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Abstract— This paper presents investigation of plasmonic
properties of coupled metal nanowires arranged to form a finite
linear chain. Coupled plasmon resonances of such structures
embedded into dielectrics with different dielectric permittivity
are studied. The main goals of the paper are to validate true
potential of a plasmon nanowire-based structure in sensing
applications and to reveal optimized configurations with
narrowband plasmonic resonances and enhanced sensitivity.
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I. INTRODUCTION

In recent years nanooptics and nanotechnology have been
considered as a priority in science and technology. The
development of nanofabrication together with new
achievements in nanotechnology are stimulating the interest in
the propagation and scattering of electromagnetic waves in
metallic nanostructures.

Plasmonic structures and their optical fields have been the
subject of significant interest in recent years. Using resonators
composed of negative permittivity materials such as plasma
can form the basis of effective small-size antenna elements
[1]. Plasmonic structures of different shapes (nanowires,
nanorods, nanospheres, nanoshells) are provided by various
fabrication techniques. The silver nanowire structure is a
candidate for key components in future ultracompact photonic
devises [2, 3]. It can be considered as a plasmon biosensor to
monitor tiny biomolecular concentrations [4], as a novel
modulator to control the intensity of the transmitted surface
plasmon polaritons through a nanowire array [5] and as a
nanolaser [6, 7]. Plasmons have been also explored for their
potential in single molecule detection and biomolecular
interaction studies.

Theoretical studies of modern nanoscale devices require
highly accurate simulations that are complicated by the open
nature of the structures. It leads to very long simulation times
if using purely numerical approaches. Alternatively, analytical
solutions can give conceptually informative solutions and
provide valuable insight but they can be obtained, as a rule,
only in very simple canonical cases. In this paper, we use
numerical-analytical schemes combining analytical and
numerical solutions together to qualitatively reveal the
underlying physical principles involved.

II. MATHEMATICAL BACKGROUND: FORMULATION AND
SOLUTION

In this paper, we consider coupled localized surface
plasmons (SPs) in nanowires forming a finite linear chain
(Fig. 1). In computations, we assume that the radius of each
wire is 20a = nm and the separation distance between them
is d . The metal refractive index pn is taken from the
experimental data of Jonson and Christie [3] for bulk silver,
permittivity of outer space is 1n , and time dependence is i te  .

Fig. 1. Schematic diagram of the cross-section of the considered structure: a
finite linear chain of N nanowires.

To characterize the fields, the local systems of polar
coordinates associated with each wire are introduced. The
solution is presented in the form of sum of the series in local
azimuth angles,
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Here 1k c −= ⋅ , c is light velocity in a vacuum, N is
number of nanowires in chain, equation (1) presents internal
field for each particular wire, while (2) characterizes external
field, global polar coordinates ( , )  are associated with the
( , )x y the Cartesian system.

The coefficients sA and sA are found from the boundary
conditions requiring the continuity of the tangential
components of the total electric and magnetic fields at each
surface. Using the addition theorem for the Bessel functions,

pn

1N a − =

1N −

pn

N a =

N

d

...
pn

2 a =

21

1 a =

pn

d

...
y

x

1n

O

978-1-5090-1956-4/16/$31.00 ©2016 IEEE 192

mailto:nstognii@gmail.com


2016 International Conference on

Mathematical Methods in Electromagnetic Theory

we arrive at an infinite set of algebraic equations that can be
truncated in order to provide a controlled numerical precision.

The solution of the plane wave scattering problem for a
linear chain of silver nanowires was obtained in [4]. In this
paper, we concentrate on deriving the formulas for
eigenfrequencies, i.e. we solve the eigenvalue problem with
zero incident field. Generally, the plasmonic eigenfrequencies
of the linear chain are roots of the N-block matrix determinant
equation. With growing of N the solution of the equation
becomes more complicated. However, the problem can be
simplified using the following observations. The structure
under consideration has two axes of symmetry that causes four
families of coupled plasmon natural modes. They can be
classified as EE SPs with field patterns symmetrical (even)
with respect to the x and the y axes, EO with field patterns
symmetrical (even) with respect to the x -axis and
antisymmetrical (odd) with respect to the y -axis ), similarly,
OE ( x –odd; y -even), OO ( x –odd; y -odd). Here we follow
classification proposed in [9,11,12] for eigenmodes in thin-
disk photonic molecules.

Fig. 2. Four classes of symmetry of the natural-mode field: EE ( x -even, y -
even), OO ( x -odd, y -odd), OE ( x -odd, y -even), EO ( x -even, y -odd).

Fig. 2 shows the classification scheme of possible SP
mode symmetry classes in a finite linear chain. For each
symmetry class the eigenfrequency equation can be simplified
and written in the following form:
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here 1,... , 1,... 2m N p N= = if N is even and
1,...( 1) 2p N= + if N is odd,
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In ( , )p j
msW , we take the sign " "+ for the x -even SPs and

" "− for the x -odd SPs. We have to stress that last terms in
(3)–(6) appear only for odd number of wires in a chain.

Finding the eigenvalues is equivalent to the computation of
zeros of the determinants of derived matrix equations (3)–(6).
They are the Fredholm second kind matrix equations and
hence can be truncated so that approximate solution will
converge to exact solution with increasing the truncation
number. The necessary truncation number is determined by
the wire radii, the distance between them, and the desired
accuracy. This is because for more accurate description of the
fields, higher-order multipole terms of (1), (2) should be taken
into account for closely spaced wires. In this study the
truncation number N = 20 of each of N x N blocks was used to
provide the 410− accuracy.

Note that for distant wires with d a> the influence of the
higher-order series terms become negligibly small due to
decaying character of the Hankel functions.

III. NUMERICAL RESULTS AND DISSCUSION

Coupled dipole plasmons of a linear chain of nanowires
are the symmetric and asymmetric combinations of plasmons
of individual wires. Here, the coupled dipole plasmons with
even symmetry fields with respect to both axes can be viewed
as the transverse opposite-phase plasmons.
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Fig. 3. The near-field patterns of (a) dipole and (b) quadrupole EE coupled
localized SPs for six nanowires of a linear chain ( 20d = nm).

Fig. 4. The wavelength scans of SCS of coupled silver nanowires of a linear
chain for different values of permittivity of environment ( 350d = nm).

Dipole EO plasmons are transversal in-phase ones, OE and
OO are in-phase and opposite-phase longitudinal plasmons,

respectively. Total number of coupled dipole plasmons in a
finite linear chain of N nanowires equals to 2N (for details see
[10]). Similar combinations of localized SPs exist in the
coupled metal wires of a cluster with triangular or square
configuration [10-13].

Among the possible coupled plasmons, there exist the
plasmons with completely symmetrical fields with respect to
all the axes of symmetry (EE). Fig. 3 presents near-field pattern
for (a) dipole and (b) quadrupole EE coupled plasmons of six
nanowires. The orientation of their dipole moments is shown in
the insets.

Fig. 5. The magnetic near-field of coupled silver nanowires of a linear chain
for separation distance 5d = nm ( 1 1n = ): (а) 3N = , 340.5 = nm,
(b) 4N = , 340.2 = nm, (c) 5N = , 340 = nm, (d) 7N = , 339 = nm.

Most of these plasmons are ‘dark’ ones that do not couple
efficiently to an incident plane wave. Fig. 4 presents the
scattering cross section (SCS) of a linear chain ( 320d = nm).
Illumination direction is shown in the inset. In this case
‘bright’ plasmons are exited. For a linear chain, the ‘bright’
coupled plasmons are opposite-phase (EE) plasmons and
longitudinal in-phase (OE) plasmons, and the ‘dark’ plasmons
are transversal in-phase (EO) coupled plasmons and
longitudinal opposite-phase (OO) plasmons. The shift in the
resonance wavelength (  ) of the opposite-phase plasmon
exceeds the corresponding value for the longitudinal in-phase
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plasmon and reaches a maximum when the separation distance
between the wires is approximately equal to the wavelength.

The shift of the plasmon resonance of the opposite-phase
plasmon is observable from 342 = nm to 351 = nm for
four nanowires and from 345 = nm to 356 = nm for six
nanowires while the refractive index of environment changes
from 1 1.2n = to 1 1.3n = (see Fig. 4 (a)). The shift of the
plasmon resonance of the longitudinal in-phase plasmon is
observable from 353 = nm to 360 = nm for four
nanowires and from 354 = nm to 363 = nm for six
nanowires while the refractive index of environment changes
from 1 1.2n = to 1 1.3n = (see Fig. 4 (b)).

In the gap between two or more nanowires, it is possible to
obtain strong field concentration (hot spots) at the plasmon
resonance wavelengths. Fig. 5 presents the magnetic near field
patterns of coupled silver wires of a linear chain for the
separation distance 5d = nm. These field patterns reveal the
opposite-phase plasmons. We see that with increasing of wires
number the amplitude of the electromagnetic field in hot spots
increases, while the position of strong concentration area
depends on the number of wires in the chain.

Fig. 6 shows the scattered magnetic far-field angular
patterns of coupled silver nanowires of a linear chain for the
separation distances 100d = nm and 350d = nm. The
frequency of the incident field coincides with the
corresponding plasmon resonance frequency. The direction of
the plane wave is shown in the inset. With increasing the
number of wires, the scattered field collimation occurs in a
narrow shadow beam, and a decrease of the separation
distance lowers the side and rear lobes.

Fig. 6. The scattered magnetic far-field angular patterns of coupled silver
nanowires of a linear chain ( 1 1n = ): (a) 100d = nm and (b) 350d = nm.

CONCLUSIONS

The plasmonic properties of the coupled silver nanowires
arranged in finite linear chain have been analyzed. Hybrid
plasmonic modes of the coupled silver nanowires of such
configurations have been studied. Maximum shift of the
plasmon resonance peak in the SCS is observable for the
excitation of the opposite-phase coupled plasmons of silver
nanowires. It was found that, in a linear chain of silver
nanowires, the opposite-phase coupled plasmons have the
maximum sensitivity to the changes in the refractive index of
the environment, and this sensitivity increases with the number
of wires in a finite linear chain.
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