
Information and controlling system

45

 T. Filimonchuk, M. Volk, I. Ruban, V. Tkachov, 2016

1. Introduction

GRID is a geographically distributed infrastructure,
which is created on the basis of a set of heterogeneous net-
work resources (cluster, server, separate PCs) and is used to
solving scientific tasks on large computing powers. GRID is
a coordinated, standardized and open environment that en-
ables performing optimal distribution of computing resourc-
es to run the tasks, accessing at the entrance of the system.

GRID-systems are divided into three types: voluntary,
scientific and commercial. Each of these types has a num-
ber of advantages and disadvantages, is characterized by a
large number of decisions, implementations, forms of orga-
nization of calculations. One of the relevant objectives is
the development of application software, the main function
of which is providing the user of GRID-systems with con-
venient interface between the application and the required
computing resources.

2. Analysis of scientific literature and
the problem statement

There are many methods and algorithms of distribution
of tasks on computing resources. A huge niche in this regard

is given to programs that carry out the distribution of tasks
for resources - Task Scheduler (brokers). The main objective
of the broker is the construction of the distribution plan that
meets the requirements of the task suppliers. When building
a distribution plan, an optimization of values of the parame-
ters of the objective function is carried out, through the use
of which, a reduction in run-time of accessed tasks proceeds
in the system, which leads to efficient use of computing re-
sources.

Often, when distributing the tasks, a first suitable re-
source without any optimization is selected [1–4]. Other
algorithms do not take into account the peculiarities of the
environment with inalienable resources, i.e. a monitoring
of the computing resource utilization dynamics is not pro-
ceeded, the task supplier’s competition is not taken into
account [5, 6]. In [6], the criteria for the selection of the slots
on the basis of utility functions are provided, which spec-
ifies a task supplier. However, even here, the optimization
is performed at the level of selection of the best available
computational resources. Many algorithms are not focused
on advanced reservation, and are based on the priority of
the tasks in a queue [7, 8]. However, the use of advanced
reservation [1–3, 9, 10] gives a gain in a performance time
of the task pool, which in turn, can reduce the downtime of
computational resources in the system.

DEVELOPMENT
OF INFORMATION

TECHNOLOGY OF TASKS
DISTRIBUTION FOR

GRID-SYSTEMS USING
THE GRASS SIMULATION

ENVIRONMENT

T . F i l i m o n c h u k
Assistant*

E-mail: tetiana.filimonchuk@nure.ua
M . V o l k

PhD, Associate Professor*
E-mail: maksym.volk@nure.ua

I . R u b a n
Doctor of Engineering Science,

Professor, Head of Department*
E-mail: ihor.ruban@nure.ua

V . T k a c h o v
PhD, Assistant*

E-mail: vitalii.tkachov@nure.ua
*Department of Electronic Computers

Kharkiv National University of Radioelectronics
Nauka ave., 14, Kharkiv, Ukraine, 61166

Запропоновано інформаційну технологію роз-
поділу завдань для GRID-систем, яка заснована
на використанні імітаційного середовища моделю-
вання GRASS. GRASS відтворює процес функціону-
вання в часі елементарних подій, які протікають в
GRID-системі із збереженням логіки їх взаємодії.
Дане рішення дозволяє проводити обчислювальні
експерименти, що реалізують різні методи розпо-
ділу, з подальшим вибором найбільш ефективного
вирішення на основі збору, аналізу та інтерпрета-
ції результатів моделювання

Ключові слова: розподілені системи, GRID-
система, планувальник завдань (брокер), інфор-
маційна технологія, середа GRASS, обчислювальні
ресурси, політики розподілу

Предложена информационная технология рас-
пределения заданий для GRID-систем, основанная
на использовании имитационной среды моделиро-
вания GRASS. GRASS воспроизводит процесс функ-
ционирования во времени элементарных событий,
которые протекают в GRID-системе с сохране-
нием логики их взаимодействия. Данное решение
позволяет проводить вычислительные эксперимен-
ты, реализующие разные методы распределения,
с последующим выбором наиболее эффективного
решения на основе сбора, анализа и интерпретации
результатов моделирования

Ключевые слова: распределенные системы,
GRID-система, планировщик заданий (брокер),
информационная технология, среда GRASS, вычис-
лительные ресурсы, политики распределения

UDC 004.051: 004.75
DOI: 10.15587/1729-4061.2016.71892

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 3/9 (81) 2016

46

Many approaches of distribution of tasks on computing
resources [10, 11] are guided by the use of models of integer
linear or mixed programming. In this case, the task suppliers
can set preferred time frames of use of computing resources.
In [12] it is proposed to use a combination of integer linear
programming model with a genetic algorithm, which enables
composing the distribution plan and taking into account the
cost of computing resources for specific groups of suppliers.
In [13] a model of distribution of tasks is proposed, which en-
ables re-planning “in the air” by means of information about
the actual dynamics of the system load.

Planning methods described in [4, 9–13] use a number of
criteria (the value of the use of resources, the level of load of
computing resources, the use of nearby resources for related
objectives in the task). In the studies [14–17] the methods of
planning, which focus on the preferences of task suppliers,
administrators of virtual organizations or suppliers of com-
puting resources are suggested to be used.

An optimization criterion is entered into a resource
request format which takes into account the interests of
users. This criterion is used for the search of alternatives
for performance of tasks, i. e., the owners of computing re-
sources get the possibility to manage the workload of com-
puter systems. The policy of partition of tasks into separate
subtasks is also implemented, which can be run on diverse
computing resources that enables improving the efficiency
of the system load.

In [18] the selection of computing resources for the
tasks, entering into the system, is performed by means of
logical-probabilistic algorithm. The proposed algorithm is
focused on multi-level planning of tasks for specified quality
criteria (Cost, lead-time, reliability index). Planning is car-
ried out in four steps based on the mechanism of regulation
of demand and supply of resources.

In [19] a classification of incoming tasks is proposed,
which can be used as a superstructure for the task scheduler
(broker). Using the proposed superstructure increases the
efficiency of the use of computing resources by optimizing
the distribution of computing resources.

There are also those methods [14, 15], in which there is
the possibility of entering a predetermined selection criteria
(E. g., via JSDL language), but they are characterized by a
linear time complexity, i. e., they depend on the number of
computational resources, which are available at the current
planning time.

The conducted analysis shows that the disadvantage
of existing GRID-systems is the use of a single broker,
which is oriented to the certain class of objectives and at
distribution of incoming tasks, it uses one distribution
policy. However the GRID is primarily a heterogeneous
system [20] and, in addition to that, the tasks, accessing
for performing, may be of a heterogeneous nature. Most
of today’s planners do not take into account the cost of
computing resources, which also leads to inefficient use
of resources.

3. The purpose and objectives of the study

The purpose of this work is the developing of the infor-
mation technology for distribution of tasks for computing
resources in a heterogeneous GRID-system.

To achieve this goal it is necessary to solve the following
tasks:

– to develop a mathematical model of task representa-
tions and computational resources in GRID-systems;

– to develop a method of selection of the best distribu-
tion option;

– to carry out a series of experiments on the distribution
of tasks on the basis of the proposed method in the GRASS
simulation modeling environment.

4. The use of simulation modeling for the distribution of
tasks in GRID-systems

Let us justify the expediency of the proposed GRASS
simulation environment (GRID Advanced Simulation Sys-
tem) for the research of application of different task planning
strategies.

There are many sets of modeling environments of the
GRID-systems. The most popular of them are SimGrid,
GridSim, MicroGrid, ChicSim, OptSim, Alea [21, 22]. The
comparative analysis shows that most of them are charac-
terized by specialization, limitations of structures, absence
of accessible and open versions. Also to work with such
systems the knowledge of specific programming languages
is required.

Creating a GRID-system requires investments, which
are not always available, so a cheaper option is the use of
simulation modeling. Simulation modeling is based on the
building of a mathematical model, which can be used to re-
search the properties of the real system.

GRASS system [23] is a computer model of GRID-sys-
tem which enables developing a framework of distributed
computing systems taking into account the problems that
are solved by it and to explore its properties. This model
enables:

– to reproduce the process of functioning in time of
elementary events occurring in the system with the preser-
vation of their interaction logic;

– to produce a series of numerical experiments, which
will enable collecting, analyzing the modeling results and a
comparison of the received data with the actual behavior of
the object.

The GRID-system tasks do not run on their arrival, but
at a certain time of the day. Therefore, we can use the task
and resource pool from the real GRID-system and with the
help of GRASS environment to simulate and get the best
distribution plan, which can be offered to a real system. The
received best plan minimizes not only the final performing
time of pool tasks, but allows to increase of efficiency of the
use of computing resources of the GRID system. However,
in this case, a problem arises that a GRASS environment
simulates a work of a real GRID-system and its result can
be obtained only after a certain time, when the distribution
plan may be no longer relevant. This problem can be solved
in two ways:

– start of GRASS environment is carried out parallel
on several processors (according to the number of present
distribution policies in the environment);

– introduction of a temporary scaling for process mod-
eling.

The first solution can reduce a modeling time, as the first
received plan is the best solution in time for a given task
pool. However, this solution is a long-term option, it cannot
be always possible to apply in practice. The second solution,
based on the introduction of a temporary factor, enables

Information and controlling system

47

reducing of distribution time (transition from hours to sec-
onds). After receiving the plans on all distribution methods,
it is required to make the transition from seconds to hours
and obtain a real modeling time on the basis of which to an-
alyze and select the best distribution plan.

5. Technologies of tasks distribution using
GRASS environment

GRID-system is a complex object, containing a set
of comprising of interconnected heterogeneous resources,
whose operating is subjected to a number of predetermined
rules. One of the main tasks of this system is coordinating of
resource distribution, for the solution of the provided tasks.
The distribution model in GRID–system can be constructed
on the basis of two sets: a set computing resources R and a set
of tasks Z, and also a distribution policy q, i. e., { }G R, Z, q .=

Tasks, accessing the GRID-system, form a stream {Zi,
i=1, 2,…,M}, where I is the serial task number, and M is the
number of tasks. Each task includes a number of parameters
required for its launching in the environment (1):

{ }z z z z z z z
i i i i i i i iZ ar , os ,pc ,ps ,ms ,dc , pr= , i 1...M,∀ = 	 (1)

where ari is the architecture; osi
is the operating system; pci

is the processor count; psi is the processor speed; msi is the
memory size; dci is the disk capacity; pri is the priority.

Any task is a package of objectives { }z , a 1,2,...,A
()a iz Z ,∈ combined by a specific theme. Each task is a sep-
arate performing program. The task for its performing can
be started when all requested resources will be selected for
all tasks.

Resources also form the set { }jR , j 1,2,...,N ,= where j is
the number of computing resource, and N is the number of
resources in GRID-system. Any computing resource, ac-
cessing GRID-system is described with a number of features
which are represented by a tuple (2):

{ }r r r r r r
j j j j j j jR ar ,os ,pc ,ps ,ms ,dc ,= j 1...N,∀ = 	 (2)

In different distribution systems the input tuples (1)
and (2) may have insignificant differences – due to the fact
that the systems develop and during the work with them,
arises the need for introduction of addictions, related to re-
quirements of task suppliers.

An important place in the GRID-systems is assigned to
task schedulers (brokers), whose responsibility is to establish
a schedule of use of computing resources. There are currently
more than twenty well known schedulers for GRID-systems:
Portable Batch System (PBS), Sun Grid Engine (SGE),
TORQUE, Condor, LoadLever, MAUI Scheduler, etc. The
listed above schedulers do not provide the user with a unique
efficient task distribution method. With their help it is only
possible to use one simple algorithm, which is started on the
condition that all the tasks and resources of the system are
given to an advanced predetermined general description.

Currently, there is no universal task scheduler, as the
tasks in GRID-systems are heterogeneous. Therefore, the
additional options should be taken into account at distri-
bution, which will enable increasing the efficiency of use of
computing resources of the system. For example, the anal-
ysis of objectives in the task in terms of their connectivity
will enable to reduce the performing time of the task pool

in the system by eliminating the losses in time, which are
caused by data exchange between separate objectives in
the task.

Let us extend the model of GRID-system through the
introduction of 1 and 2 parameters in the tuples, which will
reduce the downtime of computing resources in GRID-sys-
tem (3), (4):

{ }z z z z z z z z z
i i i i i i i i i iZ ar , os , pc , ps , ms , dc , pr , ca ,rt ,=

i 1...M,∀ = 	 (3)

{ }r r r r r r r r
j j j j j j j j jR ar ,os ,pc , ps ,ms , dc , bw , d ,=

j 1...N,∀ = 	 (4)

where cai (coefficient of association) is the coefficient of
connectivity of objectives in the task; rti (run time) is the
time of task performing (time of use of the resource); bwj
(bandwidth) is the total bandwidth (from the broker to the
resource) including the network condition at the current
time; d (delay) is the total packet transmission delay time
based on network condition at the current time.

Let us also introduce a set of distribution methods in the
model instead of a single distribution policy.

{ }k k kQ mn ,lp ,= k 1...k,∀ = 			 (5)

where mn is the application distribution algorithm on com-
puting resources; lp is the list of input parameters taken into
account at distribution.

As mentioned above, the disadvantage of the
GRID-system is the use of a single broker, which is
focused on a certain class of objectives. The proposed
GRASS environment enables operating several distribu-
tion algorithms at the moment: First-Come First-Served
(FCFS), Last In First Out (LIFO), Highest Priority
First (HPF), a linear programming method (Simplex),
distribution method on free resource, (Smart), a backfill
method (Backfill), and a task distribution method on the
computing resources based on network traffic (Backfill
mod). Backfill mod is an upgrade of a backfill method,
which, unlike the existing one, enables performing dis-
tribution of tasks, accessing GRID-system depending on
objective associations in each of the tasks.

To select an effective distribution plan, a selection meth-
od of the best distribution plan has been developed, which
was implemented in GRASS modeling environment. It is
required:

– to form pools of tasks and resources for different class-
es of tasks (either to form in GRASS environment using
specified generators, either use the pools of tasks of the real
GRID-systems;

– to select a policy (method) of the distribution;
– to run the simulation in the GRASS environment;
– to analyze the log files for all of the policies (methods)

of distribution;
– to select the best plan for the distribution on the basis

of accepted rules and restrictions.
The proposed task distribution policies in GRASS envi-

ronment for different input pools of tasks and resources can
provide a gain in time and reduce a downtime of computing
resources, so it is necessary to set accurate limits for the
access.

Let us observe the operation of the information technolo-
gy of task distribution [24] in a heterogeneous system, which

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 3/9 (81) 2016

48

uses a simulation modeling environment GRASS (Fig. 1).
The proposed technique involves the following stages.

Stage 1. Experiment parameters setting. To run an ex-
periment it is required to set a configuration file plugins.
xml, which describes interconnections between the module
names in the system and the names of the files and libraries,
as well as paths to configuration files [25]. A plugins.xml
file allows setting parameters, passed to the modules at boot
time, which can be used to set the operation mode or initial-
izing of internal values: for tasks, computational resources
and methods of distribution.

The result of this step is reading and decoding of config-
uration file (plugins.xml), loading the main system plugins
to start a distribution process.

Stage 2. A distribution policy selection. The process of
distribution of tasks is performed after the tasks_count
parameter validation of the AlgorythmLoader plugin. As
the task number in the queue exceeds the number, set in
the tasks_count parameter, a call of distribution algorithm
proceeds (5), which is defined in the DistributionAlgorythm
parameter. According to the selected distribution method
[26], a selection of resources for each task in the queue will
be processed. A module of task distribution, which is a part
of GRASS environment, contains a number of methods,
which emulate different distribution algorithms, each of
which uses its own set of parameters (3) and (4) for dis-
tribution. FCFS and LIFO methods do not use additional
parameters, as they are the simplest policies, serving visual
comparison with other methods.

Stage 3. Uploading of information about computing re-
sources and tasks into GRASS modeling environment.

A task, accessing the system, is a packet of objectives,
which is a separate executable program. The processor can
execute only one task at each moment of time, and the task
can be started for execution only in case of selection of
computing resources for all objectives of the task. Any task,
accessing into GRASS environment can be divided into two
components: the characteristics (parameters) of the task and
the task (as a .exe file, input data files, databases, etc.).

Tasks, accessed to the GRASS environment, form a
flow, (link 1, Fig. 1) { }iZ , i =1, 2, ..., M , where i is the task
number, and M is the number of tasks. Having entered the
system, a division of tasks on proposed above parameters
is proceeded. At the initial stage the primarily value is a
task information for the system (3), which operates the
data, required for the search of computing resources, suit-
able for run [26]. The file (tasks_data.xml), containing
this information, is set to advance predetermined format
and enables selecting the certain resource to run in this
system (Fig. 2).

<tasks>	
	 <task time=”1000”>
		 <parameter cpu_arch=”AMD”/>
		 <parameter cpu_count=”64”/>
		 <parameter cpu_speed=”1000”/>
		 <parameter os=”Windows XP”/>
		 <parameter physical_memory=”16”/>
		 <parameter priority =”18”/>
		 <parameter timeout=”180000”/>
		 <parameter hdd_size=”16” />
		 </task>
</tasks>

Fig. 2. A file fragment tasks_data.xml

GRASS system enables not only loading of advanced
generated task file using the the SimpleTasksManager
plugin, but also within the distribution process, to load task
forming generator, using the SimpleTasksGenerator plugin
from the tasks_model.xml file (Fig. 3).

Currently, the following generators are provided in
GRASS environment:

– integers: (Uniform), (Constant), (Exponent) and
(Normal);

– for lists: the sequential selection of one value from an
advanced proposed list (ListLinear) and a random selection
(ListRandom).

Fig. 1. GRASS environment structure

Information and controlling system

49

<delay generator=”Uniform”>
<parameter a=”1500”/>
<parameter b=”2300”/>
</delay>
<memory generator=”Normal”>
<double mean=”1000000”/>
<double sigma=”5000”/>
</memory>
<priority generator=”Constant”>
<double value=”100”/>
</priority>
<time generator=”Exponential”>
<double gamma=”0.5”/>
</time>
<OS generator=”ListLinear”>
<parameter values=”stringlist”>
<string value=”Linux 2.6.2”/>
<string value=”Linux 2.4.2”/>
<string value=”Windows 98”/>
<string value=”Windows 2000”/>
<string value=”Windows XP”/>
<string value=”Windows Vista”/>
<string value=”Windows 7”/>
<string value=”Solaris”/>
<string value=”Mac Os X”/>
</parameter>
</OS>

Fig. 3. Fragment of file tasks_model.xml to generate a pool
of tasks

Simultaneously with the tasks, an information about the
available resources accesses the system (communication 2 in
Fig. 1) { }jR , j=1, 2, ..., N , where j is the order number of the
resource, and N is the number of resources in GRID-system.
Resources, as well as tasks, are also set to the specified for-
mat (resources_data.xml) (Fig. 4).

<resources>
	 <resource name=”name1” time=”480”>
		 <parameter cpu_arch=”AMD”/>
		 <parameter cpu_count=”8”/>
		 <parameter cpu_speed=”1000”/>
		 <parameter os=”Windows XP”/>
		 <parameter physical_memory=”16”/>
		 <parameter hdd_size=”64”/>
		 <parameter free_cpu=”8”/>
	 </resource>

Fig. 4. Fragment of file resources data.xml

Just as in the task formation, we can use the SimpleRe-
sourcesManager and SimpleResourcesGenerator plugins.
The first plug–in is used to download resources from the re-
sources data.xml file, which was formed in advance, the sec-
ond plugin will load the selected resource generator, which is
specified in the configuration file model.xml. The generators
of forming of computing resources are similar to generators
of tasks (Fig. 3). Parallel to the work of this stage, a launch of
the 7th step is fulfilled, which is responsible for maintaining
the log-files in the GRASS environment.

Stage 4. Formation of additional parameters for the
most efficient distribution. All tasks, accessed to the
system, are placed to the task queue (link 5, Fig. 1) and

parallel to it, a transfer of information about each task is
proceeded (a tuple 3) into a tuple convolution module and
an association analysis module (link 6, Fig. 1). Tuple convo-
lution module computes the generalized evaluation criteria
for each task, which enables to manage the process of dis-
tribution of tasks on computing resources more efficiently
and will show what part of the resource the task takes while
performing [27]. At the same time, a transfer of information
of resources, available in the system, is proceeded (link 7,
Fig. 1). The result of the tuple convolution module is a list
of resources, on which each task can be distributed.

Then information is received at the association analysis
module, (link 8, Fig. 1), where the analysis of objectives in
the task is performed. If objectives in the task have high
connectivity (the exchange of information between tasks in
the course of their implementation is required) or for this
task a transfer of large amount of input and output data
is required, a call of method checkQueueStrict() will be
proceeded, which will compare the requirements of the task
with available computing resources.

If computing resources for running of the current task
are available in the system, it remains in the queue and
receives a Waiting status, and an appropriate computing
resources will be selected to suit it. If these resources are not
found, the task gets a Cancelled status, after which it leaves
the queue i.e., this status indicates that the task cannot be
run in this configuration.

In this case, at distribution of objectives out of the task,
the focus on selection of computing resources will be done in
such a way, to reduce the time of data transferring for task
objectives.

If objectives in the task are not interconnected, a meth-
od checkQueueBase() will be called in the system, which,
similar to the method checkQueueStrict() will perform a
selection of computing resources to distribute individual
objectives out of the task to various computing resources
and the task remains in the queue at Waiting status up to the
time of its running on computing resource.

Stage 5. Task distribution module (broker) receives the
information which enables to make decisions for distribution
of tasks on computing resource or resources, performing
on which will be the most optimal for it both in hardware
characteristics, so in characteristics of performance. For dis-
tribution, the broker must receive the following information:

– information on the resources (4), which are currently
present in the system (link 9, Fig. 1);

– information on the resources that are currently re-
served (link 10, Fig. 1) and the time of their release;

– information from the database of the previous starting
of the task (link 11, Fig. 1);

– policy (method) of distribution (link 12, Fig. 1);
– information about connectivity of objectives in the

task (link 13, Fig. 1).
On the basis of the received data, a distribution is per-

formed. The result of the work of the module is the plan
(link 14, Fig. 1), which defines a computing resource to each
task, that is suitable according to the previously mentioned
requirements. Any task, accessing to the Grass environment
will be distributed, the only possible exception is when the
computing resources will not be found in the system.

Stage 6. A process of task sending to the resource or
resources, identified in the distribution plan. To do this, an
inquiry into the queue of tasks is carried out from the unit
which is in charge of transportation (link 15, Fig. 1), which,

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 3/9 (81) 2016

50

according to plan of distribution selects a specific task and
assigns it a status of Running. Further, a task (second com-
ponent), is sent to the selected resource for the next starting
(link 16, Fig. 1). As the actions with resources took place,
(in this case a resource for task performing is selected),
it is required to notify a system about it (link 17, Fig. 1).
A redundancy block sends information to the system that
the resource cannot be used for the subsequent start, until
the finish of task performing (link 18, Fig. 1). Once again,
actions with resources emerge, (for example, a release of the
resource emerges), the backup unit will receive information
about the occurred event (link 17, Fig. 1) and will notify the
system of the possibility of using of the resource for distribu-
tion (link 18, Fig. 1), and will send a message in the queue of
tasks to delete the task from the queue due to the end of its
execution (link 19, Fig. 1).

Stage 7. Collection of statistical information about the
distribution. To obtain statistical information about the
distribution and its following analysis, the module starts up,
which is responsible for log-files. In Grass environment a log-
file conducting module (Logger) is responsible for collection
of statistics. This module provides a flexible and centralized
logging of all plugins of GRASS modeling environment.

The system has several types of log-files, which record a
series of actions that enables a quick obtaining of informa-
tion form the database in case of necessity.

At the task accessing into system, an automatic record-
ing of them performs into the queue.log file (link 3, Fig. 1),
and at resource accessing (link 4, Fig. 1) – it performs
into resources.log. file. At the time of task starting on the
resource or at the end of task performing, a fixation of infor-
mation of this action performs in the raspred.log file (link 20,
Fig. 1), i. e., a recording of the file performs. All records from
the log files are sent to the database of the system (link 21,
Fig. 1), data from which can be used next for sampling the
specified parameters or for graphical information display for
a certain period of time (link 22, Fig. 1).

The modeling process continues as long as there are tasks
in the queue.

6. Peculiarities of GRASS simulation system

GRASS environment is a project with an open source
software, which implements modular environment of GRID
systems [23], is cross platformed, implemented in C++ lan-
guage using a cross platform Qt4, Boost libraries.

GRASS modeling environment has both a console and
a graphical user interface that enables to observe the sim-
ulation of the process in real time. The graphical interface
provides the user with more options, as it displays and visu-
alizes statistics of the simulation environment, the status of
the queue of tasks and resources, and demonstrates the per-
formance of tasks by computing resources. In addition to the
interactive observation of the simulation process, GRASS
environment enables to write a report for the following more
detailed analysis. The report is implemented using scripts
that make it easy to change both its appearance and content.

GRASS modeling environment has a modular struc-
ture: It consists of a core and dynamically loaded modules
(plug-ins). Each module performs a highly specialized task,
referring if necessary to the other modules of the system.
The core provides means of inter-module interaction and
provides the boot and system configuration. Each module

has a unique string identifier (name or ID), which provides
a set of interfaces to interact with the other system compo-
nents. Each interface of the module has also a name and can
be implemented by any number of modules. Thus, to achieve
any interface of the module it is only necessary to know its
name and the name of the interaction interface.

GRASS module environment is a dynamic linked library
dll (dynamic linked library), which implements the factory
method that creates a sample of module class.

Module class implements a Framework::IPlugin inter-
face, which enables working universally with it, not taking
into account peculiarities of implementations.

To create a flexible modular system an easy possibility of
changing the set of plug-ins and their parameters is required
without modifying the core or the libraries of modules. For
this purpose, GRASS environment uses the system of con-
figuration files based on XML.

The developed software system is the basis for the con-
tinuation of research in the field of GRID-systems.

7. Discussion of the results of research of application of
the proposed information technology

In the study of information technology of distribution of
tasks, a series of experiments were conducted. Their aim was
to show the rationality not of using of a single broker for all
incoming tasks on the system input, but to select the best,
focusing on task classes.

2 pools were formed with the GRASS environment: of
tasks and resources. Pool of tasks includes 300 tasks, each of
which is described by a tuple (3), a resource pool is formed
in accordance with the tuple (4), and includes 80 computing
resources. Each task is characterized by the requirements,
specified by the job providers.

Using different distribution policies a simulation was
conducted. The simulation results are compared with each
other, and on the basis of the analysis a decision of the best
distribution for a particular task pool is made. Fig. 5 shows
the run time of all GRASS environment methods for a par-
ticular task pool, and Fig. 6 shows the percentage of down-
time of computing resources.

Fig. 5. Distribution time of task pool in the GRASS
environment

All tasks, accessing the GRID-system, can be divided
into 4 classes, which are characterized by:

– a large amount of input data and a large amount of
output data;

– a small amount of input data and a large volume of
output data;

FCFS LIFO HPF Smart Simplex Backfill
0:00:00

Backfill
mod

1:12:00

2:24:00

3:36:00

4:48:00

6:00:00

7:12:00

Information and controlling system

51

– a large of input data and small amount output data;
– a small amount of input data and a small amount of

output data.
Table 1 and Fig. 7 show the simulation results of all

methods of GRASS environment in accordance with the
following classification of tasks.

Fig. 6. Downtime percentage of computing resources in
GRASS environment

Table 1

Run time of GRASS environment methods for
various classes of tasks

Distribution
methods

Classes of tasks

1st 2nd 3rd 4th

FCFS 6:50:21 5:16:28 5:23:53 2:32:42

LIFO 6:54:43 5:58:50 6:01:52 2:37:53

HPF 6:33:45 6:00:35 6:08:32 2:40:22

Smart 6:28:55 6:03:51 6:10:44 3:09:49

Simplex 6:33:46 5:33:46 4:56:21 2:57:55

Backfill 5:19:54 5:01:49 3:28:43 3:42:46

Backfill
(mod)

4:48:39 3:58:23 2:47:33 3:48:01

In the course of the experiments, a dependence of dis-
tribution results to task classes was revealed. There is no
unique method of distribution at present, which could enable
getting the best plan on any pool of tasks. But in case, when
the GRID-system characteristics and the input task stream
are known, we can carry out modeling and select distribu-
tion method for a certain task pool.

The advantage of GRASS simulation environment is
that it operates on an algorithm that analyzing the input
stream of tasks, chooses the distribution method that gives
the best distribution of the specified requirements of task
provider.

8. Conclusions

As the result of conducted research, methods of task
distribution in heterogeneous GRID-systems were ana-
lyzed. From the analysis we can conclude that the existing
schedulers on the market have a number of drawbacks,
the main of them is the focus on a specific class of tasks.
This can be explained by the fact that these planners were
originally intended for cluster systems, which in turn,
were later included in the GRID-infrastructure and tasks
continued to be carried out locally.

In the process of research a modification of mathe-
matical models of representation of tasks and resources
in GRID-system was proposed. The use in representation
model tasks a connectivity factor (step 4) enables the selec-
tion of computing resources with a minimizing of time for
data exchange between tasks. Introduction to the model of
representation the computing resources of value, taking into
account the amount of traffic and transmission delays of in-
formation on the channel, enable to reduce the performance
time of the task pool, which will increase the efficiency of the
use of computational resources in GRID-system.

Based on a mathematical model of representing of
resources and tasks, a method of selection of the best
distribution option on the basis of analysis of data ob-
tained during the experiment was developed. The pro-
posed GRASS environment enables to operate multiple
distribution algorithms: FCFS, LIFO, HPF, Simplex,
Smart, Backfill, Backfill mod that enables to simulate a
distribution for a particular pool task at the various dis-

tribution policies and to analyze the
simulation results in the future. Due
to the fact that the proposed system
is modular, there are no obstacles for
the implementation and connection
of new distribution algorithms.

In the course of research, a series
of experiments on the distribution of
tasks to computing resources in the
GRASS simulation-modeling envi-
ronment for different distribution pol-
icies was conducted. The results ob-
tained during the experiments show a
decrease in task pool performance
time by 24 % and increase of efficien-
cy of use of computing resources by
32 % for a number of the distribution
policies (methods), implemented in
the GRASS environment.

100
90

10

80

FCFS LIFO HPF Smart Simplex Backfill

70
60
50
40
30
20

0
Backfill

mod

FCFS LIFO HPF Smart Simplex Backfill
0:00:00

Backfill
mod

1:12:00

2:24:00

3:36:00

4:48:00

6:00:00

7:12:00

Fig. 7. Run time of GRASS environment methods depending on task classes

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774	 3/9 (81) 2016

52

References

1.	 Aida, K. Scheduling Mixed-parallel Applications with Advance Reservations [Text] / K. Aida, H. Casanova // Proceed-

ings of the 17th international symposium on High performance distributed computing – HPDC ‘08, 2008. – P. 65–74. 	

doi: 10.1145/1383422.1383432

2.	 Ando, S. Evaluation of Scheduling Algorithms for Advance Reservations [Text] / S. Ando, K. Aida // Information Processing

Society of Japan SIG Notes. HPC-113, 2007. – P. 37–42.

3.	 Elmroth, E. A Standards-based Grid Resource Brokering Service Supporting Advance Reservations, Coallocation and

Cross-Grid Interoperability [Text] / E. Elmroth, J. Tordsson // Concurrency and Computation: Practice and Experience. – 	

2009. – Vol. 21, Issue 18. – P. 2298–2335. doi: 10.1002/cpe.1441

4.	 Cafaro, M. Preference-Based Matchmaking of Grid Resources with CP-Nets [Text] / M. Cafaro, M. Mirto, G. Aloisio // Jour-

nal of Grid Computing. – 2013. – Vol. 11, Issue 2. – P. 211–237. doi: 10.1007/s10723-012-9235-2

5.	 Kurowski, K. Multicriteria Aspects of Grid Resource Management [Text] / K. Kurowski, J. Nabrzyski, A. Oleksiak, J. Weg-	

larz // International Series in Operations Research & Management Science, 2003. – P. 271–293. doi: 10.1007/978-1-4615-

0509-9_18

6.	 Ernemann, C. Economic Scheduling in Grid Computing [Text] / C. Ernemann, V. Hamscher, R. Yahyapour; D. G. Feitelson, 	

L. Rudolph, U. Schwiegelshohn (Eds.) // Lecture Notes in Computer Science. – 2002. – Vol. 2537. – P. 128–152. doi: 10.1007/	

3-540-36180-4_8

7.	 Rodero, I. Enabling Interoperability among Grid Meta-Schedulers [Text] / I. Rodero, D. Villegas, N. Bobroff, Y. Liu, L. Fong, 	

S. Sadjadi // Journal of Grid Computing. – 2013. – Vol. 11, Issue 2. – P. 311–336. doi: 10.1007/s10723-013-9252-9

8.	 Azzedin, F. A Synchronous Co-allocation Mechanism for Grid Computing Systems [Text] / F. Azzedin, M. Maheswaran, N. Arna-	

son // Cluster Computing. – 2004. – Vol. 7, Issue 1. – P. 39–49. doi: 10.1023/b:clus.0000003942.73875.29

9.	 Castillo, C. Resource Co-allocation for Large-scale Distributed Environments [Text] / C. Castillo, G. N. Rouskas, K. Har-	

foush // 18th ACM International Symposium on High Performance Distributed Compuing, ACM, 2009. – P. 137–150.

10.	 Takefusa, A. An Advance Reservation-based Co-allocation Algorithm for Distributed Computers and Network Bandwidth on

QoS-guaranteed Grids [Text] / A. Takefusa, H. Nakada, T. Kudoh, Y. Tanaka; E. Frachtenberg, U. Schwiegelshohn (Eds.) //

Lecture Notes in Computer Science. – 2010. – Vol. 6253. – P. 16–34. doi: 10.1007/978-3-642-16505-4_2

11.	 Blanco, H. MIP Model Scheduling for Multiclusters [Text] / H. Blanco, F. Guirado, J. L. Lérida, V. M. Albornoz // Lecture

Notes in Computer Science. – 2012. – Vol. 7640. – P. 196–206. doi: 10.1007/978-3-642-36949-0_22

12.	 Garg, S. K. A Linear Programming-driven Genetic Algorithm for Meta-scheduling on Utility Grids [Text] / S. K. Garg, 	

P. Konugurthi, R. Buyya // International Journal of Parallel, Emergent and Distributed Systems. – 2011. – Vol. 26, Issue 6. – 	

P. 493–517. doi: 10.1080/17445760.2010.530002

13.	 Olteanu, A. A Dynamic Rescheduling Algorithm for Resource Management in Large Scale Dependable Distributed Systems

[Text] / A. Olteanu, F. Pop, C. Dobre, V. Cristea // Computers and Mathematics with Applications. – 2012. – Vol. 63, Issue 9. – 	

P. 1409–1423. doi: 10.1016/j.camwa.2012.02.066

14.	 Toporkov, V. Slot Selection Algorithms in Distributed Computing [Text] / V. Toporkov, A. Toporkova, A. Tselishchev, D. Yemelya-	

nov // Journal of Supercomputing. – 2014. – Vol. 69, Issue 1. – P. 53–60. doi: 10.1007/s11227-014-1210-1

15.	 Toporkov, V. Slot Selection Algorithms in Distributed Computing with Non-dedicated and Heterogeneous Resources [Text] / 	

V. Toporkov, A. Toporkova, A. Tselishchev, D. Yemelyanov; V. Malyshkin (Ed.) // Lecture Notes in Computer Science. – 2013. – 	

Vol. 7979. – P. 120–134. doi: 10.1007/978-3-642-39958-9_10

16.	 Toporkov, V. V. Metodi i evristiki planirovaniya v raspredelenih vichisleniyah s neotchujdaemimi resursami [Text] / 	

V. V. Toporkov, А. V. Bobchenkov, D. M. Yemelyanov, А. S. Tselishchev // Vestnik UUrGU, seriya «Vichislitelnaya matematika

i informatika». – 2014. – Vol. 3, Issue 2. – P. 43–62.

17.	 Toporkov, V. V. Metaplanirovanie vichisleniy v raspredelennih sredah s neotchuzhdaemimi resursami [Text] / V. V. Toporkov, 	

D. M. Yemelyanov, A. S. Toporkova // Informacionnie tehnologii v nauke, obrazovanii i upravlenii. IT + S&E`16, 2016. – P. 22–31.

18.	 Kostromin, R. O. Modeli, metodi i sredstva upravleniya vichisleniyami v integrirovannoy klasternoy sisteme [Text] / 	

R. O. Kostromin // Fundamentalnii issledovaniya. – 2015. – Vol. 6. – P. 35–38.

19.	 Feoktistov, A. G. Metodoligia konceptualizacii i klassifikacii potokov zadaniy masshtabiruemih prilozheniy v raznorod-

noi raspredelennoy vichislitelnoi srede [Text] / A. G. Feoktistov // Sistemi upravleniya, svjazi i bezopasnosti. – 2015. – 	

Vol. 4. – P. 1–25.

20.	 Venugopal, S. A Grid Service Broker for Scheduling e-Science Applications on Global Data Grids [Text] / S. Venugopal, R. Buyya, 	

L. Winton // Concurrency and Computation: Practice and Experience. – 2006. – Vol. 18, Issue 6. – P. 685–699. doi: 10.1002/

cpe.974

Information and controlling system

53

21.	 Astrikov, D. U. Modelirovanie sistemi planirovaniya raspredelennogo visokoproizvoditelnogo vichislitelnogo kompleksa [Text] /

D. U. Astrikov, D. A. Kuzmin, A. I. Panacuk // Dokladi Akademii nauk Vissheiy shkoli Rossiyskoi federazii. – 2014. –

Vol. 2-3, Issue 23-24. – P. 34–41.

22.	 Milukov, V. V. Modelirovanie fragmentov GRID-sistemi v simulatore GridSim [Text] / V. V. Milukov, U. V. Sosnovskiy //

Optimizaciya virobnichih procesiv. – 2013. – Vol. 14. – P. 218–222.

23.	 Volk, M. A. Arhitektura imitatsionnoy modeli GRID-sistemyi, osnovannaya na podklyuchaemyih modulyah [Text] / M. A. Volk,

A. S. Gorenkov, R. N. Gridel // Sistemi obrobki informatsii. – 2010. – Vol. 1, Issue 82. – P. 17–20.

24.	 Filimonchuk, T. V. Informatsionnaya tehnologiya raspredeleniya zadaniy na vyichislitelnyie resursyi v GRID-sistemah [Text] /

T. V. Filimonchuk, V. N. Tkachev // Informatika, matematicheskoe modelirovanie, ekonomika. – 2015. – Vol. 1. – P. 204–209.

25.	 Volk, M. A. Struktura programmnogo kompleksa imitatsionnogo modelirovaniya elementov GRID-sistem dlya nauchnyih

issledovaniy [Text] / M. A. Volk // Sistemi obrobki Informatsii. – 2009. – Vol. 3, Issue 77. – P. 125–128.

26.	 Volk, M. A. Modul raspredeleniya zadaniy v GRID-sistemah [Text] / M. A. Volk, M. A. Filimonchuk, T. V. Filimonchuk //

Sistemi obrobki informatsii. – 2012. – Vol. 2, Issue 100. – P. 177–182.

27.	 Volk, M. A. Obobschennyiy kriteriy otsenki zadaniya dlya tehnologii planirovaniya zadaniy v GRID. In 3 volumes. Vol. 2

[Text] / M. A. Volk, T. V. Filimonchuk // Informatika, matematicheskoe modelirovanie, ekonomika, 2013. – P. 172–176.

