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Abstract — The paper is devoted to estimation of the
effectiveness of the use of modern convolutional neural networks
for face detection. On standard open datasets, learning of neural
networks and comparison of the effectiveness of their functioning
are carried out. Conclusions are drawn regarding the practical
application of the neural networks for detecting faces on digital
photographs.
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I. INTRODUCTION

The problem of face recognition has become very
important in the field of biometric identification. Facial
detection in digital images has many applications in solving
real-life problems, including entertainment, healthcare,
security, etc. [1]. To this day, there are a lot of approaches and
models for solving these tasks. Although older algorithms,
such as the Viola-Jones algorithm perform facial recognition
tasks fast and accurately in close to optimal conditions, their
performance diminishes when input images are distorted, too
dark or too bright, or when faces appear in the image under
different angles [2]. The development of deep learning and
deep convolutional neural networks (NN) allowed researches
to invent complex neural network-based machine learning
algorithms which, when properly trained, perform much better
and reliably on images with faces in different environments,
angles and lightning conditions [2]. Also, each of the emerged
neural network-based algorithms has its features and
characteristics which determine its efficiency when applied to
different types of applications.

The problem of facial recognition is a subset of a wider
problem, object detection. There are two families of neural
network-based algorithms that are used most often for object
detection: R-CNN algorithms [3], that use Regional Proposal
Networks (RPNs) to identify areas in the image where an
object may be, and YOLO (an acronym for you only look
once), which is faster, however less accurate, algorithm than
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R-CNN [4]. There are other approaches and algorithms to
object detection, however, the two approaches above are the
ones that saw wide usage and application in the industry. Each
of these approaches is also incrementally enhanced to improve
accuracy and address their respective shortcomings.

There is also a NN that was developed specifically to solve
the facial recognition problem, MTCNN. This model consists
of three separate NN models, the P-Net, R-Net, and O-Net,
which determine not only the bounding box around the face
but also the location of eyes, nose, and mouth [5].

In this paper, we compare the productivity of fast NN
models: YOLOv3 and MTCNN. We use transfer learning to
train the YOLOvV3 model on the Wider Face dataset using pre-
trained weights and compare it with the fully trained MTCNN
model. For comparison, we use various object detection
metrics, such as Intersection over Union (IOU), precision,
recall, and others, which are described in the following
sections. We do not include R-CNN family algorithms in the
comparison because the training of these algorithms is
computationally expensive and we lack computational
resources to fully train them.

The dataset we are using is the Wider Face dataset [6].
This dataset was assembled to benchmark different face
detection algorithms. It consists of images of people in
different situations, the faces on these images are located in
different areas, angles and lighting conditions.

The reliable performance of facial recognition algorithms
is important for the functioning of modern informational and
communicational systems [7-10].

II. NEURAL NETWORK MODELS

So, in this paper, we compare two NN architectures for
face detection — YOLOv3 [11] and MTCNN [5].

YOLOV3 is the further development of the original YOLO
architecture. Original YOLO was developed with speed and
efficiency in mind, because at that time the state-of-the-art
model for object detection, R-CNN, was too slow in training
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and inference to use it in such tasks as real-time detection.
However, original YOLO, while being faster and more
resource-efficient, was less accurate than R-CNN. Because of
this, further iterations of YOLO development improved
accuracy but became significantly slower.

Before YOLO, R-CNN models used a pipeline of two
different algorithms, one for generating regional proposals, i.e.
areas where an object might be, and the other one to determine
whether the proposed region includes an object the network is
trying to find.

Original YOLO introduced the way to unify two of these
algorithms into a single neural network [4]. It was done by
dividing the image into a square grid S X S. Each cell is
responsible for predicting B bounding boxes and a confidence
score for each of those boxes.

If there is no object in the cell, the confidence score should
be zero. Otherwise, it should be equal to the intersection over
union (IOU) between the predicted box and the ground truth.
Each bounding box consists of 5 predictions: x, y, w, h and a
confidence score, which was described earlier.

The x and y coordinates are relative to the cell, and w and
h are relative to the width and height of the image
respectively. Each cell also predicts C class probabilities,
where C equals to the number of object classes the network
tries to detect.

Original YOLO network architecture consists of 24
convolutional layers and 2 fully connected layers. Next
improvement, YOLO v2, introduced a custom architecture
darknet-19, a 19-layer network supplemented with additional
11 levels for object detection. However, even with these
additions, the improved architecture still lacked important
elements that are widely used in modern state-of-the-art neural
networks for computer visions, such as residual blocks, skip-
connections and upsampling. The next generation of YOLO,
YOLOV3, incorporates all of these.

YOLOV3 uses a variant of Darknet architecture (fig. 1),
with a 53-layered network, together with 53 more layers for
detection. This greatly improves the accuracy of the trained
models, however, this also substantially increases the time
needed for training and inference. One of the most interesting
features of YOLOV3 is that it makes detection on 3 different
scales. Because of this, YOLOvV3 detects small objects much
accurately than older versions of YOLO.

YOLO is a neural network architecture for performing
general object detection, i.e., detecting as many different
object classes as needed. However, in this paper, we compare
different neural network architectures for face detection. For
this task, there is a specialized neural network architecture,
MTCNN [5].

MTCNN stands for Multi-task Cascaded Convolutional
Network (MTCNN). Instead of being a single neural network
model as YOLO, MTCNN includes three neural networks,
called P-Net, R-Net and O-Net (fig. 2). It returns not only the
bounding boxes of detected faces but also 5 facial landmarks:
2 for eyes, | for a nose and 2 for a mouth.

MTCNN works the following way. Firstly, it creates an
image pyramid of multiple scaled versions of an input image.

Type Filters Size Qutput
Convolutional 32 3x3 256 x 256
Convolutional 64 3x3/2 128 x 128
Convolutional 32 1x1
1x| Convolutional 64 3x3
Residual 128 x 128
Convolutional 128 3x3/2 64 x64
Convolutional 64 1x1
2x| Convolutional 128 3 x3
Residual 64 x 64
Convolutional 256 3x3/2 32x32
Convolutional 128 1 x1
8x| Convolutional 256 3 x3
Residual 32 x 32
Convolutional 512 3x3/2 16x 16
Convolutional 256 1 x1
8x| Convolutional 512 3 x3
Residual 16 x 16
Convolutional 1024 3x3/2 8x8
Convolutional 512 1x1
4x| Convolutional 1024 3 x 3
Residual 8x8
Avgpool Global
Connected 1000
Softmax
Fig. 1. Darknet 53 architecture [11]
o _ PN«
(\T;’\ ’3\\’3 Comeany (Com) I::::siticalion

I |
| IxIx2 l
boundingbox |

I ‘: ‘ regression
| 1x4 |
I

input size  5¢5v10 3x3x16  1x1x32 ‘ Facial landmark
| 12x12x3 localization
e L T S i R Pt xR0
_______ RN e
r Conv: 3x3  Conv: 3x3 Cony: 2x2 fully s son 1
| MP:3x3 MP: 3x3 connoct (1] face classification |

=
| ‘ =[ ['] bounding box
| 3 regression |
Facial landmark |
localization
10 |

| inputsize ¢y 1xo8

Axdx48 3x3x64 128
24x24x3

Com:33  Com:33  Com:3xd  Com:22 fully
MP: 33 MP: 3x3 MP: 22

|

| 2 I
0S|
| |

e DO INIRGE e 30U ‘m\] Focel knduck ocollzation

Fig. 2. MTCNN model architecture [5]

Then for of scaled images, it applies a sliding 12x12 kernel
with a stride of two. The portion of an image under the kernel
is passed to the first neural network, the Proposal Network (P-
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Net). P-Net returns the bounding box if it finds the face. It also
returns the confidence score for each of the bounding boxes.

After that, all P-Net outputs are collected and the bounding
boxes with low confidence scores are removed. Then all the
coordinates of bounding boxes are being unscaled to match the
original input size. However, at this stage, there is still a lot of
bounding boxes, so the Non-Maximum Suppression (NMS)
method is applied to remove redundant bounding boxes and
merge several closely located bounding boxes into one.

After that, the remaining bounding boxes are fed into
another convolutional neural network, the Refine Network (R-
Net). This network rejects a large number of region proposals
from remaining candidates and performs further calibration of
bounding boxes. After that, NMS is applied to the result once
again, rejecting false bounding boxes.

The final stage is similar to the second stage. The output of
the second stage is fed to the last network, the Output Network
(O-Net). This time, in addition to the bounding boxes, this
network outputs also locations of facial landmarks.

The neural networks mentioned above perform 3 tasks:
face / not face classification, bounding box detection and
facial landmark detection. For each of these tasks, there is a
corresponding loss function

Let = — (v log(p) + (1 - yf)(1 ~ log(p)). (1)

In the formula above p; is the probability with which the
input is a face, and y®® is the ground truth label. This is a
binary cross-entropy loss

L = |lgeer = vl @

The bounding box determination is a regression problem,
and for the loss function, we use simple Euclidean loss. In
formula 2, §2° is the ground truth bounding box, and y/°* is
the bounding box which is the output of the neural network

Lliandmark . "}»;ilandmark - l}andmarkllzh 3)

Y

The facial landmark detection is also the regression
problem, so the loss function for facial landmark detection (3)
is the same as the formula (2).

Both YOLO and MTCNN models are capable of doing
face detection. The main advantage of YOLO is that together
with face detection it can perform detection of any other types
of objects. This is useful if, for instance, you need to detect
faces together with road signs or automobiles. It is also useful
if you have to detect different types of faces, for instance,
faces with hats or sunglasses on. The main drawback of
YOLO in comparison with MTCNN is that YOLO requires
much more computational resources to be trained efficiently.

On the other hand, MTCNN can detect only faces.
However, it also performs facial landmark detection, which
YOLO doesn’t do. Although MTCNN uses 3 neural networks
instead of a single one in YOLO, its neural networks are less

complex and therefore require much less time and resources to
train. Also, MTCNN already ships with pre-trained weights,
so unless the problem requires fine-tuning the weights to the
specific dataset, no additional training is required.

The advantages and disadvantages of both models are
listed above. The rest of the paper will describe the experiment
and its results that show how both networks compare in terms
of face detection efficiency.

III. EXPERIMENTAL RESULTS ANALYSIS

For comparison of the two models, YOLO and MTCNN,
we will use the Wider Face dataset [6]. It is a face detection
benchmark dataset which consists of 32,203 selected images
from publicly available WIDER image dataset. The images in
the Wider Face dataset are diverse. As well as portrait images,
the dataset also contains group images, images from sporting
events, etc. The diversity of images helps us to compare the
performance of both algorithms under less-than-optimal
conditions.

Due to the hardware limitations and lack of computational
resources, in the experiment, we will use only the subset of the
dataset. We will use 10,000 images for training and 1,000
images for inference. The small size of the dataset will not
affect the experiment result significantly, because we will
apply transfer learning by using already pre-trained YOLO
weights. We are not going to train MTCNN because this
model is created specifically for face detection and already has
fully trained weights available.

We are using YOLOv3 and MTCNN model
implementations that use TensorFlow framework and Keras
library [12-14].

For comparison of two algorithms, we use the averaged
precision as a metric and precision/recall curves [15].

To calculate precision and recall, we must determine what
the true positive, false positive and false negative are in our
task. For this, we have to use Intersection Over Union measure
(IOU).

IOU is a measure that evaluates the overlap between two
bounding boxes. It requires a ground truth bounding box By,
and a predicted bounding box B,,. The formula for IOU (4) is
listed below

- area(BEnBEt)
Iov area(BpUBgt) S

In simpler terms, IOU is a fraction between an area of

overlap and an area of union (fig. 3).

We can use IOU to determine if detection is a true positive,
false positive, or a false negative.

If IOU is bigger than a threshold, the detection is correct
and therefore is a true positive.

If IOU is less than the threshold, the detection is a false
positive.

The detection is a false negative if no object was detected.

Using true positives, false positives and false negatives, we
can calculate the precision and the recall [15].
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Fig. 3. Intersection Over Union [15, 16]

IoU

Precision is the ability of the model to identify only the
relevant objects. It is the percentage of correct positive
predictions

TP TP

PreciSion = = = ——mm
TP+FP all detections

5)

Recall is the ability of the model to find all the relevant
cases (all ground truth bounding boxes). It is the percentage of
true positive detected among all relevant ground truths

TP TP
TP+EN  all ground truths ~

Recall =

(©6)

To illustrate the performance of the two models we use
Precision x Recall curves.

It is a good way to evaluate the performance of an object
detector as the confidence is changed by plotting a curve. The
model can be considered good if precision stays high as recall
increases.

To compare the two models, we use the Average Precision
metrics. We get average precision by calculating the area
under the curve (AUC) of the Precision x Recall curve [15].

We calculate metrics for both training and validation data.
For YOLO this can demonstrate if the network overfits during
training. For MTCNN, it is irrelevant, because we use an
already fully trained MTCNN model.

Below we list the experiment outcomes (tab. 1), and the
precision x recall curves for each experiment (fig. 4-fig. 7).

TABLE L.
RESULTS OF FEATURE POINTS DETECTING FOR FACE WITH TRANSFORMATION
YOLO MTCNN
Training dataset AP 32.55% 41.71%
Validation dataset AP 30.88% 38.35%

Below we list the inference time that was measured during
the experiment (tab. 2).
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Precision x Recall curve
Class: face, AP: 32.55%
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Fig. 4. YOLO training dataset precision x recall curve

Precision x Recall curve
Class: face, AP: 30.88%
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Fig. 5. YOLO validation dataset precision x recall curve
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Fig. 6. MTCNN training dataset precision x recall curve



Precision x Recall curve
Class: face, AP: 38.35%
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Fig. 7. MTCNN validation dataset precision x recall curve
TABLEIL
RESULTS OF FEATURE POINTS DETECTING FOR FACE WITH TRANSFORMATION
YOLO MTCNN
Training dataset
(10,000 examples), 978.45 2475
seconds
Validation dataset
(2,500 examples), 269.77 732.59
seconds

As we can say from the experiment outcomes and
precision x recall curves listed above, the MTCNN model
performs better and more accurately than the YOLO model.
MTCNN model was developed specifically for face detection
problems, while YOLO was developed as a general object
detection algorithm. MTCNN neural networks are also much
less complex than YOLO neural network.

Despite the fact that neural networks in MTCNN models
are much less complex than YOLO neural network, in the
inference the MTCNN model is about 3 times slower than the
YOLO model. This is because MTCNN includes 3 neural
networks and uses the Non-Maximum Suppression method.

The final conclusion we can make is that in most cases
MTCNN should be used for face detection tasks. YOLO
should be used when you have to detect other objects rather
than just faces or your dataset is very specific and you have to
use transfer learning to adjust the weights. Also, YOLO is
preferable when fast inference speed is required. In other
cases, MTCNN is a good solution for face detection tasks.

CONCLUSION

In this work, we compared two neural network-based
models applied to the task of face detection, YOLO and
MTCNN. We did not include another popular neural network-
based model Faster R-CNN into the comparison because we
lacked computational resources to train it properly. YOLO is a
network for general object detection, it can detect any objects,
not just faces. MTCNN is a model designed specifically for
face detection.

YOLOV3 is the latest iterative improvement to the YOLO
model. It contains a single but complex neural network that

requires a lot of computational resources to train. MTCNN
contains 3 much simpler neural networks, but the MTCNN
algorithm is complicated and performs a lot of transformations
on input data.

The experiment was performed using the Wider Face
dataset. The YOLO model was trained using pre-trained
weights. The MTCNN model was used with fully pre-trained
weights. Average precision and precision x recall curves were
used as comparison metrics.

The outcomes of the experiment show that MTCNN
performs better on the task of face detection. In most cases,
MTCNN should be used for face detection tasks. YOLO
should be used if there is a requirement to detect not only
faces but other objects as well, fast inference speed is
required, or if the dataset is very specific and transfer learning
has to be used to adjust the weights. The MTCNN model also
detects facial landmarks. This is useful for other advanced
facial recognition tasks, such as emotion recognition.
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area of overlap . TP - BipHe po3nidHaBaHHA 06’ekTa, IOU Binblue 3aaaHoro nopory

10U en of union FP - HeBipHe po3ni3aHaBaHHs 06’ekTa, IOU MeHLwe 3agaHoro nopory
. FN - Mmogenb He BuaABMna 06’exT, AKMN 3HAXOAUTLCS Ha 300pakeHHI

Precision =

Recall =

ToYHICTb | NOBHOTa

TP TP

TP + FP  all detections

TP TP

TP+ FN  all ground truths

YOLO, cepegHsi TouHicTb | MTCNN, cepeaHs TOYHICTb
TpeHyBanbHWU Habip AaHWUX 32.55% 41.71%
TecTtoBuUi Habip gaHnx 30.88% 38.35%
HaGip aanwx 3 86.52% 84.4%
onTUManbHUMKU yMoBaMu
Habip naHux 3 o o
HeonTuManbHUMKU ymoBaMu MR etk

YOLO, cekyHan

MTCNN, cekyHam

Yac poboTu Ha TpeHyBanbHOMY Habopi 978.45 2475
AaHuX
Yac poboTtu Ha TectoBoMy Habopi gaHux 269.77 732.59

Pe3ynbTat ekcnepumeHTy
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MMigcymMKkn ekcnepumMmeHTy

Mopgenb YOLO npautoe npnbnnsHo B ABa 3 NONOBUHOK pa3u weugwe moaeni
MTCNN

B ontumanbHux ymoBax, ePeKTUBHICTb 4BOX MOAENEeN € OAHAKOBO BUCOKOHD,
xo4a mogens YOLO gemoHcTpye Tpoxu BinbLuy noBHOTY, Hix mogens MTCNN
B HeonTumanbHux ymosax, mogens MTCNN npautoe Habarato ehekTuBHiLe
moaeni YOLO

B amiwanux ymosax, mogens MTCNN mae HeBenuky nepesary Hag MOAENIo
YOLO
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[akyto 3a ysary!
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