MiHICTEPCTBO OCBITH 1 HAYKH Y KpaiHU

XapKiBChbKUM HAIlIOHATBLHUN YHIBEPCUTET PaJAi0CIEKTPOHIKH

DaKyJIbTET [ndokomyHikaiii
(ToBHa Ha3Ba)
Kadenpa [ndokomynikaiiitnoi inxkeHnepii imeH1 B.B. [lonoBcbkoro

(ToBHa Ha3Ba)

KBAJII®IKAIIIMHA POBOTA
ITosicHIOBaJILHA 3alIUCKAa

PiBeHb BUIIIOT OCBITH IPYTUN (MariCTepChbKuii)

MeToa TecTyBaHHS 3aXUCTY BIJI IPOTrpaM-BAMArayiB HA OCHOBI HABYAHHS 3
HIAKPIUICHHSIM

A method for anti-ransomware testing based on reinforcement learning
(Tema)

Bukonas:
CTYIEHT 2 KypcCy, Tpynu AMC3Im-20-1

ben I'vppam Moxame Taiied

(pi3BHLIE, iHILIATHN)

CreniaibHICTb: 125 KibepOesneka
(xox 1 TOBHA Ha3Ba CIIELiaJILHOCTI)
Tun nporpamu: OCBITHbO-HAayKOBa

(ocBiTHBO-TIpO(eciliHa a00 OCBITHHO-HAYKOBA)

OcBiTHS TIporpama; _AMIHICTPATUBHUMA MEHEKMEHT

y cdepi 3axucTy iHpopmalti
(TToBHa Ha3Ba OCBITHROI IPOTPaMM)

KepiBauk:_goreHt kadpeapu AIIOT
Anamos O.C.

(mocana, pi3BUIIIE, 1HIMIATH)

JlonmycKaeTbes A0 3aXUCTY

3aB. kadeapu Jlememniko O.B.

(migmmc) (mpi3BHIIE, iHILIATN)

2022p.

XapKiBChbKUM HAIllOHATBHUN YHIBEPCUTET PAAI0CICKTPOHIKH

DaKyIbTET [ndokomyHiKaiii
(ToBHa Ha3Ba)
Kadenpa [ndokomynikamiitHoi iHxkeHepii imeHi B.B. IlomoBchskoro

(moBHa Ha3Ba)

PiBeHb BHUIIIOT OCBITH PYyTrUun (MariCTepChbKUii)
CoeranpHICTD 125 KibepbOesmeka

(xon 1 moBHA Ha3Ba)
Tumn nporpamu OCBITHHO-HAVKOBA

(ocBiTHRO-TIpO(EciiiHa a00 OCBITHRO-HAYKOBA)

OcBiTHa iporpamMa _ AIMIHICTPAaTUBHUN MEHEHKMEHT Y cdepi 3axucTy iHhopMari
(ToBHa Ha3Ba)

3ATBEPIIXXYIO
3aB. kadeapu

(migmmc)

« » 2022p.

3ABJAHHS
HA KBAJII®IKALINHY POBOTY

ctynenta ben ['yppam Moxamen Taiie6
(mpi3BHIIE, iM's, 10 6aTHKOBI)

1. Tema poboTu: MeTtos TeCTyBaHHS 3aXUCTY BiJl IpOrpaM-BUMaradiB Ha OCHOB1 HAaBYaHHS
3 MIKPITIICHHSIM.

3aTBEpKEHA HAKa30M I10 YHIBEPCUTETY Bix «26» Oepesns 2022p. Nel75 C13

2. Tepmin noma"Hs CTyA€HTOM poOOTH A0 ek3ameHaliitHoi komicii_31.05.2022p.

3. Buxigni qaHi 10 poOOTH: DOYATKOBUM KO JIOCIAIKEHHS JUIi MOJEAIOBaHHS,
JoKyMeHTailis python, gjokymenTaiiis tensorflow.

4. Tlepenik MUTaHb, 1110 TOTPIOHO OMpaIOBATU B pOOOTI:

1. Yu MOKeMO MU BUKOPHUCTOBYBATH IITYYHUM IHTEIEKT, 1100 3pOOHUTH IIpOrpaMy-
BUMarad CWJIbHIIIOKW? Un Moxke IIporpamMa-BUMarad 0O1iMTH IETEKTOPH IIPOrpaM-
BUMAarayiB, BAKOPHUCTOBYIOYH KOMOIHAIIIO BIIOMUX METOIIB?

2. 1o edextusHIime: Deep Q-Network yu npoctuii Q-Learning Algorithm s
HaBYaHHS TaKUX MOJEJIEH?

3. SIK BUKOpPUCTAHHS IITYYHOr'O 1HTEJIEKTY BIUIMHE a00 NOBMHHO BINIMHYTH Ha
IMOTOYHI METOJIM BUSIBICHHS IPOrpaM-BUMaravis.

5. Ilepenik rpadiuHoro marepiany 13 3a3HAYEHHSIM KPECJIEHb, IUIAKATIB, KOMIT IOTEPHHUX

3

umrocTpaniit: JleMoHcTpaliiHui Martepian y BUDISAL ppt-ipe3eHTailii; Habip TECTiB 13
BUKODHUCTAHHIM DI3ZHUX QJTOPUTMIB 13 PI3HUMHU rimepmapamMerpaMy Ul IIOHIVKY
HaMKpAaIoro MeToay 00Xoay aHTUBUMAraHb.

6. Koncynbrantu po3aiiniB podbotu

. Koncynbrant [To3Hauka KOHCYJIbTAHTA PO
HaiimenyBaHHs . -, .
po3IiTy (mocana, MPI3BATIE, IM’S, TI0 _BUKOHAHH3 PO3ALTY
0aThKOBI) (migmuc) (mara)
OcHoBHa non. AngamoB Onekcanap 9 31.05.2022
YaCTHHA CemeHOBUY (A /e
KAJIEHJIAPHUMH IIJIAH
Tepmin
No Hasga eraniB pobotu BUKOHAHHS [IpumiTka
eTariB po0OTH
1 | OrpumaHHs 3aBJaHHS 15.02.2022 Bukonano
2 | 30ip matepiaiB JJisl JOCIIIKEHHSI 28.02.2022 Bukonano
3 | Po3pobOka 1 po3ainy 19.03.2022 Bukonano
4 | Po3pobOka 2 po3ainy 02.04.2022 Bukonano
5 | Po3po0Oka 3 po3ainy 12.04.2022 Bukonano
6 | Po3pobka 4 po3ainy 23.04.2022 Bukonano
7 | Po3pobka 5 po3ainy 01.05.2022 Bukonano
8 | Po3poOka 6 po3ainy Bukonano
9 | Po3pobka 7 po3ainy Bukonano
10 | Odopmuenns kBamidikaiiifHoi poOOTH 10.05.2022 Bukonano
Jlata Bugadi 3aBaaHHs 15 mroToro 2022 poky
Crynenra o ben I'yppam Moxamen Taite6
(r[i,gIHHE) : . (ipi3BHLIE, iHIIIATH)
KepiBHuk po6oTu R nou. Anamos O.C.

(migrmuc) - i (mocana, pi3BUIIE, 1HIIIATH)

PEOEPAT

[TosicHtoBasibHA 3anucka — 89 c., KUIBKICTh TaONHIh — 1, KUIBKICTh PUCYHKIB — 34,

KUTBKICTB JKepen — 15.

IITYYHU IHTEJIEKT, MAIIMHHE HABYAHHS, DQN, DQL, QL,
HABYAHHA 3 IIIJKJIFOBAHHAM

MeTtoro JNOCHIKEHHS € BHSBICHHS MOMIIMBOCTI BHUKOPUCTAHHS HaBYaHHS 3
MIJKPITUICHHSIM 32 JIONIOMOTOK MOIIMPEHUX METOMIB It 00XOay BUSIBICHHS
aHTHWBUMAraHb.

Merta po6oTH nojsirae B TOMY, 1100 3HAUTH cIa0Ki MICIISl B TOTOYHHUX 3aXUCTaX BIJ
MporpaM-BUMaradiB i BUIIPABUTH X JI0 TOTO, K CTAHEThCS peanbHa ataka. Crouatky Oyje
BUKOpHUCTOBYBaTucs Q-HaBYaHHs, MOTIM Oyzae BuBueHuit anroputMm Deep Q-Network st
KpalllUuX pe3yiabTaTiB.

MeToro [JOCHIIKEHHSI € OIIIHKAa MOXJIMBOCTI 00XOAy 3axXHCTy BiJ Hporpam-
BHMaradviB 3a JIOTIOMOTOI0 KOMOIHAIlli BIIOMHX METOMIB. ATaka MmporpaM-BUMaradiB craja
Iy’Ke TMOMyJSPHO B OCTaHHIA piK, HOBMHM MpPO KOMMAHII Ta OKpeMHUX 0ci0, sKi
MOCTpaXXJAaJIM BiJ BTpaT uepe3 3apakeHHs MporpaM-BUMarayiB Ha iXHIX MallWHAaX,
novactimanu. JlocmiaHuku Oe3neku ayxke a00pe MNpauloioTh HaJ BUPIIIEHHAM 1
3an00iraHHsIM IUX aTakK.

VY 1poMy JOKYMEHTI MM MPOBEAEMO €KCIIEPUMEHTH, 11100 BUBYUTH JAEsKI MalOyTHI
MPUIOMH, SIKI XaKEpHU MOKYTh BUKOPUCTOBYBAaTU B MallOyTHbOMY, 100 OO1MTH 3aXUCT BiJ
nporpaM-pumaradiB. Jly’ke BaXJIMBO Mepea0aynTH Ta 3aXUCTUTUCA Bl TaKUX METOJIIB J10
TOro, SIK CTaHEThCs pealbHa araka. OCKIUIBKM aTakd NporpaM-BUMaradiB € mayxKe
KPUTHYHUMH, OCOOJMBO TOMY, 110 KOMIIaHIi OTpUMalid 3amudpoBaHi AYyKE BaKIUBI
JOKYMEHTH, 1 1€ Tipilie, SKIIO0 BOHU HE MAalOTh PE3EPBHUX KOIIM, JIOJU B OUIBIIOCTI
BUMAJKIB BTPA4YalOTh BaXJIUB1 0COOUCTI (pailnm, a B OUIBIIOCTI BUIAJIKIB BOHU HE MaIOTh

pEe3epPBHUX KOITii.

ABSTRACT

The report contains: 89 pages, 1 table, 34 figures and 15 sources.

ARTIFICIAL INTELLIGENCE, MACHINE LEARNING, DQN, DQL, QL,
REINFORCEMENT LEARNING

The object of the research is to discover the possibility of using reinforcement learn-
ing with common techniques to bypass anti-ransomware detection.

The aim of the work is to find weaknesses in the current anti-ransomware defenses
and fix them before a real-world attack happens. In the beginning Q-learning will be used,
then Deep Q-Network algorithm will be explored for better results. The research aims to
evaluate the possibility of bypassing anti ransomware protection using combination of
known techniques.

Ransomware attack becomes very populaire in the recent year, the news about com-
panies and individuals that suffered from losses because ransomware infection in their
machines becomes more frequent. Security researchers are doing very good job addressing
and preventing these attacks.

In this document, we will run experiments to explore some future techniques that
black hat hackers could use in the future to bypass anti ransomware protection, it is very
important to predict and defend against such techniques before a real-world attack hap-
pens. Since ransomware attacks are very criticial especially that companies got very im-
portant documents encrypted, and it is worse if they don’t have backups, individuals lose

in most cases important personal files, and in most cases, they don’t have backups.

TABLE OF CONTENTS

LIST OF ABBREVIATIONS ..ottt ettt ettt svee s aae e e ssaessnaeesnneeen 8
1 INTRODUCTION ...ttt ettt ettt e et e e seveestaeessseessseeessaeessseeensseesnseeensseenns 9
1.1 Problem StatemMENTeiieeiiieieiiee ettt e e et e e et e e e e e e e naeee e ennns 9
1.2 ATM aNd ODJECHIVES ..eieiiiiieeiiie ettt ettt e e e e e et e e e e abeeeenseeeeennns 9
1.3 ReSEArch QUESTIONS ...cccevviiiiiiieiiiieee ettt e e e e etr e e e e e e e aeraeeeas 10
1.4 Scope and HMITATIONSeoeiiiiiiiiiiiieieiiiieee et e e e e e e e sare e e e e e e eaaraeeeas 10
1.5 Ethical cONSIAETAtIONccoiiiiiiiiiiiie ettt e et e et e e e e e e eareeeeas 11
1.6 DOCUMENT OULIINEoiiiiiiiiieiiiie ettt et e et e e et e e e eenaeeeas 11

2 BACKGROUNDoooiiiiiiiieciie ettt ettt ettt e e st e e seaeesssaeessbeeesaeesnsaeesnseeensnas 13
2.1 Reinforecment [€arningccueeeeviiiiieiiiie ettt eette e et e e e e eeeeeeeas 13
2.1.1 Q-Learning AlOTTthimcooooiiiiiiiiiicee e 14
2.1.2 Deep Q-Learning.........cceeecuiiieiiiiiieieiiee ettt ettt et et e e e e 15

2.2 RANSOIMWATE ..ceeeiuiiiiiieeeeeeiiiteeeee ettt e e e eesiitteeeeessatbteeeeessaaateeeeeesaantbaeeeesssnnsaeeeesssnnsens 16
2.3 Reinforcement learning in CyDerSECUIILY........eeieruiieeriiiieeeiiiee ettt 16
BMETHOD ..ottt e ettt e ettt e e et ee e et e eeentaeeeensaeeennnneeeennns 18
3.1 Research methodcc.eeiieiiiiiiie e e 18
3.2 EXPOITMENL ..eeeniiiiiiieeeeciiiieee e e ettt e e e ettt e e e e ettt e e e e e e e tabaaeeesesanaaeeeesennsseseaeeennnsseeeas 19
3.2.1 ENVITONMENT SETUP ...vvvviiiieiiiiiiiee ettt e et e e e e e e e earra e e e e e eaeaneeeas 19
3.2.2. Tools and tEChNIQUES.......ccuuviiiiieeiiiiee e e 20
3.2.3 TSE CASES cuuevriieeeeeeiiiieee e e ettt e e e ettt e e e e ettt e e e e ettt e e e e eenaabbteeesssnnnbbaeeessennnreeeeas 23

A RESULTS <.ttt ettt e et e e et e e e et e e e sssaeeeensaeeeensseeeeensseeeennsseesenseeenns 26
4.1 EXPETIMENT TESUILS ...eeiiiiiiiiiiiie ettt e e e e e e e rr e e e e e e araeeeeeeennnes 26
4.1.1 Q-Learning: Test CASE 1ueiiiiiiiiiiiiieeeiiee et 26

4. 1.2 DOQN: TSt CASC 1 coiiiiiiiiiiiieiieeeeerr eeeeeeeaaaeaaaaaaanaes 31
4.1.3 Q-Learning TeSt CASE 2uueieeriiieeeiiieeeeiiieeeeiteeeeieeeeeiaeeeseereesesnsaeesenneeesennneas 35
4.1.4 DQL TESE CASE 2. oottt e e e e e e e e e e e eeeeeeeaeaeaeeeeeeeereseessessasassseaannes 37

5 ANALYSIS AND DISCUSSIONuiiiiiiieiteeteeeeiee et eieeesteeeieeesteeesveesvaeesnbeeenssae s 40

5.1 RESEATCH TIMITATIONS ..teevnneeeeeeeee et e e e e e e e e e e e e eae e e e e e eaeeeenaeeanneeeannns 40

5.2. Experiment analysis and diSCUSSIONc.eeeeeiiiieriiiiieeeiieeeriieeeeriree e e 40
5.2.1 Q Learning TeSt CASE L.....cccviiiiiiiiiiieeiieeeiiie ettt e e e 40
5.2.2 DQL TSt CASC L uuuuuiiiieeeieeiiieiieeeeeeeeeeeeeeeeee e e e e e e e e e e e e e aeaaeeeaes 41
5.2.3 Comparing DQL and QL test case 1 1eSultsceevvciiereriiiieeniiieeeiee e, 41
5.2.4 Q Learning teSt CASE 2eveeruiieeeriieeeeiieeeerieeeeeiteeeestteeeeseteeeessreesennseeesennneeeennns 42
5.2.5 Q Learning teSt CASE 2eeeruiieeeriieeeeiiieeeiiieeeeiteeeeeiteeeeereeeesareeesnnseeesenneeeennns 42
5.2.6 DQL VS QL IN €St CASE 2. ..eeiieiiiieeiiiiiiieeeeeeeeeeeeeeeeeeeetare e e e e e e e e e e eeeeaarannes 42

6 DISCUSSIONS OF EXPERIMENTS AND FINDINGS.......ccceoviiieieeiieeieeeee e 44

6.1 Research qUESTION 1.........uviiiiiiiiiiii e e 44

6.2 Research qUESTION 2.........uviiiiiiiiiiiie et e e e e e e e et e e e e e e aeaneeeas 44

6.3 Research qUESTION 3uuiiiiiiiiiieee e e e e e e e e e e e eaaee s 44

7 CONCLUSIUONS AND FUTURE WORKccoiiiiiiiiiieieeeeeeeeee e, 46

7.1 FULUIE WOTK ...eeiiiiiiie et et e et e e et e e e naaee e enees 46

8 BIBLIOGRAPHY ..ottt sttt ettt e 47
O APPENDIX A .ottt ettt ettt et ettt b e sttt b 49

0.1 File: GamDICT.PY...uviiiiiiiiie et et e 49

0.2 File: deepgambIer.PYeeeeiiiieeiiiieeeiiee et eeeee ettt e et e et e e e e e e ennee e e 51

0.3 File: ODSEIVET.PY .uvvieeeiiiieeeiiee ettt ettt e et e e et e e et e e e s nnteeeennneeeeennneeeennns 55

R B S U (ST 1 201 14 o) SRS 65

0.5 File: CryPlOSITIMLPY ceviieieiiiieeeiiiee ettt e et e e et e e et e e ettt e e et eeeesteeesennteeeensseeeennnneeeennns 70

9.6 File: ransomeware SIMUIAtOT.PY ...ceevrviieeiiiieeeiiiie et eeieee e e e 76

10 APPENDIX B ..ottt s 82

Al — Artificial Intelligence
ML — Machine Learning
DQN — Deep Q-Network
DQL — Deep Q-Learning
QL - Q-Learning

RL — Reinforcement Learning

LIST OF ABBREVIATIONS

1 INTRODUCTION

The total cost of a ransomware breach was an average of $4.62 million in 2021, not
including a ransom. (IBM) The average cost for education institutions to rectify the im-
pacts of a ransomware attack, including the ransom itself, was $2.73 million in 2021-48%
higher than the global average for all sectors.

As ransomware detection becomes good, these malwares evasion techniques be-
come even better, so it is necessary to conduct experiments to find weaknesses in the de-
fense/detecting system and solve them quickly.

Using Reinforcement Learning, Q-Learning algorithm in the beginning, then opti-
mize it by using Deep Q-Network algorithm is the best way to start conducting this exper-
iment. Since supervised learning would only provide statistical results rather than practi-
cal. The robustness of these methods is not certain, especially methods using supervised
learning, which tends to extract static features and statistical characteristics, instead of do-
ing dynamic or in-depth analysis. That may make supervised learning vulnerable to be at-
tacked or evaded.

This work aims to expose the weaknesses in the ransomware detection systems, we
will have a ‘Ransomware Defense Simulation’ and a ‘Ransomware Attack Simulation’.

The result can be used to improve the efficiency of ransomware detectors.

1.1 Problem statement

The area of research has been investigated previously, first off there is similar pub-
lished research study that try to bypass anti ransomware detection, there was also another
study that studies possibility of using RL in penetration testing. The new thing about this

research 1s using DQN instead of Q-Learning algorithm for training the model.

1.2 Aim and objectives

The project focuses on researching the possiblity of using RL using Q-Learning Al-

gorithm or DQN and run many simulations in a game like style.

10

The player is the crypto simulator that tries to encrypt all the documents in each
folder, but there's a guardian which is the ransomware detector.

Using combination of common bypass techniques in the crypto simulator vs using
different ransomware detecting techniques. and let both run for different sessions of the
game, and for each game running, the player gains and collect experience and becomes
better by time.

Objectives:

a) Explore the possibility of encrypting files inside a folder withouyt being de-
tected by the ransomeware detector;

b) Optimize the model by using more sophisticated training algorithm that
would make it usable in real world;

c) Evalute the differences between DQN and Q-Learning;

1.3 Research questions

Ransomwares often uses different techniques to bypass detection, anti ransomwares
themselves are using different smart technques to detect. For that reason, we are trying to
answer the following question:

a) 1s it possible to train a model that uses combination of common bypass tech-
niques to detect strict anti ransomware rules;

b) How far can we go in using Al, especially RL that does not require any data,
in cyber security;

c) We know that DQL is potentially better than QL, but how much is the differ-

ence between the two algorithms in RL;

1.4 Scope and limitations

The research and experiments are limited to Windows OS, since the most famous
ransomware attacks, targeted primarly Windows OS such as WastedLocker, Maze, Net-

walker.

11

Figure 1.1 — A screenshot of the ransomware simulation environment.

1.5 Ethical consideration

The experiments are executed in a controlled envirement, a fresh isolated windows
virtual machine, that is not connect to any other network, the experiment is done locally.
And uses python languages for executing the simulation, the encryption is isolated into a

single specified and controlled folder.

1.6 Document outline

Background describes information necessary to understand the content of the thesis.
It explains the basics of Reinforcement learning, ransomware attacks, anti ransomware
techniques, Q-Learning algorithm, Deep Q-Network. Related works informs of relevant
papers that research closely connected with this thesis work. Method defines the research
method, the environment, the programming languages and libraries such as tensorflow, as
well as the table of actions, and ransomware detector methods. Results present the out-
come of the different controlled experiments that has been done using 2 different RL algo-

rithms, Q-Learning and DQN. Analysis and Discussion highlights the interesting and val-

12
uable findings of the experiment. It discusses the experiment findings and answers the re-
search questions based on the information gathered. Conclusion and Future work summa-

rise the thesis total outcome and suggests relevant research topics for future studies.

13
2 BACKGROUND

2.1 Reinforcment learning

Reinforcement learning (RL) is an area of machine learning concerned with how in-
telligent agents ought to take actions in an environment to maximize the notion of cumula-
tive reward. Reinforcement learning is one of three basic machine learning paradigms,
alongside supervised learning, and unsupervised learning.

Reinforcement learning differs from supervised learning in not needing labeled in-
put/output pairs to be presented, and in not needing sub-optimal actions to be explicitly
corrected. Instead, the focus is on finding a balance between exploration (of uncharted ter-
ritory) and exploitation (of current knowledge). Partially supervised RL algorithms can
combine the advantages of supervised and RL algorithms.

The environment is typically stated in the form of a Markov decision process
(MDP) because many reinforcement learning algorithms for this context use dynamic pro-
gramming techniques. The main difference between the classical dynamic programming
methods and reinforcement learning algorithms is that the latter do not assume knowledge
of an exact mathematical model of the MDP, and they target large MDPs where exact

methods become infeasible.

vﬁ’V”‘OI‘Iment

Rewar
Interpreter
% CE

Action

Agent

Figure 2.1 — Demonstration of Reinforcement Learning

14
2.1.1 Q-Learning Algorithm

Q-learning is a model-free reinforcement learning algorithm to learn the value of an
action in a particular state.

It does not require a model of the environment (hence "model-free"), and it can han-
dle problems with stochastic transitions and rewards without requiring adaptations. For
any finite Markov decision process (FMDP), Q-learning finds an optimal policy in the
sense of maximizing the expected value of the total reward over all successive steps, start-
ing from the current state. Q-learning can identify an optimal action-selection policy for
any given FMDP, given infinite exploration time and a partly random policy. "Q" refers to
the function that the algorithm computes — the expected rewards for an action taken in a

given state.

Initialized

Actions

Q-Table

South (0) North (1) East (2) West (3) Pickup (4) Dropoff (5)

0 0 0 0 0 0

States = 327 0 0 0 0 0 0

0 0 0 0 0 0

Training
Actions
Q-Table

South (0) North (1) East (2) West (3) Pickup (4) Dropoff (5)

0 0 0 0 0 0

SElegy el 230108105 -1.97092096 -2.30357004 -2.20591839 -10.3607344 -8.5583017

9.96984239 4.02706992 12.96022777 29 3.32877873 3.38230603

Figure 2.2 - Q-Learning table of states by actions that is initialized to zero, then

each cell is updated through training.

15
When to use reinforcement learning? Reinforcement learning is useful when you

have no training data or specific enough expertise about the problem.

2.1.2 Deep Q-Learning

In deep Q-learning, we use a neural network to approximate the Q-value function.
The state is given as the input and the Q-value of all possible actions is generated as the
output. The comparison between Q-learning & deep Q-learning is wonderfully illustrated

in Figure 2.3.

Q Table
State-Action Value

| State }

_

o|lo|o|o|o|o|o|o|o|Z

Q Learning

State —

Deep Q Learning

Figure 2.3 — Demonstrating the difference between Q-Learning and Deep Q-

Learning

So, what are the steps involved in reinforcement learning using deep Q-learning
networks (DQNs)? All the experience is stored by the user in memory the next action is
determined by the maximum output of the Q-network, The loss function here is mean
squared error of the predicted Q-value and the target Q-value — Q*. This is basically a re-

gression problem. However, we do not know the target or actual value here as we are deal-

16
ing with a reinforcement learning problem. Going back to the Q-value update equation de-
rived fromthe Bellman equation.

The section in green represents the target. We can argue that it is predicting its own
value, but since R is the unbiased true reward, the network is going to update its gradient

using backpropagation to finally converge.

2.2 Ransomware

Ransomware is a type of malware from cryptovirology that threatens to publish the
victim's personal data or perpetually block access to it unless a ransom is paid. While
some simple ransomware may lock the system without damaging any files, more advanced
malware uses a technique called cryptoviral extortion.

It encrypts the victim's files, making them inaccessible, and demands a ransom
payment to decrypt them. In a properly implemented cryptoviral extortion attack, recover-
ing the files without the decryption key is an intractable problem — and difficult to trace
digital currencies such as paysafecard or Bitcoin and other cryptocurrencies that are used
for the ransoms, making tracing and prosecuting the perpetrators difficult. Ransomware
attacks are typically carried out using a Trojan disguised as a legitimate file that the user is
tricked into downloading or opening when it arrives as an email attachment. However, one
high-profile example, the WannaCry worm, traveled automatically between computers

without user interaction.

2.3 Reinforcement learning in cybersecurity

The scale of Internet-connected systems has increased considerably, and these sys-
tems are being exposed to cyber attacks more than ever. The complexity and dynamics of
cyber attacks require protecting mechanisms to be responsive, adaptive, and scalable. Ma-
chine learning, or more specifically deep reinforcement learning (DRL), methods have
been proposed widely to address these issues. By incorporating deep learning into tradi-

tional RL, DRL 1is highly capable of solving complex, dynamic, and especially high-

17
dimensional cyber defense problems. One example of using RL in cybersecurity other

than this paper, is the using it in penetration testing.

18
3 METHOD

This chapter describes the different processes, methods and tools used to conduct
these experiments. It will also show the tools that will be used for different training tech-

niques, QL and DQL.

3.1 Research method

To conduct this research, we need first set the rules for game for the reinforcement
learning. The player will be able to take 16 actions, which is a combaination of 4 variables
and methods that are widely used to bypass antiransomware detection. The variables
which creates a combination of actions will be: number of files to be encrypted for that
state (limited to 1, 2, 5 or 10), to use or to not use base64 encryption, to add or not to add
‘.enc’ extension.

The defender will use common ransomware detection techniques in real time during
each game. The methods for detections are, timestamp, if the large number of files
changed at the same time inside the folder. The entropy of the file, it measures the ran-
domness of the data, and type of file through magic number and analysis of general struc-
ture of file, if common structure is found, then it is not a suspicious file, even if the entro-
py 1s high, which the case for most files such as images, videos, audios. The defender may
also use double extension detection, since lot of ransomwares add ‘.enc’ or ‘.encrypted’
extension.

The playground of the game is a folder, it is called TEST FOLDER, in which there
will be 10 files initialy. The files are chosen to be common files such as: PDF, XLSX,
DOC, DOCX, PNG, JPG, CSV, etc

The first experiments or RL algorithms starts by settings and Q-Table full of 0, and
these table to be optimized while running games. When the. Game starts, the player runs a
step according to the state, with a maximum number of 10 states. And it begins by chosing

random action out of the 16 actions, and from there it optimizes the value of the Q-Table

19

using Bellman equation. The second experiment is using Deep RL, it trains a neural net-

work, to better predict values for the best action to take in the current state.

3.2 Experiment
3.2.1 Environment setup

The Operating system is windows, it needs python 3 to be installed. And then to
download multiple python libraries that are required such as:
a) Numpy
b) Python-magic
c) Tensorflow
Then we need the files to be encrypted in each session of the game, for this research,

we take different samples of common filetypes such as CSV, EPUB, XLSX, DOCS.

p > This PC » Desktop » another_simulation » source v (J] O Search source
. Name B Date modified Type
‘ess
, | Tesv 5/17/2022 10:26 AM CSV File
| 1.doc 5/15/2022 2:44 AM DOC File
ads | 1.epub 5/18/2022 2:02 AM EPUB File
ants CI| 5/18/2022 1:30 AM GIF File
G 1 5/17/2022 10:26 AM Chrome HTML Docu...
& 1 5/17/2022 10:26 AM JPG File
m o 1 5/17/2022 10:26 AM MP3 File
imTest &1 5/17/2022 10:26 AM PNG File
| 1.ppt 5/18/2022 2:03 AM PPT File
| 1xlsx 5/18/2022 2:02 AM XLSX File

acts

Figure 3.1 — Test folder with 10 sample files of common types

After setting the source folder, a test folder will be needed, in which the actual
simulation of the game will be executed and played, and after each game it will reset,

means reseting it is using the 10 files on the test folder.

20
3.2.2 Tools and techniques

The code was written to run different agents, what we will use in this experiment is
one agent that outputs a Q-Table, and other one that trains a Deep Q-Network. The en-
cryption method used for this experiment is OpenSSL and AES 256 encryption.

y 1(fullpath, enc_ext, *args):
outputfile fullpath + "temp

cmd_status os.

if cmd_status != 0:

{ . rror executing en
"ERROR: E ting OpensSL'

("openssl aes-256-cbc -e -in %s -out %s -pass pass:%s -pbkdf2" (fullpath, outputfile, PASSWORD))

else:

[(fullpath)

os. (outputfile, fullpath + enc_ext)
if args[o]. (0] base64':

(fullpath + enc_ext)

return cmd_statu#

Figure 3.2 The OpenSSI function used to encrypt files during ransomware simula-

tion

After each successful simulation we get data that consist of:
a) Number of wins compared to number of games
b) Wins per 10 games

Also, for each simulation here is the table showing the 16 actions

21
Table 3.1 — Table of actions

Action Extension Base64 Number of | Num of files to
files(code) be encryped
0 0 0 0 1
1 0 0 1 2
2 0 0 2 5
3 0 0 3 10
4 0 1 0 1
5 0 1 1 2
6 0 1 2 5
7 0 1 3 10
8 1 0 0 1
9 1 0 1 2
10 1 0 2 5
11 1 0 3 10
12 1 1 0 1
13 1 1 1 2
14 1 1 2 5
15 1 1 3 10

The ransomware detector uses the following techniques for detecting suspicious
files:

a) Measuring the entropy level and filetype;

b) Calculating timestamp, if file was modified just in nanoseconds, in the exper-
iment 1t’s set to 0.08s;

c) Detecting double extension,;

d) The threshold for this experiment is 8, meaning if the ransomware detector,
counts 8 suspicious files, a ransomware attack is detected, and the game is
lost;

If we consider these methods for detections, here’s the methods that the player will
use to bypass them:

a) Base64 encoding recuces the files entropy;

b) Avoiding using double extension will also bypass the double extension detec-
tion method;

c) As shown in the table 3.1 the number of files per iteration can bypass

timestamp detection;

22

If we let the model trains, 1 twill learn the best policy to bypass this anti ransomware
detection using just common techniques.

In the Q table simulation, we need to calculate the reward using bellman equation
after each iteration outcome.

In other words, for one encrypted file the player earns 2 points of reward, and one
action costs 1 point. The algorithm starts with the Random actions and then slowly reduce
the probability of random choice for an action from 1 in the beginning to 0 at the end of
the learning process.

That was for Q-Learning, for Deep Q-learning, things are different, we will use neu-
ral network, so there will no Q-Table. There will a neural network, that will be trained us-

ing Tensorflow.

So S1 S2 S3 S4

0 [+4.21 +3.24 +1.84 +2.33 +3.73

a
Q(s,a) - Q(3,1) —» - +5.31

dl |+2.53 +7.44 +3.34 +5.31 +6.22

00 6.
Q(s,a) > QB3,1) —» @ OO . - +5.31
a1l
OO

Figure 3.3 — Difference between Q-table and Deep Q-Network

As we see in figure 3.4, in the DQN, we just give the neural network an input of
State and action and it gives us a predicted value.

In the Q-table, it does run and optimize the value, for that exact game, but the neural
network is flexible, and it trains to predict the best value of Q-Table. This value may not

be optimal, but the most important that it will work.

23
The Q-Table is not felxbile since it will give you the best policy for that exact game

variables, if the game variables changed, the policy may not be the best to follow.

3.2.3 Test cases

There will be 4 experiments, in which 2 are Q-learning and 2 others are DQL, first
two simulation, will be on an easy game game 10 states, 10 files to encrypt and 16 actions,
then we will make it harder by increasing the number of states and number of files to be

encrypted to 20, to compare the efficiency of each algorithm in RL.

a) Q-Table test case 1:
1) In this test case we will use the following parameters;
2) Q-Learning algorithm agent, called Gambler;
3) 10000 iterations;
4) 10 states;
5) 10 files to encrypt;
6) 16 possible actions;
7) Timestamp delta of 0.08;
8) OpenSSL for file encryption;
9) Ransomeware detector threshold of §;
b) DQN test case 1:
1) In this test case we will use the following parameters;
2) Deep Q-Learning algorithm agent, called DeepGambler;
3) 10000 iterations;
4) 10 states;
5) 10 files to encrypt;
6) 16 possible actions;
7) Timestamp delta of 0.08;
8) OpenSSL for file encryption;

9) Ransomeware detector threshold of §;

24
c) Q-Table test case 2:

1) In this test case we’ll use the following parameters;
2) Q-Learning algorithm agent, called Gambler;
3) 10000 iterations;
4) 20 states;
5) 20 files to encrypt;
6) 16 possible actions;
7) Timestamp delta of 0.08;
8) OpenSSL for file encryption;
9) Ransomeware detector threshold of §;
d) DQN test case 2:
1) In this test case we’ll use the following parameters;
2) Q-Learning algorithm agent, called Gambler;
3) 10000 iterations;
4) 20 states;
5) 20 files to encrypt;
6) 16 possible actions;
7) Timestamp delta of 0.08;
8) OpenSSL for file encryption;

9) Ransomeware detector threshold of §;

&8 Command Prompt
[Started with params
File count threshol,

1653196572.4854486,

Suspicious timestamp for file:
spicious timestamp for file
Suspicious timestamp for file
cious timestamp for file:
S for file

[

\\another._: Smulation\\test\

\macg\\Desktop\\another_simulation\\test\\1.png",

Game: 6490 Step:

aa»,a Current state:
Performan 00!

a
ting files with Op .
rs\nacg\Desktop\another._
nother
\Users \macg \DEJVtup another_simulation\

Encrypting _sinulation\

Encrypting:
Encrypting
Encrypting:
Encrypting
Encrypting:
Encrypting: C:\Users\macg\Desktop!
Done! Files encrypted: 16
arted with params]
0.0

e rep e
:\Users\macg\Desktop\

Sl R

nother_s

0269177]
timestamp for file:
Suspicious timestamp for file
Suspicious timestamp for file:
pi timestamp for fil
Suspicious timestamp for file:
ous files: ['C
p\\another_simulation\\
ktop\\an

[suspicious :\Users\macg\De

Desktop\
test\\1.gif B ers\\macg\
ther_sinulatio
ypted files

Current state: @ Max
83157789147 Total rewar

macg\\Desktoj
alg *OpenssL’

Encrypting files with Dpen‘; .

\Desktop\another

\[}y'ﬂ:op \another_

imulation

Encrypting: simulation\t

C:\Users\macg

P Type here to search

8 Observed fold:

top\another.
ktop\another_simulation\test\1
r‘:\ma(a‘Deﬂ\tcp \anotk

© Max state:

mthef'mulscmmtecc\ 1.mp3

:\Users\macg\Desktoj Lhdmth-\y‘ simulation\test\1.ppt
imulation\test\1.xls

esktop\another_simulation
P\ \another-

rs\macg Desktap‘ancther
another_:
\\Desktop\\another.

B2\ test\
path: C:\Users\macg\De:

> Abonarmal file, Dete:
enssl enc'd data w
> Abonarmal file,
enssl enc'd data

th salted pa
Detected encry,
with

pted il
simulation\test\1.gif
penssl enc'd data with salted pas
> Abonarmal file,
enssl enc'd data with
> Abonarmal file, Detected encrypted il
penssl enc'd data with salted password
picious list by timestamp: [16

sword,
P
sinulation\test\1.png
1sx
test\\1.gif",
\\Desktop\\another.

\another_:

salted password, el

C:\\Users\\macg\
mulation\\test\\1.ppt',

Users\\macg\\Desktop\\another_simulation\\test\\1
ous timestamp
Suspicious timestamp
timestamp
Suspicious timestamp
tamp

for file
for file:
for file
for file: C:
for file: C:\Users
[m,‘uuwu ‘marg\'
\test\\

‘base64’}

test\1. epub Encrypting files with opensst

test\1. Encryptin,

Encrypting:

Encryptin,

Encrypting: C:\Users'

Encrypting: C:\Users!

Done! Files encrypted:
ith params]

Time mmm, 6.0

test\1.pg top\another_:
nacg\Desktop\anothe

g\Desktop\another_simulatio

ta with salted pa
narmal lee Detected encrypted file:
enss] enc'd data with salted password,
Abonarmal file, Detected encrypted file:
p data with salted password,
, Abonarmal file, Detected encrypted file:
enssl enc'd data with salted password,
> Abonarmal file, Detected encrypted file:
penssl enc'd data with salted password,
bonarmal file, Detected encrypted file:
enc'd data with salted password, entropy
Abonarmal file, Detected encrypted file:
enc'd data v

inulation\test\1.gif
nulation\test\1.jpg
_simulation\test\1.x1sx
simulation\test\1.ppt
mulation\\test\\1.html',
mulation\\test\\1.J
macg\\Desktop\\another_sinulation

R e G e sofved] pEReEeRly GRI
> Abonarmal file, Detected encrypted file
sl enc'd data with salted password, enti
Suspicious list by times
1653196682.8858402, 165319
.197801]

Suspicious timestamp for file:

: True, ‘new_ex

£\1.doc

cted encrypted file: C:\Use
ord, entropy
» Abonarmal file, Detected encrypted file:

Detected encrypted file

tropy

entropy = 7.9

entropy
entropy

entr

ers\nacg\Desktop annthrr simulation2\tes
7.979085, exter
C:\Users\mac

1.csv.enc, type:

nc

e: C ‘Dr‘wtnp‘annthsr simulation2\test\1.d

17, extension: .enc

\Users\macg\Desktop\another_simulation2\test\1.epub.enc, type
7.999948, ex

Pt

entropy = 7.
C:\Users

ntropy

e

entropy

5821, exten
acg \[‘Pﬁrap \anoth

_simulation2\test\1.doc.enc

\Desktop\another._ 1muldt)u|\2'\ts>t\I.gh‘ enc

macg\Desktop\another_simulati htnl.enc

\Des mw \aE e *C:\\Users\\macg\\De
‘test’

\1.epub.en
\\Users\\nacg\\Desktop\\another_simu

Jmulat)(ml'
enco

rename’: True,

2\test\1.ppt
\test\1.xl

folder path: C:\Users\macg\Desktop\another_simulatio

\Users\macg\De:
7.979085,
C:\Users\macg\De:
17 3 nc
esktop sm\thsr‘
.999948, extension
macg\Desktop\another_
999821, exten .en
\macg\Desktop\another_simulation2
000, e nc

rp,—:\mare \DBJF(np\annth:r‘ simulation2\test\1.jpg, type:

C:\Users\macg)\ simulation2\
.enc

simulation2\test\1.gif.enc

test\1.epub.enc, t

[\

c:\User \test\1.html.enc
Py 7 (tension: .
c o
7.

[Je‘Vtup'\annther‘ inulation2\test\1.mp3, type: opens
7. xtension: .mp3

54
:\Users\nacg\Desktop\another_simulation2\test\1.png, type:

openss.

C:\Users\macg\Desktop\another_simulation2\test\1.doc.enc

Figure 3.4 — Simulations of both test cases, on the left, the Q-Learning, the right the

Deep Q-Learning

26
4 RESULTS

4.1 Experiment results

In this chapter we are going to explore the data gathered from each test case.

4.1.1 Q-Learning: Test case 1

After the model finished the training we got lot of data plus the Q-Table that repre-

sents the best policy for follow.

Game: 6522 Wins: 4620

C:\Users\macg\Desktop\another_simulation\glearning-ransim>

Figure 4.1 — The end of simulation of Q-Learning algorithm

As We see for 10000 iterations, 6522 games were played, in which the model won

majority of them 4620.

Qs,A States Threshold

Actions 0 1 2 3 4 5 6 1 9 10
0 17.064138 | 11.373914 | 9434797 | 3333476 | 4437139 | 3524384 | 2747256 | 2.789401 0594475 | 0.347245 0
1 15.65915 | 11.729954 | 9.363538 5.28466 3349453 | 6165858 | 3.647353 | 3483226 | 0852475 | 014151 0
2 17.39207 | 12450127 | 12214027 | 593241 0166427 | 8.15889 239941 3007965 | 0579618 | 0375648 0
3 17.995947 | 12793953 | 9.668399 417875 1770299 | 7984168 | 1.598049 | 3455996 03 0.235137 0
4 17.048778 | 11.361066 | 9.886199 | 4734564 | 2765516 | 4323236 | 1.824859 2.74448 0353823 | 0.957609 0
5 15.678352 | 10.160259 | 9.418679 | 11368987 | 1926289 | 6.840074 | 3202167 | 2946587 | 0.494003 021 0
6 17.369262 | 11.877071 | 12361254 | 5822014 | 9.523121 8.810861 2536652 | 4491754 | 0.589509 021 0
1 17.382124 | 16.876812 | 11135758 | 6.817596 3.04458 810177 | 3696525 4,009 2311116 | 0468559 0
8 17.054083 | 11.68494 | 10499314 | 2442453 | 4593637 | 4585682 | 2698563 | 3414391 0.340277 | 0.342681 0
9 15673266 | 10794902 | 9.471515 5.84378 1627716 | 6939511 | 1752751 | 3.052629 0.40781 0.232865 0
10 17.384413 | 11.539272 | 13312174 | 3499957 | 3032259 | 8286399 | 3340707 | 2985576 | 0.607114 | 0.355743 0
n 18.000647 | 13925807 | 10.009137 | 337174 341559 7802027 | 4791765 | 3314857 | 0422088 | 0.233376 0
12 17.058852 | 7.45085 9.96248 3453374 | 3846584 | 4.219919 1723634 | 3157403 | 0517162 | 0.143804 0
13 15663129 | 11.669743 | 9.208592 | 5045617 | 1.898836 | 6.799079 | 1.831609 | 2755004 | 0551517 | 0.229195 0
14 18.893459 | 11154631 | 1243444 | 7433068 | 2292787 | 7.788171 2.509881 3112026 | 0976161 0.032671 0
15 17989217 | 1134613 | 10.859368 | 1.063472 | 4387827 | 7.73745 | 3203517 | 3.666002 0.84863 0.319572 0

Figure 4.2 — Q-Table from running 10000 iterations on the first test case.

27

As we see this table value swere initially zeros, and as per games played, the Q val-

ues are calculated following, and per each iteration we can conclude the best action to

take. For example, the first best action to take is in State 0 is 14 since it has the highest Q-

values.

Reward vs. Games

Reward

Figure 4.3 — Q-Learning Learning Progress Reward vs Games

2000

Games

4000

6000

Wins per 10 games vs. Games

Wins per 10 games

10

0 2000 4000 6000

Games

Figure 4.4 — Q-Learning Wins per ten games for Q-Learning

We can see that the wins per 10 games was increasing constantly.

Wins vs. Games

200

150

100

Wins

50

P ——

50 100 150 200

Games

Figure 4.5 — Q-Learning Wins vs Games 200 games progress

We can see the the model is winning only few games in the first 200 games.

Wins vs. Games
500

400

300

Wins

200

100 —//_//

0 100 200 300 400 500

Games

Figure 4.6 — Q-Learning Wins vs Games 500 games progress

The model slightly better after 500 games.

Wins vs. Games
1000

750

500

Wins

250

0 250 500 750 1000

Games

Figure 4.7 — Q-Learning Wins vs Games 1000 games progress

We see that the model starts to win more games as per 1000 games played.

29

Wins vs. Games

4000

3000

2000

1000

0 1000 2000 3000 4000

Games

Figure 4.8 — Q-Learning Wins vs Games 4000 games progress

The model starts to perform extremely well from 2000 to 4000 games.

Wins vs. Games

6000

4000

Wins

2000

0 2000 4000 6000

Games

Figure 4.9 — Q-Learning Wins vs Games 6000 games progress

31

The model winning is finally growing exponentially.

4.1.2 DOQN: Test case 1

This model uses tensorflow v1 for the neural network. To predict the Q-values of

the states. The neural network will learn to predit the Q-value that related to the reward.

Suspicious timestamp for file: C:\Users\macg\Desktop\another simulati
Suspicious timestamp for file: C:\Users\macg\Desktop\another simulati
===Suspicious files: ['C:\\Users\\macg\\Desktop\\another_simulation2\
sktop\\another simulation2\\test\\1l.doc.enc', 'C:\\Users\\macg\\Deskto
c', 'C:\\Users\\macg\\Desktop\\another_simulation2\\test\\1l.gif.enc",
lation2\\test\\1.html.enc'] ===

Game: 6495 Wins: 4621

C:\Users\macg\Desktop\another_simulation2\glearning-ransim>g

Figure 4.10 — DQN simulation results

As we see, the DQN played slightly less games, but won slightly more games. Now

we will see more details about these wins.

Reward vs. Game

20

o
D GRID ORI ® © 00 00 ®
15 o G0 @& o o e ®

(o] L4

o0 o o L]

GO SO DO GO G0 0 @& 8} o
®
10

Reward
o]
s
®

0 2000 4000 6000

Game

Figure 4.11 — DQN Reward vs Games

32

Wins per 10 games vs. Games
10

Wins per 10 games

0 2000 4000 6000

Games

Figure 4.12 — DQN Wins per 10 games

DQON also learns to to win games 10/10 in the end and scope of errors is becoming

less and less slight as the games progresses, which we can consider very good result.

Wins vs. Games

200

150

100

Wins

50

Figure 4.13 - DQN Wins 200 games progress

33

The wins are very low on the first 200 games.

Wins vs. Games

500

300

Wins

200

100

T T T 1
0 100 200 300 400 500

Games

Figure 4.14 - DQN Wins 500 games progress

The model learns better and starts already to win a lot from 500 games progress

Wins vs. Games

1000

750

500

Wins

250

0 250 500 750 1000

Figure 4.15 - DQN Wins 1000 games progress

The model is growing exponentially already on the 1000 games progress

Wins vs. Games

4000
3000

2000

Wins

1000

T T T 1
0 1000 2000 3000 4000

Games

Figure 4.16 - DQN Wins 4000 games progress

Wins vs. Games

6000

4000

Wins

2000

T T T
0 2000 4000 6000

Games

Figure 4.17 - DQN Wins 6500 games progress

34

Seems the model discovered the best policy for winning the game and encrypting all

files without few little failures.

35
4.1.3 Q-Learning Test case 2

In the following figure, we will see the results from the second simulation in which
we’ll runn 4500 plus games, and as we’ll see 1758 are wins, but what is interesting is the

wins rate or wins per 10 games throught the 4587 games.

0.3 0.1 0.]

[34.81006517 15.00174427 15.13822744 2.5666834 ©.07373425 9.95802266
9.5495701 7.0643961 ©.49354655 0. 17.24905424 3.343533
1.95045445 1.6620707 3.15394745 2.29518533 1.79825107 ©.58207043
0.11671035 ©.18905 1]

4587 Wins:

C:\Users\macg\Desktop\another_simulation\glearning-ransim>

Figure 4.18 — Output of games vs Wins at the end of q leaning test case 2

Q(S.A) States

Action 0 1 2 3 4 5 6 7 8 9 10 1" 12 13 14 15 16 17 18 19 20
0 30.917378 | 14.860792 | 6.809581 | 1.715921 | 0.44295 | 3.961406 | 6.554918 | 3.534599 | 0.421601 | 0.67508 | 15.359779 | 1.277411 | 541268 | 0.155865 | 1.393692 |2.322459(1.985215 0.206383 | 0.250758 0 0
1 28.657275 | 7.141911 [12.878813| 7.903121 | 1.25902 | 6.797622 | 9.176728 |4.207503 | 1.902631 0 15.299075 | 4.446743 | 4.701715 03 3.376047 |1.985445 1.580567 | 0.407815 | 0.11671 0 0
2 34.852224 | 18.274566 | 11.979351| 1.997468 | 2.064471 | 3.036457 | 8.354547 | 5375127 | 1.576471 | 1.709237 | 16.93833 | 2.580444 | 3.884466 | 1.388416 | 2.759307 |3.8612572.308575| 0.134423 0 0 0
3 34.856179 | 16.411216 | 16.214505| 4.236124 | 0.724499 | 4.336103 | 8.764623 | 3.406667 | 0.344821 | 1.707507 | 17.411907 | 3.701006 | 3.697443 | 0.333012 | 2.47708 |0.5999550.915097 | 0.172393 | 0.162317 | 0.468559 0
4 30.873529 | 15.533645 | 5.505385 | 2.51544 3.28794 | 3.348339 | 3.747385 | 3.966309 | 1.20993 |4.340769 | 14.857078 | 5.773794 | 4.196271 | 0.899832 | 3.121508 |2.566443)0.362393| 0.198012 | 0.23122 0.1 0
5 28.116139 | 7.928066 | 10.07677 | 3.133795 | 17.576883 | 6.000038 | 4.251744 | 3.56218 | 1.926057 0 14.802481 | 4.232103 | 6.54247 | 1.065138 | 2.649764 |2.491498|1.607192) 0.882696 | 2.313696 | 0.1 0
6 32.219172 | 32.498458 | 27.910613| 2.108142 | 0.140095 |25.665819| 12.736608 |21.243303| 1.233012 |11.075937(16.730909 | 15.602342 | 5.67589 | 2.541885 | 4.277742 |8.862055(6.997813 | 3.544541 0.57 0 0
7 37.008172 | 19.69245 |12.928879| 14.316873 | 2.607591 | 8.614127 | 24.719863 | 6.081452 | 12.007565 0 18.997246 | 7.292466 | 9.241398 | 11.274147| 10.813556 |2.780473|2.194076| 0.95 0.2985 0 0
8 30.453818 | 9.295287 | 6.217416 | 1.602922 | 0.626606 | 5.347945 | 5.061628 | 1.562457 | 1.072103 | 0.540938 | 14.733866 | 3.851745 | 3.709449 | 1.112584 | 0.891379 |1.937276|0.877122 0 0 0 0
9 27.733729 | 6.543414 | 13.54461 | 1.614605 | 4.333387 | 4.31051 | 4.542066 | 5.0445 | 0.754623 0 15.535065 | 2.466689 |13.250727 2.125805 | 2.777388 [1.5138172.542915 0 03 0.1 0
10 34.878789 | 17.611519 | 12.043693| 2.303753 | 0.111606 | 2.006084 | 7.43636 | 4.026839 | 0.344821 | 1.324189| 17.16787 | 3.712845 | 6.33988 1.196 3.75669 |0.741605) 1.961666 0 0 0 0
1" 34.884062 | 20.558634 | 12.286449| 0.498279 | 1.167896 | 4.259353 | 8.691858 | 5596294 | 0.344622 | 1.343109 | 17.685016 | 0.409682 | 4.661793 | 0.333012 | 3.058674 | 2.97727 | 1.948662 | 0.089828 03 0 0
12 30.656353 | 9.271884 | 8.848778 | 3.051729 | 0.601763 | 6.905128 | 8.087271 | 0.282291 | 0.942842 0 15.343195 | 4.208232 | 4.051519 | 1.082423 | 3.748768 |1.313729|0.369064 | 0.404094 | 0.285257 0.1 0
13 26.798283 | 9.972253 |11.774326| 6.726721 | 0.759302 | 2.0501 | 3.020267 |4.448022 0 0.612496 | 15.914575 | 3.582003 | 7.405156 | 1.148328 | 3.727964 |1.099228 2243428 | 0.323248 03 0.1 0
14 34.847721 | 14.440732 [13.191086| 3.231649 0 3.17861 | 9.881766 |3.556415| 1.417783 |3.165057 | 17.411308 | 3.127441 | 3.460034 | 1.852025 | 3.07209 |2.620763|2.423433| 0.10172 03 0.1 0
15 34.810065 | 15.001744 | 15.138227| 2.566683 | 0.073734 | 9.958023 | 9.54957 |7.064396 | 0.493547 0 17.249054 | 3.343533 | 1.950454 | 1.662071 | 3.153947 |2.295185[1.798251| 0.58207 | 0.11671 | 0.18905 0

Figure 4.19 — Q Learning test case 2, final Q-Table

As we see in Figure 4.18, 1758 out 4587 games were won.

Wins vs. Games
1000

750

500

Wins

250

0 250 500 750 1000

Games

Figure 4.20 — Q Learning test case 2 Wins vs Games, 1000 games progress

Wins vs. Games

2000

1500

1000

500

0 1000 2000 3000 4000

Games

Figure 4.21 — Q-learning test case 2 wins vs games, all games progress

36

37

Wins per 10 games vs. Games

10
8
w
a
£ 6
o
o
R
w
£
<
2
0
0 1000 2000 3000 4000

Games

Figure 4.22 — Q learning test 2, wins per 10 games

4.1.4 DQL Test case 2

uspicious : s\Users\macg I

Suspicious timestamp for file: C:\Users\macg\Desktop\another simulation2\tes
===Suspicious files: ['C:\\Users\\macg\\Desktop\\another simulation2\\test\\
\Desktop\\another_simulation2\\test\\sample3.pdf'] ===

Game: 4188 Wins: 2565

C:\Users\macg\Desktop\another_simulation2\gqlearning-ransim>_

Figure 4.23 — DQL test case 2 command line results

Wins vs. Games

1000
750
2 500
<
250
0
0 250 500 750 1000

Games

Figure 4.24 — DQL test case 2 wins vs games, 1000 games progress

Wins vs. Games
3000

2000

Wins

1000

0 1000 2000 3000 4000

Games

Figure 4.25 — DQL test case 2 wins vs games, all games progress

38

39

Wins per 10 games vs. Games
10

Wins per 10 games

0 1000 2000 3000 4000

Games

Figure 4.26 — DQL test case 2 wins per 10 games

40
5 ANALYSIS AND DISCUSSION

5.1 Research limitations

First, this reseach is very limited to the OS, to the few bypass tricks and few detect-
ing methods. But this can be the beginning of more deep research into this. There are
plently of actions that can be added, and plenty of defence tactics that can implemented as
well. The goal is to study the possibility of training such model and bring good results and
test different training algorithms, this makes it very easy for testing and experimenting.
Later on, we can increase the action space, the number of states and the number of files to
be encrypted, we can also make the ransomware detector stricter to the level of real world

detectors.

5.2. Experiment analysis and discussion
5.2.1 Q Learning Test case 1

Looking at the Q-Table, we see that the model discovered the best policy in 2 steps,
which is:
a) State 0: Action 14 with adding extension and base64 and encrypts 5 files;
b) State 5: Action 6 without adding extension and with encoding base64 and encrypts 5
files, now the game is won;

But to reach that policy 6522 games were played, in which there was 4560 wins as
shown in figure 4.1. But as we look closer in the number of wins initially, we see that in
the beginning the model was struggling to even win few games, in Figure 4.5, the progress
on 200 games is low, we see that the model did not even reach 50 wins per 200.

But as the games progress, we see more and more wins, and see an exponential
growth in the number of wins. This only means that the model is learning the best policy
and adapting to it as we see in the Q-Table. We also see in Figure 4.4, the wins per 10
games is initially low, and as the model plays more, it learns to win more and therefore a

highest win’s rate. In the end it reached 10/10 wins rate.

41

5.2.2 DQL Test case 1

In DQN, we see that the model also learns to beat the game, but it’s different how it
got there, first we see in Figure 4.10 that it played 6495 games and won 4621 games.

In DQN we only have a neural network, that takes State as input and predict the op-
timal Q-Value. This were DQN is superior to Q-Table. Since Q-Table is trying to find the
optimal solution for that game, while DQN can be trained to make Q-Value prediction
which makes it usable in real world.

While training we notice an unstability in wins per 10 games rate, in Figure 4.12, we
see that as the model is getting better, it falls and won 0/10 games after 2400 iterations, but
recovers quickly, but by time, we see that it wins 10/10 frequently and brings similar re-

sults as Q-Table.

5.2.3 Comparing DQL and QL test case 1 results

While looking at wins per 10 games for Q-Learning and DQN in Figures 4.4 and
4.12, we notice that Q-Learning is progressing systematically, while DQN is more chaotic,
but both brings the best results possible. This is normal due to the nature of neural net-
works, it is powerful because it can actually do better job in much complicated simulations
while Q-Learning would fail, since Q-Learning is trying to find the best options, while the
neural network is trying to find something that just works. And Both learns through time.

With 10000 iterations, both played almost similar number of games, while DQN
played slightly less games and won slightly more games in total. In 200, 1000 progress,
we see that DQN performed slightly better than Q-Learning. DQN being slightly better is
important, since this game is easy to learn, only 10 files, it’s predicted that this DQN being

slightly superior would make it much better if we conduct more complicated experiment.

42
5.2.4 Q Learning test case 2

As we see in the figure 4.19, the Q table is big, this is because of 20 states and 20
files to encrypt. We also see in figure 4.20 and figure 4.21, that the number of wins is
growing slowly, at one time, the winning becomes more frequent, but we can say that it
did not find the best policy yet for winning, we can also say that as the game became hard-
er, Q Learning algorithm is less performant compared to the test case 2.

In figure 4.22, Q Learning is winning per 10 games we see that the model through
the 10000 iterations is becoming better, but good enough, since it can’t figure a policy that

almost always winning.

5.2.5 Q Learning test case 2

In this experiment, the power of DQN is showing, as the game becomes harder, the
neural network is doing such a good job to predict the write action to do in each state.

In Figure 4.24 and figure 4.25, see that the winning is very low compared to number
of games played, but if we look at all games, we see that the wins are growing exponen-
tially.

In figure 4.26 the winning per 10 games is growing slowly but, in the end, it figured
out the best policy for winning. With stable improvments. We can see in the end that rate

is between 9 and 10 which is very good results.

5.2.6 DQL vs QL 1n test case 2

In the first test case both QL and DQL have almost similar results, but as we made
the game harder in test case 2, the difference is obvious, DQL performed much much bet-
ter than QL.

The DQL figured how to win consistenly, but QL failed to do that. It also obvious in
the q table in figure 4.19, its best strategy is to encrypt 10 files without extension and with

base64 2 times, one after the other. This way will win games randomly, according to the

43
speed of encrypting, because the ransomware detector can detect files by modified time
and with a threshold of 8, it will get caught most of time.

The Q-Table generally did a good job to find out that it’s better to not use extension
and to encode in base64, both bypasses detection by entropy and detection by double ex-
tension. But unfortunately, it fails to bypass the modified time defense. In the other hand,
in DQL, we do not have a Q-Table, we have a trained neural network, that takes state as
input and give 16 Q values for each action that is based on bellman equation and reward.

DQL gives very good results even when the game becomes harder.

44
6 DISCUSSIONS OF EXPERIMENTS AND FINDINGS

6.1 Research question 1

Is it possible to tr ain a model that uses combination of common bypass techniques
to detect strict anti ransomware rules?

Yes, it is possible to train the model to bypass the ransomware detector in the re-
search scope. The fact that the models progress slowly and get better by time, only when
the game is reasonable and can be won. If we create a game under conditions that are im-
possible to win, of course the model will always lose.

The actual challenge is when imitate the actual detection software with strict rules
and bypass it, because if we can bypass the best tool, all other tools will be automatically

bypassed.

6.2 Research question 2

How far can we go in using Al, especially RL that does not require any data, in
cyber security?

It is obviously that very few research has been done, which means only that this is
few steps toward using RL in security attacks, there is wide area in which RL can be ap-
plied, including penetration testing.

This research shows that it’s possible to train models in controlled envirement and
reach the goal, without the need of data.

In this document we used RL to make the ransomware attack better, but we can also
make the defence better using the same technique, and in this case the defender will be
main player and if it defends successfully and stops the attack a reward will be given. But
we need more research on that matter. In conclusion RL have huge potential in optimizing

the security attacks and defense.

45

6.3 Research question 3

We know that DQL is potentially better than QL, but how much is the difference be-
tween the two algorithms in RL?

In the first test case of the simplified game, we saw that there 1s not much difference
between DQL and QL, but as we made the game harder, The DQL performed lot better.
So, to say in RL, it is better to use Q-Learning first, once everything works well, it highly

recommended to switch to DQL.

46
7 CONCLUSIUONS AND FUTURE WORK

This thesis shows how RL can help to discover new attack strategies that can over-
come behavior-based ransomware detector protection. This thesis also shows the potential
of using DQN algorithm other than Q-Learning algorithm. It is worth noting that the ex-
periments were conducted on a limited number of detection methods, and a limited num-
ber of bypass techniques. The presented results are very promising, especially when com-
paring Q-Learning with DQL, we see that DQL have very high potential that can be fur-
ther applied to the anti-malware, anti-virus’s products on behavior analysis.

RL can also be applied on network penetration testing, so the agent can be presented
a large set of actions, and try to find the optimal attack path, or in case of DQN, to predict
an attack path that works.

7.1 Future work

In the future work, it is suggested to increase the defense and increase action space
to imitate what we have in real world. Other suggestions also, is to train the model in
cloud where the model can train much faster, and to DQN instead of Q-Learning. Training
the model in powerful cloud machines would be beneficial. DQN would work well if the
states and actions are very high. The future works an also be conducted in many areas such

as penetration test, bypass anti-malware defense.

47
8 BIBLIOGRAPHY

. Reinforcement Learning for Anti-Ransomware Testing [Enextponnuii pecypc| —
Pexxum poctymy no pecypey: https://www.nioguard.com/2020/10/reinforcement-
learning-for-anti.html

. Attention is All They Need: Combatting Social Media Information Operations With
Neural Language Models [Enexkrponnuii pecypc] — Pexxum poctymy 10 pecypcy:
https://www.fireeye.com/blog/threat-research/2019/11/combatting-social-media-
information-operations-neural-language-models.html

. Autonomous Penetration Testing using Reinforcement Learning by Jonathon
Schwartz [Enextponnuit pecypc] — Pexum jgoctymy 10 pecypcy:
https://arxiv.org/ftp/arxiv/papers/1905/1905.05965.pdf

. Reinforcement Learning Tutorial Part 1: Q-Learning [Enextponnuit pecypc| —
Pexxum noctymy npo pecypey: https://blog.valohai.com/reinforcement-learning-
tutorial-part-1-q-learning

. Reinforcement Learning Tutorial Part 2: Cloud Q-learning [EnekTponnuii pecypc] —
Pexxum noctymy npo pecypey: https://blog.valohai.com/reinforcement-learning-
tutorial-cloud-q-learning

. Reinforcement Learning Tutorial Part 3: Basic Deep Q-Learning [Enextponnuit
pecypc] — Pexum noctynmy no pecypey: https://blog.valohai.com/reinforcement-
learning-tutorial-basic-deep-q-learning

. Q Learning simple simulation code by valohai in GitHub [Enexktponnuii pecypc] —
Pexxum noctymy go pecypcy: https://github.com/valohai/qlearning-simple

. Named: Endpoint Threat Detection & Response [Enexktponnuii pecypc| — Pexum
nocTymy A0 pecypey: https://blogs.gartner.com/anton-chuvakin/2013/07/26/named-
endpoint-threat-detection-response/

. WastedLocker’s techniques point to a familiar heritage [Enextponnuii pecypc] —
Pexxum JOCTYILY 10 pecypcy: https://news.sophos.com/en-

us/2020/08/04/wastedlocker-techniques-point-to-a-familiar-heritage/

48

10.Ransomware Protection Test - April 2017 [Enexktponnuii pecypc] — Pexum
nocTymy a0 pecypcey: https://www.nioguard.com/2017/05/ransomware-protection-
test-april-2017.html

11.Windows Virtual machine download [Enextponnuii pecypc] — Pexxum noctyny 110
pecypcy: https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/

12.Reinforcement learning by Joseph M. Carew [Enextponnuii pecypc] — Pexum
TOCTYILY 70 pecypcy:
https://www.techtarget.com/searchenterpriseai/definition/reinforcement-learning

13.Reinforcement learning [Enextponnuii pecypc]| — Pexum poctymy o pecypcy:
https://en.wikipedia.org/wiki/Reinforcement_learning

14.DEEP DIVE INTO CYBER REALITY Security Effectiveness Report 2020
[EnekTpoHHUMiA pecypc] — Pexunm JIOCTYITY pi(y} pecypcy:
https://www.mandiant.com/sites/default/files/2021-09/rt-security-effectiveness-
report-000287.pdf

15.Deep Q-Learning Tutorial: minDQN [Enextponnuii pecypc| — Pexxum noctyny 110
pecypcy: https://towardsdatascience.com/deep-q-learning-tutorial-mindqn-

2a4c855abffc

