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ABSTRACT: The paper is devoted to the investigation of plane wave diffraction on the
3D composite unclosed conical structure consisting of two cones with longitudinal slots.
The rigorous analytic-numerical approach, based on the Kontorovich-Lebedev integral
transform and the semi-inversion method, has been developed and applied to solve this
problem. On the basis of the numeral solution the influence of the longitudinal slot on
the field forming in space is analyzed. The obtained results could be applied to the
designing and development of scanning antennae and devices of measuring technique.

INTRODUCTION

Unclosed conical and biconical structures find applications not only for antenna
engineering but also for radar, as far as radar reflectors with certain scattering
properties can be designed on their bases [1]. It is known that the directional
diagram of the scattering antenna array element should be monodirectional and
close to cardioid one to radiate powerful superwideband pulses [2,3]. The
superwideband antenna based on a solid cone or a bicone is inadequate to the
requirement of unidirectionality of the directional diagram. The use of a reflector
for designing a cardioid antenna pattern makes considerably worse the
impedance characteristics of the conical structure and increases the over-all
dimensions [2]. One of way to solve this problem is the substitute of the
continuous surface for the unclosed one. In this connection the study of the
problem of plane electromagnetic wave diffraction on composite unclosed
conical structures is of special interest. Particularly, the results of the
investigations allow us to study the behavior of the field near the vertex of the
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cone with longitudinal slots; that can be used for diagnosing the cracks on the
conical surface [4].

The purpose of this paper is to study the problem of plane electromagnetic
wave diffraction on the structure incorporating of two coaxial circular perfect
conducting cones with periodical longitudinal slots as well as to study its
scattering properties.

THE PROBLEM DEFINITION

Let a plane electromagnetic wave be incident upon the structure X along the
axis of the considered surface.The structure X (Fig. 1) consists of two semi-

infinite circular perfect conducting thin cones X, and T, possessing the slots
(Z=2,UZ,), which periodically cut along the generatrices N and with the
common vertex. The opening angle of the cone X, (/= 1,2) is designated by

2y, d, is the width of the slots; I =27/ N is the period of the structure. The
width of the slots and the period are the angular values equaling the values of the
dihedral angles which are formed by the planes passed through the axis of the
structure and the edges of adjoining conical sectors. The cones X, are

determined by the equations & =y in the introduced coordinate frame 7,6,

with the origin in the vertex of the plane. For the sake of definiteness, we
consider the incident wave as a E-polarized one, field of which varies in time

—it

under the harmonic law e :

EO =(E©®,0,0, H?=(0,H",0), E”=€", HO ="

w

where k = w\[gu is the wave number; & and y are the parameters of the
homogeneous and isotropic media with the wave impedance w; the conical

surface is located inside this media. The electromagnetic field E,H in space

with the conical structure X satisfies the Maxwell equations, the boundary
condition of transformation of the electric field tangential component on the
conical sectors as well as the radiation condition and the boundedness condition
of the energy. The electrodynamic problem has a unique solution [5] in such a
definition. By virtue of linearity of the diffraction problem under consideration,

we represent the desired field E. H in the following form

E=EV+E"V, 2)
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AB=H%+H", 3)

where the field £, H" | is stipulated by the presence of the conical structure
(the diffracted field). It is convenient to use the electric (0" (r,0,¢)) and

magnetic ( 0 (r,0,¢) ) Debye potentials when solving electrodynamic
problems in the spherical coordinate frame.

FIGURE 2.

The electromagnetic field components is expressed by the Debye potentials
0™ in the following form [6]:

E = [-g;+k2J(m(”),

-

TR T
Hr=(é—2+k ](ru )

v

1 & (ro)+ iw 9

© " ) orod sin@ 8¢

2

i 2
k8 w19 oy @)
wsiné 0¢ r 0ro6
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G =

1 i( (1)) 1kwav(2’

rsin@ oroe ol
g k0 e, 1 O o
* woe rsiné orog

The desired potential v'*) is the solution of the first ( y =1) or second
( 7 =2) external boundary-value problem of the Helmholtz equation for the
conical geometry [7]. In accordance with the structure of the electromagnetic
field (2) and (3), we write down the potentials o' (¥ =1,2) in the form

P = U{()r) A Ul(,1') (5)

where the potentials v{* ) correspond to the field EV H"™ and the potentials

{7)  relate to the plane wave field E® H® (1), in this case

Ut]
[ AT
L B (cosla‘+icosgsinkr—e””“9).
(W) Z  k’rsin@

To solve the problem, we use the Kontorovich-Lebedev integral
transformation in the following form

Y(r)=—— Irshz‘re : Y (r)— == ‘(’i)/(_ )d
HYUn)

P(r) = j W(e 2 e

where H\"(kr) is the Hankel function of the first kind. We represent pié
the form

(x) (x) ()
- Ul dvr + U] onv * (6)

17% = o HY (ke
o =1 Trstave 2o e,
0 14
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AELE ~(sLEL(s)7(s)
Ul,dvr = Z amr bmf Umr E

m=—1;1

s b e - s—1
A(3).E i sinkr d Vs : |m| 10
R ot o2 2 el
dvr onv ) kzr d}/;_l g a Z mn

m=-1;1

£ > ds—l
where b\ = FH’;’um (cosy,). By virtue of periodicity of the solution to
2

the problem on the azimuth coordinate ¢, the unknown functions I:T;f)(ﬁ, ®)

and [:fff )(6,¢) are expanded in the Fourier series, coefficients of which yffj is

the solution of two coupled sets of linear algebraic equations of the second kind
of the Fredholm type in the following form:

}7(3’) =A(Z)Y(Z) +B(Z) ('?)

In the case of the cone with longitudinal slots and a internal continuous
conical shield as well as a single cone with longitudinal slots the coupled sets (7)
transforms into one set of linear equations of the second kind, solution of which
can be obtained (in view of compactness of the matrix operator) either by the
reduction method (for arbitrary parameters of the problem) or for a
semitransparent cone by the method of successive approximations (the matrix
operator is compressive).

THE ANALYTICAL SOLUTION FOR A SEMITRANSPARENT
CONE WITH AN INTERNAL SOLID SHIELD

We consider the problem of the plane wave diffraction on a cone with the
longitudinal slots £, and the insert in the form of a continuous conical shield

¥, when the number of slots is large and their width d, is comparable with the
period / under condition of the limit existence.

N—yon
dy 112y

w,= lim {—%lnsh{%(z—dzfi)ﬂ>0 (8)

The conical surface which is determined by the limit (8) has the property to
pass through partly and to reflect partly the incident field. The structures with
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such properties are named semitransparent (8] and are particular cases of
anisotropic conducting surfaces [9]. In the case of the semitransparent cone X,

a) N>>1, (I-d,)/1<<1, W, =0,

W, = lim [—l-lncosx—dz] >0 )
3;;;3' N 21

In this case the electric Debye potential Ulm (5) and (6) can be represented
in the following form

X
Ul(l} i U](].),Sl')le +Ul( } 1,2 (10)

where 0" corresponds to the potential at the plane wave diffraction (1) on
the single (in the absence of X, ) solid cone X, [7] and the item vlm’z"’ takes
into account the presence of the cone X, and the semitransparent cone 2,.In
this case
+oo 1
H i(r)(kf) y

1
Dl( 1Y =CosQ Jﬂ‘Tif _\_/.;_
0

_ WAl ¢
i, 1-C." (11,72) I::—]|fz+sf(cos ¥2) P3,..(—cos@)dr—
A +2W, Pl (=0087,)

2
(1-1g(/2)/18° (2 2)
1-1g° (1 12)/1g° (7,1 2)+2W, (11)

—itg*(y,/2)

xcosga-ctggm v, <0<m
2 By

g a
71 Rﬂﬁ’iﬁr (COS }/k) d:yz—l ‘P—lf2+:'f(_ cos ;VJ)
k J

Cf(fx),M (}/k » y_;) = dx_l r-1 »
Pl e (=005 7,) P (0573

-1 =1/ 2+it
dy;

x-1
J
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(P +1/4) A 5
4 =TE D bt 01, P (05 ) [1-C27 (o)),

chrt
@, = —-1—4 ’—{eiirthm e ?,
kN 2k

The similar expressions for vl(l)’z‘; are valid at 71 <0<7>  The limit
passing to (11) at W — 0, that corresponds to the transformation of the
semitransparent structure into the solid cone %, , leads to the potential for the
solid cone X, [10]. The magnetic potential Ul(z) is not under influence of slots
and one is similar to the case of the solid cone. Tending 7; to zero (the internal
cone X, vanishes) in the expressions (10) and (11), we get the Debye potential
vfl) for the single semitransparent cone X, :

0 1) 2
HO (kr) o(z* +1/4
o =cosg |@, = (k7) 7( )
0 ‘J; O-ff

i cosep  Osinkr
2 18
2 T2 ¥

k. -_ﬁf 2.1 (COS V5 )R_lf"-z‘{-ir (—c08y,)%

X‘P—_IT’ZHT (cosO)d7 - ,0<0<r,,

= ) 2
o0 =cosg @, H (ki) v w114)
; Jr

. LI
o [‘P—ILZHT (COS 72 )] P—I]EZH'f (_ cos 9)@”[ =

ir

i cosQ .7, , Osinkr
-— to? 2otg——, y, <0<,
k21+2ng g kg g e

= (A AYP (€057 P (~c0S7) + = Wicha.
T

In the case of the single semitransparent cone (9) the magnetic potential for
the diffracted field equals zero. It follows that the diffracted field

(a) is determined by only one potential ulm in the case of the

semitransparent cone. For this reason it has not a radial component of the magnetic
field and is a TM-field;
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(b) N>>1, d,/1<<1,W;=0. In this case the semitransparent cone is
determined by the existence of the limit

W, = lim [—ilnsin”—d?} 0 (12)
iﬁfﬂ N 21

and the presence of heterogeneities in the form of a great number of narrow slots
has an influence only on the Debye potential U( ) _structure of which can have a

form

(2) _ , (2)s0l -(2) b
T s 5 T A (13)

where 0{”"*”** is the magnetic Debye potential for the solid cone X, [10], the

item 01( 12 corresponds to the interaction of fields as a result of the presence of

the cones 2, and X, . In this case

M
O =—lwsin¢> IH J(_kf) A QPP (—cosd)dr~
0

o 'nkr _
—Wﬂ(yl,yz,W)smqocth o el (14)

d

_ 1_C:'(r2)’_1(?’153’2) d?’z

A+, Lpi (~cosy)
dy,

la’2+11: (COS yl)

QES)’—I (71572 W) =

tg’(7,/2)—1g"(n/2)
=12 (/218> (7, [ 2)+1/ 20,

Q11,7 W) =

, chnt
i = X
A zsin® y,(c* +1/4)
1 1
—CP7 (1)

X

d _ d 1
"P—ll.f2+ir (COS ;VI) T ‘P_I}rgﬁr (_‘COS }’2)
dy, dy,
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The similar presentation takes place for 0 <@ <y, as well. The expression
for ulm is convenient for taking into account the so-called correction field to the
field of the solid cone X, at the expense of the heterogeneities in the form of a
great number of narrow longitudinal slots and the presence of the cone %, . To
take the correction to the field of the solid cone %, into consideration due to the

presence of the semitransparent cone %, and the interaction of the fields, it is
convenient to use the following presentation:

« nE
Ui(z) v Ul(z),um] + 01( 1Eia (15)

where 0”*"*" is the magnetic Debye potential for the solid cone X, and

w0 p7(l)
o5 = 27, sing [P EDQEPT,  (~cosO)dr +
w ;A
B 2 1
cia[1 EG DG g I <. (16)
G 1g° (7, /2) 2 kr

In this case the electric Debye potential of the semitransparent cone is not

affected by the slots and it is the same as in the solid cone v = ghes |

Proceeding to limit in (14) and (16) at W, — +o (the cone ¥, disappears) leads
to the presentation for the magnetic Debye potential in the case of the solid cone.
As a result of the limit in the expressions (15) and (16) at y, — 0, we get the
expression for the magnetic Debye potential for the single semitransparent cone
%, , which is determined by the existence of the limit (12).

THE NUMERICAL SOLUTION. THE FIELD IN THE WAVE
ZONE AND NEARBY THE VERTEX

The analysis for the field distribution in the wave zone, where the diffracted
field represents only the outgoing wave, has been carried out on the basis of the
obtained numerical solution of the set (7) by the reduction method. The
diffracted field can be represented as the sum of the field mirror-reflected from
the cone surface and the field stipulated by the presence of the vertex. In the
spatial region determined by the inequality 2y, <6 the field of the mirror
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reflection is absent and the distribution of the diffracted field is characterized by
only the field scattered by the common vertex of the conical structure % . The
use of the asymptotic form of the potential (6) at kr >>1 as well as the
presentations for the field components (4) and the numerical solution (7) allows
us to study numerically the distribution of the diffracted field in the wave zone.

Figure 2 shows the field distribution diagrams in the wave zone (£ > 2y, ) in the

presence of the single cone X, with one longitudinal slot (the axis of the slot
coincides with the ray, ¢=0") (7, =7rf8) with the internal shield X,
(}q = R’f’l(}) and without it (;L/i = U). The analysis of the diagrams has shown

that we can correct the form of a diagram, changing the width of the slots and
the opening angles of the cones. With the help of the single cone with a
longitudinal slot, it is possible to obtain the spatial field distribution, diagram of

which has a form of cardioid at the angular width of the slot, varying from 120’

to 210", whereupon it is shaped into ellipse. Inserting the solid cone in the
internal domain of the cone with a longitudinal slot has an influence on the field
distribution diagram in the wave zone and as a result the so-called hole being
opposite the slot disappears. With broadening the slot, the influence of the
internal solid shield reveals more and more and the diagram takes a form of
ellipse.

the single cone |

{v =0, v =28}
2 -

&

shield iy =210 v =0/8) |

FIGURE 2.

The electric field near the vertex (kr << 1) of the open-ended conical

surface asymptotically behave in the following way:
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= —l+a
B~ ]
where a =-1/2+¢, él) ; é” is the least spectral value of the first boundary-

value problem for the Debye electric potential " . In a similar manner, the
magnetic field at the vertex of the conical surface is asymptotically
determined in such a way:

-t

where f=-1/2+¢, éz) ; f) is the least spectral value of the second boundary-
value problem for the Debye magnetic potential i,

Thus, Figs. 3 and 4 show the curves of the dependence for the parameters &
and S versus the width of the gap dy , which describe the degree of field
singularity for the particular case of the structure under consideration: the plane
(y,=n/2) with a longitudinal widened gap (Fig. 3) and the plane with a

widened gap and a solid cone located above it y, = /8 (Fig. 4).

FIGURE 3.

0.0 Lo ' : .
0 60 120  so 240 300 360

FIGURE 4.
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Based on the obtained graphs we can conclude that the presence of the solid
cone inside the cone with a gap, decreases the singularity of the electric field at
the vertex and has a slight influence on the behavior of the magnetic field.

When d, =180 the plane with a cut transforms into a half-plane and the field

singularities £ and [ get the known root singularity Va’\_m at the edge of the
half-plane [5]. This fact is evidence of the validity of the obtained results.

CONCLUSIONS

In the present paper we have studied the three-dimensional problem of
diffraction of plane electromagnetic waves on a compound open-ended conical
structure which consists of two cones with longitudinal gaps. To solve this
problem, we have developed the rigorous numerical-analytical method based on
the use of the Kontorovich-Lebedev integral transformation in conjunction with
the semi-inversion method. As a result of this, the original problem is reduced to
the solution of a set of the Fredholm-type algebraic equations of second kind. In
the case of a semitransparent cone with a bulk internal shield, we have obtained
the analytical solution which allows us to study in a qualitative sense the
influence of the heterogeneities formed by longitudinal gaps and an unbroken
insertion, on the main scattering signatures as well as to investigate the
spectrum of the boundary-value electrodynamic problem and the field structure.
In terms of the numerical solution the influence of a longitudinal gap on the
spatial forming of the field has been analyzed. It is shown that with the help of
a cone having a longitudinal gap we can obtain a diagram of the spatial field
distribution which has a form of cardioid. The analysis of the behavior of the
field at the vertex of the conical surface testifies that the possibility exists of
controlling the field singularity at the vertex by means of changing geometrical
parameters of the structure under consideration. The obtained results can be
useful in the design and development of scanning antennae and devices of
measuring engineering.
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