABDULGHAFOOR RAED YAHYA

METHODS OF CONTRADICTION DETECT

IN OPENFLOW PROTOCOL SPECIFICATION

Introduction

Information networks that are based on the concept of software-defined networking (SDN) are

becoming increasingly popular today. Flexibility, relatively simple administration and update of

components, open network interfaces are the main advantages of SDN. The assurance of high quali-

ty of services on-demand in SDN-based networks provides by separating data transmitting roles,

improved management mechanisms and strict compliance with requirements for medium. One of

factors that affect to the quality of provided services is the efficient exchange of management in-

formation between control layer and data plane layer. OpenFlow is the basic protocol that used to

control messages exchange between these layers [1].

A rapid development and increasing of services range leads to establish of additional require-

ments to operation of SDN-based network components. This lead to a permanent modification of

OpenFlow protocol, expanding and updating of protocol specification requirements. Adding or up-

dating of specifications requirements in some cases gives the rise of contradictions between them.

For example, applying different commands that perform the same actions, different sequences of

message processing can be the cause of contradiction in requirements. The lack of strict systemati-

zation and formalization of specification requirements, non-formal descriptive of protocol behavior

are the reason of complexity in contradictions identification.

The formal methods using in processes of formalization requirements of protocol specifica-

tions are giving ability to uniquely specify a set of possible events and processes and describe the

causal relationships between them. The interpretation accuracy of protocol requirements greatly de-

pends of expressive power of the method used for formalization.

The methods of graphical and mathematical notation such as UML [2], SDL [3], Backus-Naur

form, LOTOS [4], temporal logics [5] are widespread using in formalization process of information

systems specification. However, the application of such methods for OpenFlow protocol specifica-

tion formalization is difficult. The absence of possibility to take into attention timestamps fixation

for distributed resources and lack of processes prioritization leads to impossibility of the consisten-

cy checking. Thus, there is a need to develop a new method of formal consistency check that allows

taking into account timing and processes priority during the protocol operation.

Analysis of the literature [2-6] shows that the apparatus of the algebra of communication of

distributed resources (ACSR) enables to formalize the causal relationships between events and pro-

cesses that take place in the operation of the protocol OpenFlow. The ACSR has a graphical and

mathematical interpretation; the analytic features of ACSR can be increase due to this.

Consistency check of protocol OpenFlow requirements is an important task. The solution of

this task will help to reduce the number of errors that occur in the case of its operation, and, there-

fore, ensure the quality of provided services. The solution of the consistency check task can also be

implemented to find contradictions in the different versions of the OpenFlow protocol specification.

In the paper a method of the consistency check that based on step-by-step comparison of the

protocol chronological sequence are suggested. The logical connectivity “precondition – events –

postcondition” is also take into account. The suggested method can detects statements in which

there are contradictions between the requirements of the specification. Addition to this method can

serve as a check on the consistency of the graph of possible OpenFlow protocol states in accordance

with the requirements of the specification. An analysis of the state graph cannot only establish the

existence of contradictions and to form a sequence of actions that leading to the emergence of con-

tradictions.

 ІSSN 0485-8972 Радиотехника. 2015. Вып. 183 54

1. Overview of Algebra of Communicating Shared Resources functionality

Algebra of Communicating Shared Resources (ACSR) is a process algebra designed for the

formal specification and manipulation of distributed systems with resources and real-time con-

straints. Application of ACSR as a method of formalizing requirements allows proving the require-

ments truth and finding inconsistencies in between specification requirements.

In general, the grammar of ACSR can be represented as follows [6]:

ACSR Proc(X ,p),Act,О,C , (1)

where Proc(X ,p) a set of all processes that can take part in OpenFlow specification. The pro-

cess may be defined by a set of variables and their relative priority:

1 1 2 2 3 3 4 4(,), (,), (,), (,)P x р Q x р R x р S x р . In this case, variables 1 2 3 4x ,x ,x ,x determine the

process and elements
1 2 3 4p ,p ,p ,p set the priority of the process; Act is a set of all events; О is

a set of operators; C is logical connectives.

The ACSR predicates form the alphabet, which contains all the atomic approval protocol spec-

ification. This atomic statements are divided into two groups: processes (Proc):

{ , , , }P Q R S Proc , the processes characterize the performance of an action, for example, search

for entries in the forwarding table, and events or actions (Act): { , } Act , the events character-

ize the result of a specific process, for example, the message is generated..

ACSR comprises a syntaxes and a semantics component [].The behavior of a process is given

by a labelled transition system, which is a subset of Proc Act Proc . In common, the struc-

ture of any OpenFlow protocol specification statements can be defining by the following sequence

of transitions:
' ''Act Act Act' ''

in finAct Proc Proc Proc Act ,

where
inAct is the initial action, which initiates execution of subsequent processes, finAct –is

the final action, {Proc} is the sequence of processes that occur in the operation protocol.

1.1. A methods of contradictions detect that based on phased comparing

 the chronological sequence of protocol states

The suggested method is basing on finding all specification formalisms that containing the

statement for consistency checking.

The method of consistency checking comprises the following steps:

1. The definition of all atomic statements that take place in specification requirements forming.

Let М(S) is a set of atomic statements for some ASCR formalism
r 0F (t). This formalism

contains a specification requirement (0t) that must be checked on contradiction. The predicates

Proc and Act , Pr oc S ,Act S that forming requirement can have different nesting levels.

The nesting characterized by the depth of occurrence of the events and processes that make this

claim, r . The sequence ordering r({Proc }&{ Act }) determines the depth of requirement occur-

rence.

2. Search the specification requirements that contain a checking statement.

Let М(S,n) the set of all finding formalism that contain the checking statement F(t) ,

rМ(S,n) F (t). In this case, the set rF (t) contains all possible protocol specification re-

quirements that containing the checking statement. Each finding statement can have different nest-

ing level r within the containing formalism F(t) .

ISSN 0485-8972 Радиотехника. 2015. Вып. 183 55

3. The foundation a logical connectivity “precondition – events – postcondition” for all finding

statements.

A formula А(p) is creating for all finding formalisms F(t) that contain the finding state-

ments, t M(S,n) . А(p) defines direct processes following (after action). А(p) indicates

that every states
0 1 2 rP : p ,p ,p ,...p , P Proc S , has a following

|S|2 states

1 2 3 rQ : q ,q ,q ,...p , A Act S , where {q } S,{ p } S . The logical connectivity between

q p determine in [6, 7].

A formula B(p) is creating for all finding formalisms F(t) that contain the finding state-

ments, t M(S,n) . B(p) defines direct processes precedence (before action). B(p) is an in-

verse to А(p) . Evident that states
1 2 3 rQ(B): p , p , p ,...p directly precede the

states
1 2 3 rQ(A): q ,q ,q ,...q .

4. The check of consistency of finding statements.

It is assumes that the specification is considered checked statement true: all the action se-

quences, which are its components, are true. Let found the first statement
1F(t) , such that

1S (S,n) . Define the boundaries of the statements М(S,n),
r 1A(F (t)) and

r 1B(F (t)) .

Where
log .link

r rВ(F (t)) А(F (t)) . Thus, the formation of the total formalism,

r 1 0F (t)|t t is possible if and only if for all pre- and post-conditions included in М(S,n)

and form a logical sequence, definite statement relevant specifications for each elementary conjunc-

tion uniform depth r does not result 0. The consistency checking implemented for all formalisms,

which contains the desired statements

n

r

i 0

F (i) 0 . If the result that having a value 0 is found at

step r , it means that step
r 1p contain inconsistency.

1.2. A methods of contradictions detect of specification requirements that based

 on analysis of protocol graph

Search and contradictions identification can also done by analysis of reachability tree for

graph of protocol states.

maxrG(S) is a bipartite directed graph of protocol states:

maxrG(S) C,T , (2)

where C is a set of vertices of graph, C { Act } and T is a set of arcs, T {Proc } .

The suggested method comprises the following steps:

1. The vertices set formation.

Let
0M(C) a set of vertices that contains all the possible states of the specification formal-

isms. Moreover are all the possible requirements of the specification, containing the statement and

form a set nM(C) , where n the number of finding statements.

2. Formation of the set transitions.

3. Definition of the transitions sequence that lead to the final state.

As a final state selected last state of checking formalism
max0 rG (S) . The set of active vertices

of the graph, leading to the final state
max

'

rG (S), It forms the core states of the graph, which in-

cludes all the specifications found formalisms
maxrG(S) . The following statement feasible at the

same time: if
max

'

rG (S) the core of the set of possible states of the graph r max rG(S) F (t)) ,

 ІSSN 0485-8972 Радиотехника. 2015. Вып. 183 56

then for each chain of states 1 2 rq,q ,q ,...q' from
max

'

rG (S) exists subgraph G(S) , where feasi-

ble formula
rF () , that contain the chain coinciding with the chain of states 1 2 rq,q ,q ,...q'

5. The check of finding requirements contradiction.

Let there are two subsets F'(t) and F"(t) that belong to M(F(t)) , where

В(F(t))= F'(t) and A(F(t))= F"(t), the A(F(t)) defines direct processes following (after action).

B(p) defines direct processes precedence (before action).

Search and consistency check is carried out by constructing a tree reachable [] to set the states

of the graph that belong to F'(t) and F"(t) consiquently.

The forming F'(t) can be represented as Q0 = В(
0F (t))), Q1 = Q0 В(

0F (t))), …, Qi+1 =

Qi В(
iF(t))). The forming F"(t) can be represented as Q1 = Q0 A(

0F (t))), …, Qi+1 = Qi

A(
iF(t))).

The existing only one active label in the states of graph is a prerequisite for the consistency

check. If the contradiction is not found, it should meet the following statement. Each state

from
rF '(t) is reachable. This implies that

rF '(q) 0 and kernel of
rF '(t) is reachable for each

state.

Thus, the formalism of OpenFlow protocol specification does not contain contradictions, if

and only if when there is a finite set of transitions
rF(t) F (t) leads to final state. Nesting

level of each position corresponds to r . If the graph is cyclic, then none of the cycles must not con-

tain empty subcycle.

2. The research result

Analysis of the various versions of the OpenFlow protocol specifications showed that the con-

tradictions within the same specifications often occur in the process of modifying or removing the

forwarding tables. The contradiction in the requirements that consist processes of automatically de-

lete table records is the reason of route loss and additional time spent on its recovery.

Flow table modification messages can have the following types [8]:
{ OFPFC_ADD, /* Add new flow */

OFPFC_MODIFY, /* Modify all input flows*/

OFPFC_MODIFY_STRICT, /* Modify the FlowTable entries that

strictly corresponding to the standard and priority.*/

OFPFC_DELETE, /* Delete all input flow */

OFPFC_DELETE_STRICT /* Delete the FlowTable entries that

strictly corresponding to the standard and priority.*/ };

The lack of strict definitions of functions for listed above messages is a significant disad-

vantage. Without STRICT appended, the wildcards are active and all flows that match the descrip-

tion are modified or removed.

For non-strict MODIFY and DELETE commands that contain wildcards, a match will occur

when a flow entry exactly matches or is more specific than the description in the flow mod com-

mand. For example, if a DELETE command says to delete all flows with a destination port of 80,

then a flow entry that is all wildcards will not be deleted.

MODIFY and DELETE commands formalized by ACSR can be represent as follows:
i

j

v.entry v.eng _ port _80

i i

v.entry v.eng _ port _80 v.entryn v.eng _ port _8

i j

OFPFC _ DELETE : Receive(OFPFC _ DELETE,1).Find(T ,entry ,eng _ port _ 80)

Delete(entry ,eng _ port _ 80) Delete(entry ,eng _ port _ 80)... 0

Wait(OFPFC _ DELETE,2)

 (3)

This statement can be has nested level r , maxr m* n , where m is a forwarding table amount,

n is amounts of entries in each forwarding table.

ISSN 0485-8972 Радиотехника. 2015. Вып. 183 57

However, a DELETE command that is all wildcards will delete an entry that matches all port

80 traffic. This same interpretation of mixed wildcard and exact header fields also applies to indi-

vidual and aggregate flows stats [8].

This statement can be represent as follows:
i

j

v.entry v.eng _ port _80

i i

v.entry v.eng _ port _80 v.entryn v.eng _ port _8

i j

OFPFC _ DELETE : Receive(OFPFC _ DELETE,1).Find(T ,entry ,eng _ port _ 80)

Delete(entry ,eng _ port _ 80) Delete(entry ,eng _ port _ 80)... 0

Wait(OFPFC _ DELETE,2)

. (4)

Let (3) is true, then all of its components takes the logical value “1”. Formed a set

A(F(t)) and В(F(t)) processes that lead to their changing is established:

i

i

v.entry v.eng _ port _80

j

v.entry v.eng _ port _80

i i j

M '(t) : Receive(OFPFC _ DELETE,1) Delete(entry ,eng _ port _80),

Find(T ,entry ,eng _ port _80) Delete(entry ,eng _ port _80).

i

i

v.entry v.wildcard

j

v.entry v.wildcard

i i j

M ''(t)) : Receive(OFPFC _ DELETE,1) Delete(entry ,*80),

Find(T ,entry ,wildcard ,*80) Delete(entry ,*80).

When the consistency check revealed that one string of the set F(t) receive the result “0”.

That demonstrates the appearance of contradiction in the finding requirements.

To construct a state graph protocol that make up a definite statement, and the next the con-

sistency check of the method of construction of the state graph is necessary to generate two sets

F'(t) and F"(t):

i i

i r i i r

F'(t) : Receive(OFPFC _ DELETE,1)

Find(T ,entry ,eng _ port _80)(Receive(OFPFC _ DELETE,1))

(delete(entry ,eng _ port _80)) (Find(T ,entry ,eng _ port _80) (Receive(OFPFC _ DELETE,1)))

Wait(OFPFC _ DELETE,2)((delete(e i r i intry ,eng _ port _80)) (Find(T ,entry ,eng _ port _80)

(Receive(OFPFC _ DELETE,1))))

i i

i r i i r

i

F''(t) : Receive(OFPFC _ DELETE,1)

Find(T ,entry ,wildcard ,*80)(Receive(OFPFC _ DELETE,1))

(delete(entry ,*80)) (Find(T ,entry ,wildcard ,*80) (Receive(OFPFC _ DELETE,1)))

Wait(OFPFC _ DELETE,2)((delete(entry r

i i

,*80))

(Find(T ,entry ,wildcard ,*80)(Receive(OFPFC _ DELETE,1)))).

In this case, the graph
max

'

rG (S) involves the sets F'(t) and F"(t) combining. The set

combinations are considered as a core of the set of statements involved in protocol specifications

(Fig. 1).

 ІSSN 0485-8972 Радиотехника. 2015. Вып. 183 58

Fig. 1 Graf of protocol states

Reachability tree analysis of given graph
max

'

rG (S)is shows that a finite set of transi-

tions
rF(t) F (t) , coming to a final state, does not exist. Thus, the statements of specification

contain a contradiction.

Conclusion

Contradictions in requirements of OpenFlow protocol specification may occur in the process of
its modifications or additions. The contradictions occurrence caused by absence of formalization
and systematization of the process of formalization of the specification. The task of contradictions
finding is greatly complicated because the most of protocol specifications are set on a subset of nat-
ural language.

Application of different methods of specification requirements formalization give ability to
avoid or eliminate the contradictions appearance. The algebra of communication shared resources
suggested as a tool for formalizing of protocol specification requirements. Its expressive power al-
lows to describe the possible behavior of the protocol.

The suggested method of contradictions finding based on the formation of the set of atomic
statements of specification by ACSR formalisms and phase comparison of the chronological se-
quence of their occurrence. A method that is based on the construction and analysis of the states
protocol graph also suggested in the paper. This method allows to generate a sequence of actions
that lead to contradictions.

List of references 1. Software-Defined Networking: The New Norm for Networks // Open Networking
Foundation, 2012. Available at: https://www.opennetworking. org/images/stories/ downloads/sdn-
resources/white-papers/wp-sdn-newnorm.pdf 2. James Rumbaugh, Michael Blaha, William
Premerlani,Frederick Eddy, William Lorensen: “Object-Oriented Modeling And Design”, Prentice Hall,
New York, 1998 3. ITU-T recommendations. Series Z. Languages and general software aspects for telecom-
munication systems, Geneva, 2000, 246 p. 4. Reference Manual of the LNT to LOTOS Translator. Version
6.3. IRNIA, 2015 – 137. 5 A. Pnueli. The Temproal Logic of Programs. In Proc. of Foundations of Computer
Science, p. 46-57 6. Patrice Brkmond-Grkgoire, Insup Lee A Process Algebra of Communicating Shared
Resources with Dense Time and Priorities University of Pennsylvania, Philadelphia, PA, 1994 – 49 p. 7. G.
Engels, J. M. K¨uster, L. Groenewegen, and R. Heckel. Amethodology for specifying and analyzing con-
sistency of object-oriented behavioral models. In V. Gruhn, editor, Proceedings of the 8th European Soft-
ware Engineering Conference (ESEC), pages 186–195. ACM Press, 2001. 8. OpenFlow Switch Specification
(Series) [Electronic resource] // Open Networking Foundation., 2014. Available at:
https://www.opennetworking.org/sdn-resources/onf-specifications/openflow

Харьковский национальный
университет радиоэлектроники

Поступила в редколлегию 27.11.2015

https://www.opennetworking.org/sdn-resources/onf-specifications/openflow

