
Descriptor Neural Networks with Arbitrary 
Characteristic Index 

 
Hahanov V.I., Rutkas A.A. 

 
1 

Abstract – We consider a difference descriptor system and 
its modeling with the help of a neural network. The 
corresponding descriptor network is a special connection of 
dynamic and static neurons. The network configuration is 
defined by the Weierstrass’s normal form of regular matrix 
sheaf. 
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 descriptor control system is described by differential-
algebraic equations, and vector equation of the states 
of the system contains a singular matrix at the vector 

of derivatives [1]. A transition from derivatives to finite 
differences generates a vector difference algebraic 
equation [2,3]  

,...2,1,0k)),k(x(f)k(Bx)1k(Ax k ==++    (1) 
Here B,A  - square ( nn × ) matrices, and the criterion of 
the descriptor property of the system is the noninvertibility 
A ( 0Adet = ). If the characteristic pencil BA +λ   is 
regular 0)BAdet( ≡/+λ , then it turns to the normal form 
of K. Weierstrass [4], and resolvent  matrix-function  

1)BA( −+λ  exists for large λ  and satisfies  the power 
estimate [6] 

r,C)BA( 1p1 >λλ≤+λ −−             (2) 

The minimal integer 0p ≥  such that estimate (2) is 
valid is called the index of the matrix pencil BA +λ . Also 
we call the integer p  the characteristic index of system 
(1). If  the matrix A  is invertible, in particular when 

EA = , then the index 0p =  and system (1) is explicit 
difference system. Thus, if 1p ≥ , then system (1) is 
descriptor. 

In [5], there is considered a discrete neural network, 
which models descriptor system (1) of index 1p = . Here 
we construct and analyze an artificial neural network, 
which is described by equations (1) with arbitrary 
index 1p ≥ . It is natural to call the built network the 
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descriptor neural network of index p , (Fig. 1). Its 
construction is determined by the index p  and the normal 
form of the pencil of matrices BA +λ . Suppose that the 
matrices  B,A  in (1) have the block-diagonal normalized 
form (compare with [4, 5 and 6]) 
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The index p  of the pencil BA +λ  coincides with the 

nilpotency index of the matrix block H : 0H 1p ≠− , 
0Hp = . Here mE  designates single ( mm× )-matrix, J  - 

any ( mm× ) matrix. In the general case, the matrix H  can 
be a block-diagonal matrix, containing any amount of 
nilpotent Jordan cells of sizes psk ≤ , so that at least one 
cell has the maximum size p and ∑ −=

k
k mns . To find a 

model of neural network structure, it is enough to consider 
the case of mnp −=  such that H  is a unique nilpotent 
Jordan cell with size p . In accordance to the approach in 
the theory of neural networks there are nonlinear vector 
functions )x(fk  in (1) are chosen in the form 

))k(Wx()x(fk Θ+Ψ= , where elements ikw  of the 
matrix W  are interpreted as synaptic weights, components  

)k(iΘ  of the vector )k(Θ  - as depositions (external 
influences at k -th step). In accordance to breaking up of 
matrices on blocks (3), the vectors Ψ,x  have the 
representations: 
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Then the vector equations of the states (1) are rewritten 
in the form: 

))k()k(Wx()k(Jv)1k(v Θ+ϕ=++        (4) 
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))k()k(Wx()k(x nn Θ+ψ=             (6) 
The main dynamic block (4) of m  equations can be 

realized as Hopfield vector dynamic neuron with 
additional block of multiplying by the matrix ( J− ). 

A 
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In Figure the corresponding dynamic subnet with 
entrance tr

m1 )]k(x),...,k(x[)k(v =  and output 
tr

m1 )]1k(x),...,1k(x[)1k(v ++=+  is represented in the 
case of nonmutual activation functions 

Θ+=ψ=ψ Wxu),u()u( iii , depending on the 
component iu  of the vector of internal state )k(uu = . 
Therefore, m Hopfield classical dynamical neurons are 
used in the network realization of equations (4). 
 

 
Descriptor network of index mnp −=  

The descriptor part of the neural network in Figure 
transforms the part ))k(x),...,k(x( n1m+ of the entrance 
vector into the vector )0),1k(x),...,1k(x( n2m +++ , which 
is a result of the left shift of the vector 

))1k(x),...,1k(x( n1m +++ . For this purpose, the special 
connection of )1mn( −−  dynamical neurons and 
McCuloch-Pitts static neuron with activation function nψ  is 
used. Static (or algebraic) equation (6) has the following 
form for ( 1k + )-st step:  

0)1k(x))1k()1k(xw( nn
n

1j
jj,nn =+−+Θ++ψ ∑

=
   (7) 

Under the conditions 

0w 1n,n ≠+ , 0
du

)u(d

n

nn ≠
ψ , ,Run ∈∀  

equation (7) can be explicitly solved in the components 
 )]1k)(;x,...,x;x,...,x[(F)1k(x nn2mm11m +Θ=+ ++     (8) 
The dotted block F  in Fig. 1 corresponds to solution 

(8). Equations (4),(5),(8)  determine the  recurrence 
operator )1k(x))k(x(S 1k +=+ . The operator 1kS +  
depends on the parameters )1k(),k( +ΘΘ  and it is defined 

on the manifold )}k(x{k =Λ  of vectors nR)k(x ∈  which 
satisfy the scalar equation (6). 
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