УДК 681.5+548.55

М.В. ЗАГИРНЯК, А.П. ОКСАНИЧ, В.Р. ПЕТРЕНКО, С.Э. ПРИТЧИН, В.А. ТЕРБАН

РАЗРАБОТКА МАТЕМАТИЧЕСКОЙ МОДЕЛИ И ПРОГНОЗНОГО РЕГУЛЯТОРА ДЛЯ ПРОЦЕССА ВЫРАЩИВАНИЯ МОНОКРИСТАЛЛОВ ПОЛУИЗОЛИРУЮЩЕГО АРСЕНИДА ГАЛЛИЯ

На основе использования подхода Бокса-Дженкинса к синтезу моделей стохастических линейных динамических процессов разработана ARMAX-модель процесса вытягивания монокристаллических слитков полуизолирующего арсенида галлия по технологии с жидкостной герметизацией, связывающая вариации температуры фонового нагревателя с вариациями диаметра слитка. Полученная модель применяется для синтеза оптимального прогнозного регулятора процесса выращивания на этапе вытягивания цилиндрической части слитка. Результаты моделирования работы регулятора подтверждают его работоспособность.

1. Введение

Арсенид галлия привлекает внимание исследователей, как перспективный материал для микроэлектроники, благодаря ряду своих свойств. Важнейшим из них является высокая (в шесть раз большая, чем в кремнии) подвижность электронов в электрических полях низкой напряженности, что потенциально позволяет создать СВЧ - приборы с улучшенными характеристиками. Другое достоинство арсенида галлия заключается в большой ширине его запрещенной зоны, что является необходимым условием работоспособности структур при повышенных температурах. Кроме того, малая величина времени жизни неосновных носителей и большая, чем у кремния, ширина запрещенной зоны делают арсенид галлия более перспективным материалом для создания радиационно-стойких приборов и интегральных схем (ИС).

Однако выращивание крупногабаритных монокристаллов арсенида галлия, предназначенных для промышленного использования, сопряжено с большими материальными затратами. В связи с этим особенно актуальной становится проблема повышения качества монокристаллов путем совершенствования систем управления.

Одним из основных параметров в процессе роста монокристаллов арсенида галлия является его диаметр. Обеспечение постоянства диаметра растущего кристалла по всей длине его цилиндрической части – самая актуальная задача управления процессом выращивания. Колебания диаметра во время выращивания приводят к неоднородности кристаллической решетки, что сказывается на качестве будущего полупроводникового прибора.

Г.А. Сатункин в своих работах [1,2] развил подход к управлению процессом кристаллизации на основе разработанной им математической модели низкого порядка (МНП), имеющей следующий вид в стандартной матричной форме:

$$X(t) = A(t)X(t) + B(t)\Omega(t), \qquad (1)$$

где $X(t) = [\delta r(t), \delta h(t)]^T$ – вектор переменных состояния, компонентами которого являются малые отклонения радиуса кристалла и высоты мениска расплава от заданных значений; A(t) и B(t) – матричные коэффициенты, зависящие от температурных параметров объекта управления; $\Omega(t) = [\delta T(t), \delta V(t)]^T$ – вектор входных переменных, содержащий вариации температуры расплава и скорости вытягивания. Заметим, что МНП не учитывает в явном виде стохастичность процесса выращивания, хотя, как отмечено в [3], определенные перспективы в управлении процессом кристаллизации можно связывать именно с учетом стохастической природы технологического процесса получения монокристаллов.

В работе [4] исследовалась возможность использования для моделирования зависимости вариаций диаметра кристалла от вариаций скорости вытягивания класса ARMAXмоделей. Были получены положительные результаты. Следует также отметить, что использование ARMAX-моделей хорошо себя зарекомендовало в ряде работ по моделированию и управлению процессом выращивания монокристаллических слитков кремния [5-7].

Но промышленное использование регулятора, разработанного на основе модели [4] и описанного в [8], дало основание усомниться в оптимальности выбора канала управления. Оказалось, что малыми отклонениями скорости вытягивания слитка не удается обеспечить требуемую точность регулирования диаметра, а при больших отклонениях наблюдается ухудшение качественных параметров кристаллов. Кроме того, существенные колебания скорости вытягивания могут приводить к срыву монокристалличности роста слитка. По мнению авторов, избежать этого возможно, если для регулирования диаметра использовать канал фонового нагревателя.

Разработка ARMAX-модели, связывающей отклонения диаметра слитка с отклонениями температуры фонового нагревателя, и синтез на ее основе регулятора диаметра, соответствующего концепции прогнозного управления, и является *целью данной работы*. Метод прогнозного управления был разработан в конце семидесятых годов прошлого века [9]. На сегодня известно значительное количество модификаций метода прогнозного управления: EPSAC, GPC, MUSMAR, MAC, PFC, QDMC ,SOLO [10-16]. В этих алгоритмах используется одна и та же концепция прогнозного управления: наличие внутренней модели, метод отступающего горизонта и вычисление последовательности прогнозных оптимальных сигналов управления. Алгоритмы отличаются применением различных моделей реальной системы, возмущающих воздействий и критериев оптимальности управления.

Все экспериментальные работы были выполнены на модернизированной промышленной технологической установке "Арсенид-1М" в условиях выращивания слитков арсенида галлия диаметром 40 мм.

2. Постановка задачи

Для построения математической модели будем использовать класс стохастических разностных моделей с дискретным временем [17]. Предположим, что модель передаточной функции

$$Y_t = v(B)X_t + N_t$$
(2)

может быть экономично параметризована в виде

$$Y_{t} = \delta^{-1}(B)\omega(B)X_{t-b} + N_{t},$$
 (3)

где b – чистое запаздывание; В – оператор сдвига назад, т.е. $BY_t = Y_{t-1}$;

$$\delta(B) = 1 - \delta_1 B - \delta_2 B^2 - \dots - \delta_r B^r; \quad \omega(B) = \omega_0 - \omega_1 B - \omega_2 B^2 - \dots - \omega_s B^s;$$

 Y_i , i = t, t-1, ..., t-r и X_j j = t-b, t-b-1, ..., t-b-s – соответственно отклонения выхода и входа от равновесных состояний; N_t - шум, генерируемый некоторым процессом авторегрессии-проинтегрированного скользящего среднего(АРПСС) и статистически независимый от X_t .

Таким образом, для построения модели необходимо по доступным наблюдениям $(X_1, Y_1), (X_2, Y_2), ..., (X_N, Y_N)$ определить оценки параметров r, s, b и начальные оценки параметров δ_i , $i = \overline{s, r}$ и ω_i , $j = \overline{0, s}$, а также идентифицировать и оценить модель шума.

Для регулирования диаметра слитка будем использовать алгоритм прогнозного управления, который в общем виде может быть представлен последовательностью следующих шагов :

1. Предсказание в момент времени t (на основе модели объекта управления) значений выходной переменной системы $\hat{y}_t(t+k)$, где $k=1,...,N_1$. (При этом выход зависит от будущих управляющих воздействий $\hat{x}_t(t+k), k = 0, 1, ..., N_2$).

2. Выбор целевой функции управления и оптимизация с ее помощью $\hat{x}_t(t+k), k = 0, 1, ..., N_2$.

3. Реализация управления $x_t = \hat{x}_t(t)$.

4. Переход в момент времени (t+1) к шагу 1 и повторение шагов 1-4 до достижения цели управления.

В качестве критерия оптимизации, используемого на шаге 2, возмем критерий вида:

$$J(t) = \sum_{k=1}^{N_1} [\hat{y}_t(t+k) - r_t(t+k)]^2 q_1(k) + \sum_{k=0}^{N_2-1} [\hat{x}_t(t+k)]^2 q_2(k)$$

Значения штрафов на управление и его ошибку можно изменять с помощью весовых коэффициентов $q_2(k)$ и $q_1(k)$. Предполагается, что всегда $N_2 \le N_1$ и что $\Delta \hat{x}_t(t+k) = 0$ для $k \ge N_2$.

3. Структурно-параметрический синтез математической модели

Заметим, что путем взятия конечных разностей над процессами X_t, Y_t модель (2) можно привести к виду

$$y_t = v_0 x_t + v_1 x_{t-1} + v_2 x_{t-2} + \dots + n_t,$$
(4)

где $y_t = \nabla^d Y_t, x_t = \nabla^d X_t, n_t = \nabla^d N_t$ - стационарные процессы с нулевыми средними значениями, d-порядок разности.

Процедура построения модели передаточной функции в соответствии с [17] сводится к выполнению следующих основных этапов:

– получение грубых оценок \hat{v}_j импульсного отклика в (4) с помощью алгоритма, основанного на выравнивании спектра входа;

– определение оценок $\hat{r}, \hat{s}, \hat{b}$ параметров r, s, b на основе анализа поведения последовательности \hat{v}_i ;

– вычисление начальных оценок $\hat{\delta}_i$, $i = \overline{1, r}$ и $\hat{\omega}_i$, $j = \overline{0, s}$ на основании оценок $\hat{v}, \hat{r}, \hat{s}, \hat{b}$;

- определение структуры и начальных оценок параметров модели шума;

- уточнение оценок параметров комбинированной модели;

- диагностическая проверка разработанной модели.

Для определения оценок \hat{v}_i параметров v_i модели (4) использовалось соотношение

$$\hat{v}_{j} = \frac{r_{\alpha\beta}(j)s_{\beta}}{s_{\alpha}}$$
, j=0,1,2,..., (5)

где $r_{\alpha\beta}(j)$ – выборочная взаимная корреляционная функция процессов α_t и β_t , а s_β и s_α – выборочные стандартные отклонения для этих процессов.

Процесс α_t определяется путем подгонки АРСС-модели к процессу x_t , т е.

$$\varphi_{\mathbf{x}}(\mathbf{B})\theta^{-1}{}_{\mathbf{x}}(\mathbf{B})\mathbf{x}_{\mathbf{t}} = \alpha_{\mathbf{t}} \quad , \tag{6}$$

а процесс β_t – результат применения преобразования $\varphi_x(B)\theta^{-1}_x(B)$ к процессу y_t , т.е.

$$\beta_{t} = \varphi_{x}(B)\theta_{x}^{-1}(B)y_{t}.$$
(7)

Модель (4) при этом может быть представлена в виде

$$\beta_t = v(B)\alpha_t + \xi_t , \qquad (8)$$

где $\xi_t = \phi_x(B)\theta_x^{-1}(B)n_t$.

При известных \hat{v}_j значения параметров r, s, b модели (3) можно оценить, используя следующие факты [17]: для модели вида (3) веса v_j импульсного отклика состоят из b нулевых значений $v_0, v_1, ..., v_{b-1}$, последующих s-r+1 значений $v_b, v_{b+1}, ..., v_{b+s-r}$ с произвольным поведением (таких значений нет, если s<r) и значений v_j при $j \ge b+s-r+1$, поведение которых определяется разностным уравнением r-го порядка с r начальными значениями $v_{b+s}, v_{b+s-1}, ..., v_{b+s-r+1}$.

Начальные оценки параметров δ_i , $i = \overline{1, r}$ и ω_j , $j = \overline{0, s}$ определяются путем использования следующей системы уравнений:

При известных оценках параметров передаточной функции можно найти оценки n_t с помощью соотношения

$$\hat{n}_{t} = y_{t} - \hat{\delta}^{-1}(B)\hat{\omega}(B)x_{t-b}$$
 (10)

Далее с помощью известных методов идентификации АРСС-процессов определяется структура модели для n_t и начальные оценки ее параметров.

На этапе оценивания модели решается задача одновременного эффективного оценивания параметров b, $\overline{\delta}, \overline{\omega}, \overline{\phi}, \overline{\theta}$ ранее идентифицированной модели вида

$$y_t = \delta^{-1}(B)\omega(B)x_{t-b} + \phi^{-1}(B)\theta(B)a_t$$
 (11)

Эта задача решается путем минимизации условной суммы квадратов

$$S_{0}(b,\overline{\delta},\overline{\omega},\overline{\varphi},\overline{\theta}) = \sum_{t=u+p+1}^{n} a_{t}^{2}(b,\overline{\delta},\overline{\omega},\overline{\varphi},\overline{\theta} \mid x_{0},y_{0},a_{0}), \qquad (12)$$

где u – большее из r и s+b. Для поиска оценок параметров, минимизирующих (12), использовался известный метод Марквардта [18]. При этом ковариационная матрица оценок V определяется формулой

$$V = (X'X)^{-1}\hat{\sigma}_{a}^{2}, \qquad (13)$$

здесь X – регрессионная матрица в линеаризованной модели, вычисленная на последней итерации в процедуре Марквардта, а $\hat{\sigma}_a^2$ – оценка остаточной дисперсии.

Диагностическая проверка соответствия комбинированной модели анализируемым данным основана на исследовании поведения остаточных ошибок \hat{a}_t , которые можно определить с помощью следующего соотношения:

$$\hat{a}_{t} = \hat{\theta}^{-1}(B)\hat{\phi}(B) \Big(y_{t} - \hat{\delta}^{-1}(B)\hat{\omega}(B) x_{t-b} \Big),$$
 (14)

где $t \ge u+1$, $u = max\{r, s+b\}$ и все \hat{a}_j , $j = \overline{l, u+p}$ равны нулю.

При этом вычисляется статистика

$$Q = m \sum_{k=1}^{K} r_{\hat{a}\hat{a}}^{2}(k) , \qquad (15)$$

где m – количество используемых в расчетах значений \hat{a}_t (обычно m = n - u - p, n – объем выборки); К – задержка, для которой справедливо, что при k > K автокорреляции пренебрежительно малы.

В [17] указано, что величина Q распределена примерно как χ^2 с K-p-q степенями свободы. Если Q меньше табличного значения для заданного уровня значимости, то принимается гипотеза об адекватности разработанной комбинированной модели.

Ниже приведены результаты основных этапов синтеза модели рассматриваемого класса, связывающей отклонения диаметра растущего кристалла с отклонениями температуры фонового нагревателя. В качестве исходных данных для решения задачи синтеза модели использовались два временных ряда, образованных наблюдаемыми значениями отклонений диаметра кристалла (Y_t) и отклонений температуры фонового нагревателя (X_t). Данные снимались на этапе выращивания цилиндрической части слитка с интервалом 1 мин на установке "Арсенид-1М". Фрагменты рядов приведены на рис.1.

Рис. 1. Фрагменты исследуемых рядов: а – отклонения температуры фонового нагревателя; б – отклонения диаметра слитка

Выборочная автокорреляционная и частная автокорреляционная функции входа x_t представлены на рис. 2 и 3 соответственно.

Рис. 2. Автокорреляционная функция

Рис.3. Частная автокорреляционная функция

Анализ автокорреляционной и частной автокорреляционной функций позволяет предположить, что вход системы может быть представлен моделью скользящего среднего второго порядка. Для оценивания параметров модели входа x_t использовался алгоритм Вильсона метода Ньютона-Рафсона. Были получены следующие оценки параметров $\theta_1 = -0.52; \theta_2 = -0.07$. Таким образом, в нашем конкретном случае модель (6) приняла вид $\theta^{-1}_{\mathbf{x}}(\mathbf{B})\mathbf{x}_{\mathbf{t}} = \alpha_{\mathbf{t}} \mathbf{c}$ параметрами $\theta_1 = -0.52; \theta_2 = -0.07$, (16)

а модели (7), (8) соответственно

$$\beta_t = \theta_x^{-1}(B)y_t \tag{17}$$

$$\beta_t = v(B)\alpha_t + \xi_t, \ r \exists e \quad \xi_t = \theta^{-1}{}_x(B)n_t.$$
(18)

Далее, следуя описанной выше методике, были получены оценки отклика на единичный импульс, анализ поведения которых согласно рекомендациям[17] позволил определить следующие оценки структурных параметров модели передаточной функции: r = 2, s = 1, b = 3.

Таким образом, модель передаточной функции принимает вид

$$(1 - \delta_1 B - \delta_2 B^2) y_t = (\omega_0 - \omega_1 B) x_{t-3} + n_t.$$
⁽¹⁹⁾

Начальные оценки «левосторонних» параметров ($\hat{\delta}_i$) можно получить путем решения системы уравнений

$$A\hat{\delta} = h , \qquad (20)$$

где
$$a_{ij} = \begin{cases} \hat{\upsilon}_{b+s+i-j}, & s+i \ge j \\ \emptyset, & s+i < j \end{cases}$$
; $h_i = \hat{\upsilon}_{b+s+i}$; $i, j = 1, 2, ...r$

Для получения начальных оценок «правосторонних» параметров ($\hat{\omega}_j$) использовались следующие соотношения:

$$\hat{\omega}_0 = \hat{\upsilon}_b \,; \tag{21}$$

если
$$r \ge s$$
, то $\hat{\omega}_j = \sum_{i=1}^j \hat{\delta}_i \hat{\upsilon}_{b+j-i} - \hat{\upsilon}_{b+j}$; если $r < s$, то $\hat{\omega}_j = \sum_{i=1}^j \hat{\delta}_i \hat{\upsilon}_{b+j-i} - \hat{\upsilon}_{b+j}$ для $j = 1, 2, ...r$;
 $\hat{\omega}_j = \sum_{i=1}^r \hat{\delta}_i \hat{\upsilon}_{b+j-i} - \hat{\upsilon}_{b+j}$ для $j = r+1, ...s$.

Используя (20), (21), а также полученные ранее оценки структурных параметров модели и оценки отклика на единичный импульс, получаем следующие начальные оценки параметров модели передаточной функции:

$$\hat{\delta}_1 = -0.15; \, \hat{\delta}_2 = 0.6; \, \hat{\omega}_0 = -0.08; \, \hat{\omega}_1 = 0.03 \, .$$

Построение модели шума основывается на восстановлении последовательности n_t путем использования (4) и полученных оценок отклика на единичный импульс, т.е.

$$\hat{n}_t = y_t - \hat{\upsilon}_0 \cdot x_t - \hat{\upsilon}_1 \cdot x_{t-1} - ... - \hat{\upsilon}_k \cdot x_{t-k},$$

где значение k должно удовлетворять условию $\upsilon_{k+i} = 0$, i = 1, 2, ... В нашем случае можно взять k = 14. К полученной последовательности \hat{n}_t осуществляется подгонка АРСС-модели тем же самым способом, с помощью которого мы строили АРСС-модель для последовательности x_t .

Оценки автокорреляций и частных автокорреляций шума представлены соответственно на рис. 4 и 5.

Рис. 4. Выборочная автокорреляционная шума функция

Рис. 5. Выборочная частная автокорреляционная функция шума

Их анализ позволил определить структуру модели шума в виде (1, 0, 0). После предварительного оценивания модели шума она приняла следующий вид:

$$(1 - 0.53B)n_t = a_t, \quad s_a^2 = 0.78.$$
 (22)

Уточнение оценок параметров комбинированной модели было выполнено по хорошо известному методу Марквардта [18], позволяющему получить эффективные оценки параметров b, $\overline{\delta}$, $\overline{\omega}$, $\overline{\phi}$, $\overline{\theta}$ комбинированной модели путем минимизации условной суммы квадратов

$$S_0\left(b,\overline{\delta},\overline{\omega},\overline{\phi},\overline{\theta}\right) = \sum_{u+p+1}^n a_t^2\left(b,\overline{\delta},\overline{\omega},\overline{\phi},\overline{\theta} \mid x_0, y_0, a_0\right).$$

После этого комбинированная модель приняла следующий вид:.

$$(1+0.25B-0.4B^{2})y_{t} = -0.1x_{t-3} + \frac{1}{1-0.77B}a_{t}$$
(23)

или после несложных преобразований

$$(1-0.52B-0.593B^2+0.308B^3)y_t = -(0.1-0.077B)x_{t-3} + a_t; s_a^2 = 0.73.$$

В целях диагностической проверки модели (23) с использованием (15) было определено значение статистики Q. Оно оказалось равным 15.1 при 13 степенях свободы. Критическое значение этой статистики при указанном числе степеней свободы и уровне значимости 0.05 равно 22.36. Таким образом, можно считать справедливой гипотезу об адекватности разработанной модели.

4. Разработка прогнозного регулятора

Сначала опишем процедуру синтеза регулятора в общем виде для класса моделей

$$Ay(t) = Bx(t-b) + a(t)$$
, (24)

где

$$A = 1 + a_1 S + a_2 S^2 + a_3 S^3 + \dots + a_{n_a} S^{n_a};$$

$$B = b_0 + b_1 S + b_2 S^2 + b_3 S^3 + \dots + b_{n_b} S^{n_b},$$

S-оператор сдвига назад, т.е. Sy(t)=y(t-1),

а затем применим полученные результаты к модели (23)(легко заметить, что она принадлежит классу моделей (24)). Будем также считать, что горизонты прогнозирования и управления равны между собой ($N_1=N_2$).

Представим (24) в виде

$$y(t) = \frac{B}{A}x(t-b) + \frac{1}{A}a(t).$$
 (25)

Тогда уравнение прогноза с упреждением k будет иметь вид

$$y(t+k) = \frac{B}{A}x(t+k-b) + \frac{1}{A}a(t+k).$$
 (26)

Используя диофантово тождество [15], имеющее для модели (25) вид

$$E_k A = 1 - S^k F_k , \qquad (27)$$

где $E_k = e_0 + e_1 S + e_2 S^2 + \dots + e_{n_e} S^{n_e}$; $F_k = f_0^k + f_1^k S + f_2^k S^2 + \dots + f_{n_f}^k S^{n_f}$;

 $k \ge 1$; $n_e = k - 1$; $n_f = n_a - 1$; n_a – порядок полинома A, перепишем уравнение (26) в виде

$$y(t+k) = BE_k x(t+k-b) + F_k y(t) + E_k a(t+k).$$
 (28)

При этом прогнозное значение выхода с упреждением *k* можно получить с помощью соотношения

$$\hat{y}(t+k/t) = BE_k x(t+k-b) + F_k y(t)$$
. (29)

Реальный выход системы может быть записан в виде

$$y(t+k) = \hat{y}(t+k/t) + E_k a(t+k).$$
(30)

39

Полагая, что нужно получить прогнозы для некоторого диапазона значений k (от k=1 до k=N), запишем уравнение (28) в векторной форме, используя подход, предложенный в [19]: Y = GX + f + a, (31)

где

$$\begin{array}{l} Y^T = [y(t+1), y(t+2), \cdots, y(t+N)]; \\ X^T = [x(t-b+1), x(t-b+2), \cdots, x(t-b+N)]; \\ f^T = [F_1y(t) + d_1, F_2y(t) + d_2, \cdots, F_Ny(t) + d_N]; \\ a^T = [E_1a(t+1), E_2a(t+2), \cdots, E_Na(t+N)]; \\ g_i = h_i, i = \overline{0, N-1}; H = BE_N = h_0 + h_1S^1 + h_2S^2 + \cdots + h_{N-1}S^{(N-1)} + \cdots; \\ d_k = (BE_k - (h_0 + h_1S^1 + h_2S^2 + \cdots + h_{k-1}S^{(k-1)}))x(t-b+k), k = \overline{1, N} \end{array} \right | \label{eq:gamma}$$

Используя векторную форму модели системы (31), запишем критерий оптимальности управления в виде

$$E\{J(t)\} = E\{(GX + f + a - R)^{T}Q_{1}(GX + f + a - R) + (X^{T}Q_{2}X)\} > min,$$
(32)

где $R^T = [r(t+1), r(t+2), \dots, r(t+N)]$ – заданное движение системы; $E\{x\}$ – математическое ожидание x; Q_1 и Q_2 – диагональные матрицы размерности N x N с элементами на главных диагоналях соответственно $q_1(1), q_1(2), \dots, q_1(N)$ и $q_2(1), q_2(2), \dots, q_2(N)$.

Дифференцируя (32) по X и приравнивая производную нулю, находим оптимальный вектор X:

$$X = (G^{T}Q_{1}G + Q_{2})^{-1}G^{T}Q_{1}(R - f).$$
(33)

Выражение (33) определяет оптимальный прогнозный регулятор.

Для вычисления элементов соотношения (33) в работе [20] были предложены полезные формулы, упрощающие расчеты, связанные с синтезом оптимального регулятора.

Коэффициенты полинома E_k (его порядок равен k-1)можно получить с помощью соотношения:

$$e_{k} = -\sum_{i=1}^{n_{a}} e_{k-i}a_{i}, k = \overline{1, N-1}, e_{0} = 1, e_{j} = 0 \forall j < 0,$$
(34)

где n_a – порядок полинома А; а_i – его коэффициенты.

Коэффициенты полинома F_k , порядок которого $n_f = n_a - 1$, можно вычислить по формуле

$$f_{j}^{k} = -\sum_{i=1}^{n_{a}} e_{k-i} a_{j+i}, j = \overline{0, n_{a} - 1}, k = \overline{1, N}, a_{n} = 0 \forall n > n_{a} .$$
(35)

Параметры матрицы G определяются с помощью следующего соотношения:

$$g_{k-1} = h_{k-1} = b_0 e_{k-1} + b_1 e_{k-2} + \dots + b_{n_b} e_{k-n_b-1}, k = \overline{l, N}, e_j = 0 \forall j < 0.$$
 (36)
Для вычисления значений d_k целесообразно использовать соотношение:

$$d_{k} = (b_{1}e_{k-1} + b_{2}e_{k-2} + \dots + b_{n_{b}}e_{k-n_{b}})x(t-b) + + (b_{2}e_{k-1} + b_{3}e_{k-2} + \dots + b_{n_{b}}e_{k-n_{b}+1})x(t-b-1) + \dots + b_{n_{b}}e_{k-1}x(t-b-n_{b}+1), k = \overline{1, N}, e_{1} = 0 \forall j < 0.$$
(37)

$$\begin{split} n_a &= 3; a_0 = 1; a_1 = -0.52; a_2 = -0.593; a_3 = 0.308; \quad n_b = 1; \\ b_0 &= -1; b_1 = 0.077; \ n_f = 2; n_e = 2. \end{split}$$

Используя описанную выше методику синтеза и взяв в качестве матриц Q_1 и Q_2 диагональные матрицы, все диагональные элементы которых равны q1=3.5 и q2=0.02 соответственно, мы получили следующее представление оптимального регулятора в векторной форме:

$$\begin{bmatrix} \mathbf{x}(t) \\ \mathbf{x}(t+1) \\ \mathbf{x}(t+2) \end{bmatrix} = \begin{bmatrix} -6.030 & 0.403 & -0.915 \\ -1.105 & -6.199 & 0.403 \\ 1.601 & -1.105 & -6.030 \end{bmatrix} \begin{bmatrix} \mathbf{r}(t+1) - \mathbf{f}(t+1) \\ \mathbf{r}(t+2) - \mathbf{f}(t+2) \\ \mathbf{r}(t+3) - \mathbf{f}(t+3) \end{bmatrix},$$

где

$$\begin{split} f(t+1) &= 0.520y(t) + 0.593y(t-1) - 0.308y(t-2) + d_1; \quad d_1 = 0.077x(t-3); \\ f(t+2) &= 0.863y(t) + 0y(t-1) - 0.160y(t-2) + d_2; \quad d_2 = 0.04x(t-3); \\ f(t+3) &= 0.449y(t) + 0.352y(t-1) - 0.266y(t-2) + d_3; \quad d_3 = 0.067x(t-3). \end{split}$$

Поскольку на практике, как правило, реализуется принцип отступающего горизонта, то особое значение имеет определение управления x(t). После его реализации и получения отклика системы горизонт сдвигается на один такт и управление пересчитывается. Для x(t) мы имеем

$$\begin{aligned} \mathbf{x}(t) &= -6.03(\mathbf{r}(t+1) - \mathbf{f}(t+1)) + 0.403(\mathbf{r}(t+2) - \mathbf{f}(t+2)) - 0.915(\mathbf{r}(t+3) - \mathbf{f}(t+3)) = \\ &= -6.03(\mathbf{r}(t+1) - 0.520\mathbf{y}(t) - 0.593\mathbf{y}(t-1) + 0.308\mathbf{y}(t-2) - 0.077\mathbf{x}(t-3)) + \\ &\quad + 0.403(\mathbf{r}(t+2) - 0.863\mathbf{y}(t) - 0\mathbf{y}(t-1) + 0.160\mathbf{y}(t-2) - 0.04\mathbf{x}(t-3)) - \\ &\quad - 0.915(\mathbf{r}(t+3) - 0.449\mathbf{y}(t) - 0.352\mathbf{y}(t-1) + 0.266\mathbf{y}(t-2) - 0.067\mathbf{x}(t-3)). \end{aligned}$$

Результаты экспериментального исследования работоспособности разработанного прогнозного регулятора представлены на рис.6.

Рис. 6. Результаты моделирования работы регулятора

5. Выводы

1. Впервые синтезирована адекватная ARMAX-модель процесса вытягивания монокристаллических слитков арсенида галлия в условиях промышленной установки «Арсенид-1М», которая может быть использована для регулирования диаметра слитка по каналу температуры фонового нагревателя с целью повысить точность поддержания диаметра.

2. На основе применения разработанной ARMAX-модели процесса выращивания впервые выполнен синтез оптимального прогнозного регулятора для установки «Арсенид-1М», позволяющего учитывать прогнозируемые состояния регулируемого процесса с заданным упреждением и за счет этого обеспечивающего точность поддержания диаметра на уровне ±2мм. Эффективность разработанного регулятора подтверждена также приведенными результатами моделирования его работы. 3. Практическая ценность полученных результатов заключается в существенном сокращении потерь дорогостоящего материала при калибровке слитков и повышении качественных показателей выращенных монокристаллов.

4. Дальнейшие исследования следует посвятить разработке математической модели и прогнозного регулятора для процесса выращивания монокристаллических слитков арсенида галлия диаметром 100 мм.

Список литературы: 1. Satunkin G.A. Mathematical modelling and control system design of Czochralski and liquid encapsulated Czochralski process: the basic low order mathematical model / G.A. Satunkin // J. Crystal Growth 1995. V. 154. P. 172-188. 2. Satunkin G. A. Weighting control of the automatic crystallization process from the melt / G.A. Satunkin, A.G. Leonov // J. Grystal Growth. 1990. V. 102. P. 592-608. 3. Cy3danb В.С. Системы управления процессами получения монокристаллов из расплава / В.С. Суздаль, П.Е. Стадник // Функциональные материалы для науки и техники. Сборник статей под ред. В.П. Семиноженко. Харьков: Институт монокристаллов, 2001. С. 514-526. 4. Петренко В.Р. Моделирование динамики зависимости диаметра слитка арсенида галлия от скорости его вытягивания / В.Р. Петренко, А.С. Овсепян, Л.Г. Шепель, И.В. Петренко// Нові технології. Науковий вісник КУЕІТУ. 2005. №1-2(7-8). С.46-53. 5. Оксанич А.П. Разработка стохастических моделей передаточных функций для системы управления процессом выращивания монокристаллов кремния большого диаметра / А.П. Оксанич, В.Р. Петренко // Вестник Херсонского государственного технического университета. 2002. № 2(15). С. 360-363. 6. Оксанич А.П. Оценивание адекватности стохастических моделей передаточных функций системы управления процессом выращивания монокристаллов кремния / А.П. Оксанич, В.Р. Петренко // Нові технології. Науковий вісник Інституту економіки та нових технологій. 2004. № 3(6). С. 12-14. 7. Петренко В.Р. Использование принципа прогнозного управления для регулирования диаметра Cz-Si монокристаллов / В.Р. Петренко, С.В. Ивушкин // Нові технології. Науковий вісник КУЕІТУ. 2009. №4(26). С.30-39. 8. Петренко В.Р. Регулирование процесса выращивания монокристаллов GaAs по LEC-технологии / В.Р. Петренко, В.А. Тербан // «Автоматизація: проблеми, ідеї, рішення», міжнародна наук.-технічна конф. (2009 ; Севастополь). Міжнародна науково-технічна конференція «Автоматизація: проблеми, ідеї, рішення», 7-12 вересня 2009 р.: [матеріали] / редкол.: В.Я. Копп [та ін.]. Севастополь : Вид-во СевНТУ, 2009. С. 281-283. 9. Model predictive heuristic control / Richalet J., Rault A., Testud L.J., Papon J. // Automatica. 1978. Vol. 14. P. 413-428. 10. Generalized predictive control. Part 1 and 2. / Clarke D.W., Mohtadi C., Tuffs P.S. // Automatica. 1987. Vol. 23. P. 137-160. 11. Peterka V. Predictor-Based Self-Tuning Control / V. Peterka // Automatica. 1984. Vol. 20, № 1. P. 39-50. 12. Properties of Generalized Predictive Control / D.W. Clarke, C. Mohtadi // Automatica. 1989. № 25. P. 859-875. 13. Analysis and Tuning of Adaptive Generalized Predictive Control / McIntosh A.R., S.L. Shah, D.G. Fisher // The Canadian Journal of Chemical Engineering. 1991. Vol. 69. Р. 97-110. 14. Красовский А.А. Универсальные алгоритмы оптимального управления непрерывными процессами / А.А. Красовский, В.Н. Буко, В.С. Шендрик. М.: Наука, 1977. 272 c. 15. Generalized predictive control / D. Clarke, C. Mohtadi, P. Tu's // Automatica. 1987. Vol. 23. P. 137-160. 16. Allg'ower F., Badgwell T.A., Qin J.S., Rawlings J.B., Wright S.J. Advances in Control / Highlights of ECC'99 // Chapt. 12. Nonlinear Predictive Controls and Moving Horizon Estimation. Springer, London. 1999. Р. 391-449. 17. Анализ временных рядов. Прогноз и управление / Бокс Дж., Дженкинс Г.; под ред. В.Ф. Писаренко. М.: Мир, 1974. 197 [2]с. 18. Marqvardt D.W. An Algorithm for least squares estimation of non-linear parameters / D.W. Marqvardt // J. Int. Appl. Math. 1963. № 11. P. 431-440. 19. Adaptive general predictive controller for nonlinear systems / O.M. Zhu, K. Warwick, J.L. Douce // IEE Proceedings-D. 1991. Vol. 138, № 1. Р. 33-40. 20. Петренко В.Р. Синтез оптимального регулятора с предсказанием для процесса выращивания объемных Сz-Si монокристаллов /В.Р. Петренко // Складні системи і процеси. 2008. No2(14). C.64-76.

Поступила в редколлегию 11.06.2011

Загирняк Михаил Васильевич, д-р техн. наук, профессор, ректор Кременчугского национального университета им.Михаила Остроградского, зав. кафедрой электрических машин и апаратов. Научные интересы: автоматизация процессов управления производством полупроводниковых материалов. Адрес: Украина, 39600, Кременчуг, ул. Первомайская, 20, тел.: (05366) 36218. E-mail: mzagirn@kdu.edu.ua.

Оксанич Анатолий Петрович, д-р техн. наук, профессор, директор НИИ технологии полупроводников и информационно-управляющих систем Кременчугского национального университета им.Михаила Остроградского, зав. кафедрой информационно-управляющих систем. Научные интересы: методы и аппаратура контроля структурно-совершенных полупроводниковых монокристаллов. Адрес: Украина, 39600, Кременчуг, ул. Первомайская, 20, тел.: (05366) 30157. E-mail: oksanich@kdu.edu.ua

Петренко Василий Радиславович, д-р техн. наук, профессор кафедры информационноуправляющих систем Кременчугского национального университета им.Михаила Остроградского. Научные интересы: автоматизация процессов управления производством полупроводниковых материалов, информационные технологии. Адрес: Украина, 39600, Кременчуг, ул. Первомайская, 20. E-mail:pvr@kdu.edu.ua.

Притчин Сергей Эмильевич, канд. техн. наук, доцент кафедры информационно-управляющих систем Кременчугского национального университета им.Михаила Остроградского. Научные интересы: автоматизация процессов управления производством полупроводниковых материалов. Адрес: Украина, 39600, Кременчуг, ул. Первомайская, 20. E-mail: pritchin@knu.edu.ua

Тербан Виктор Андреевич, канд. техн. наук, доцент, заместитель директора ООО «Силикон». Научные интересы: технологии производства полупроводниковых материалов. Адрес: Украина, 36000, Светловодск, ул. Заводская, 3, тел.: (05236)22041. E-mail: galar@ukrpost.net