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Abstract– The aim of the paper is to develop in-
teger linear programming (ILP) models for the
problem of covering a polygonal region by rectan-
gles. We formulate a Beasley-type model in which
the number of variables depends on the size pa-
rameters. Another ILP model is proposed which
has O(n2 max{m, n}) variables where m is the num-
ber of edges of the target set and n is the number
of given rectangles. In particular we consider the
case where the polygonal region is convex. Exten-
sions are also discussed where we allow the polyg-
onal region to be a union of a finite number of
convex subsets.

Index terms – Covering, Integer Linear Program-

ming, Mathematical Modelling, Optimization

Introduction and Problem For-

mulation

In this paper the problem of covering a polygonal
target set Ω by a finite number of given rectangles
is considered. The main aim is to formulate integer
linear programming or optimization models. Rota-
tion of rectangles is not allowed. In particular, the
target set is assumed to be an arbitrary convex poly-
gon. Since covering with axes-parallel rectangles is
considered the target set can also be assumed to be
an orthogonally convex rectilinear polygon.

The decision version of problem CPR (Covering a
Polygonal set with Rectangles) asks whether there ex-
ists a covering or not. It is known to be NP-complete
since the decision version of the Bin Packing Prob-
lem ([6]) can be reduced to the CPR problem (cf. [4]).
Notice, in difference to e.g. [4] where a finite number
of points has to be covered, we consider the covering
of an infinite point set. Therefore, the verification
that a certain configuration of the rectangles forms a
cover of the target set cannot be done by inspecting a
finite number of points, another technique is needed.

A solution approach based on a so-called Γ-function
is proposed in [9]. The Γ-function of a certain config-
uration of all given rectangles attains a non-negative
value if and only if this configuration forms a feasible
covering of the target set. Based on an enumera-
tion scheme, instances for which no cover exists can

require a lot of computational effort to prove that
circumstance.

In [8] one-dimensional bar relaxations for the CPR
problem are proposed to be used as necessary condi-
tions for existence of coverings.

Covering problems are of interest in many fields of
application. There are many relations between cov-
ering and packing or cutting problems. For an an-
notated survey on Cutting and Packing we refer to
[5]. Covering problems arise naturally in a variety of
applications. For a comprehensive overview we refer
to [4].

As an example, query optimization in spatial
databases is a source of covering problems. In this
setting a query may correspond to a geometric re-
gion and be phrased in a generic form using geomet-
ric parameters. Given a set of existing geometric,
parametrized, query regions and a set of points or re-
gions, we might want to ask if there are values of the
parameters that allow the query regions to cover the
set of points or even regions. Another field of appli-
cation (also mentioned in [4]) is shape recognition for
robotics, graphics or image processing applications.
In these cases it is sometimes useful to represent a
shape as a collection of parts. However, given a col-
lection of parts and a shape, it can be difficult to
determine if the shape can be described by that col-
lection of parts. If the goal is to obtain an outer ap-
proximation of the shape using the parts, then this
can be posed as a covering problem.

Besides the decision problem whether a covering ex-
ists or not, related problems can be of interest. For
instance, one can ask for a minimum number of (iden-
tical) rectangles needed to form a cover for the target
region. Or, if there exist several covers one can look
for a best cover where best means that some objective
function is regarded.

In computational geometry, decomposition of a poly-
gon is of high interest involving partitioning and cov-
ering problems. For details and further literature we
refer to [10, 1, 7].

In the approach proposed in [9] to solve the problem
of covering a compact polygonal region with a finite
family of rectangles, the choice of a suitable start-
ing configuration is in particular an essential aspect.
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Therefore, and since the CPR problem is hard to
solve, enumeration algorithms like branch-and-bound
have to be used in general in an exact solution ap-
proach. Another possibility to attack the CPR prob-
lem consists in formulating integer linear program-
ming models and to solve them.

The aim of this contribution is to develop models and
to discuss advantages and disadvantages with respect
to the construction of exact solution approaches.
Without loss of generality, we assume that all input-
data are integers.

The paper is organized as follows. In the rest of this
section we give the input-parameter and state the
problem considered in the paper. In the next sec-
tion a Beasley-type model of the covering problem is
discussed. Then, in section 3, a basic model is devel-
oped. In section 4, we present a corresponding ILP
model. Some extensions and alternative formulations
are discussed in section 5. Finally, some conclusions
follow.

Within this paper we consider the following optimiza-
tion problem. We assume that target set Ω is a con-
vex polygon. Consequently, we can use the represen-
tation

Ω = {(x, y) : gj(x, y) ≤ 0, j ∈ IΩ}

= conv{(Xj, Yj) : j ∈ IΩ},

IΩ = {1, . . . ,m}.

All the linear functions gj, j ∈ IΩ are assumed to
be necessary for the representation of Ω. Hence, the
number of vertexes (corners) (Xj , Yj) of Ω coincides
with the (minimum) number of functions gj . In order
to cover the given target set Ω the following rectan-
gles are available:

Ri = {(x, y) : −ai ≤ x ≤ ai,−bi ≤ y ≤ bi},

i ∈ In = {1, . . . , n}

where 2ai is the length and 2bi the width of rectangle
Ri. We assign to each rectangle its (positive) value ci,
i ∈ In, e. g. ci = aibi, and we denote the placement
parameters (translation vectors) by ui = (xi, yi), i ∈
In. Hence,

Ri(xi, yi) = {(x, y) : xi − ai ≤ x ≤ xi + ai,

yi − bi ≤ y ≤ yi + bi}

represents the translated rectangle Ri. Then the
problem CPR under consideration is:

Find a subset I∗ of In of the rectangles and
corresponding placement parameters ui, i ∈
I∗ such that ∪i∈I∗Ri(ui) forms a cover of Ω
and its total valuation

∑
i∈I∗ ci is minimal.

We always assume that problem CPR has a solution.
This can be done by adding some sufficiently large
rectangle R0 (i. e. the minimum Ω enclosing rectan-
gle) with c0 >

∑
i∈In

ci. Consequently, if the optimal
value of the CPR problem is not smaller than c0 then
the original problem has no covering.

A Beasley-type Model:

ILP Model 1

Beasley [3, 2] proposed an integer linear program-
ming (ILP) model with 0/1-variables for the two-
dimensional rectangle packing problem. There, the
0/1-variables xipq are used to describe the placement
of the reference point (lower left corner) of rectangle
Ri at position (p, q).

For an ILP model of the CPR problem we can also
use these xipq-variables. Let

XE := maxi∈IΩ Xi, XW := mini∈IΩ Xi,

YN := maxi∈IΩ Yi, YS := mini∈IΩ Yi

denote the extremal coordinates of Ω. To visualize
different directions we use N for the north-direction,
E, S and W for east, south and west direction, re-
spectively. Clearly, directions N , E, S and W can be
understood as top, right, bottom or left direction, re-
spectively. Without loss of generality, we may assume
XW = 0 and YS = 0. Consequently, target set Ω is
completely contained within a rectangle R0 of dimen-
sions L0 = XE −XW and W0 = YN − YS . Since all
input-data are assumed to be integral we can restrict
the coordinates of all allocation point to be integral
too. Let Li = {0, . . . , L0−ℓi}, Wi = {0, . . . ,W0−wi},
i ∈ In. If rectangle Ri is placed with its lower left
corner at point (p, q) with p ∈ Li and q ∈ Wi then it
covers the point set

Ri(p, q) = {(x, y) : p ≤ x < x+ ℓi,

≤ y < q + wi}
(1)

where ℓi = 2ai and wi = 2bi, i ∈ In. Notice, here
the upper and right boundary are assumed not to be
in Ri(p, q) Let Ω denote the minimal orthogonally
convex rectilinear polygon with only integral corner
points enveloping Ω. Since we are looking for a cov-
ering of Ω with only rectangles we have, the convex
target set is covered if Ω is covered. Notice, using
an appropriate scale the approximation of Ω by Ω is
tight enough to obtain an exact solution. We assume
that Ω is a closed point set. According to definition
(1) not all integer lattice points in Ω have to be cov-
ered namely those lying on the NE or SE boundary,
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accept the leftmost point lying on the SE boundary.
Let Ω̃ denote the integer lattice points in Ω which
have to be covered by the rectangles.

Then the optimization problem can be formulated as
follows:

Beasley-type model: ILP model 1

∑

i∈In

∑

(p,q)∈eΩ

ci xipq → min (2)

subject to

∑

i∈In

s∑

p=s(i)

t∑

q=t(i)

xipq ≥ 1, ∀ (s, t) ∈ Ω̃, (3)

∑

p∈Li

∑

q∈Wi

xipq ≤ 1, ∀ i ∈ In, (4)

xipq ∈ {0, 1}, p ∈ Li, q ∈ Wi, i ∈ In (5)

where s(i) = max{0, s − ℓi + 1}, t(i) = max{0, t −
wi + 1}.

This Beasley-type model has some drawbacks. First
of all, the number of 0/1-variables depends on the
dimensions of the target set. Moreover, the choice of
an appropriate scale can further increase this number.
Furthermore, the continuous (or linear programming,
LP) relaxation (restrictions xipq ∈ {0, 1} are replaced
by xipq ∈ [0, 1]) is weak. It yields feasibility if the
total area of the rectangles is not smaller than the
area of Ω. This makes it difficult to solve the (integer)
Beasley-type model.

Notice, the number of 0/1-variables can be some-
what reduced regarding the shape of Ω instead of the
enveloping rectangle L × W . Another opportunity
results from the principle of normalized patterns or
raster points.

Basic Model

In the following, an attempt is made to model the
CPR problem using a polynomial number of variables
and restrictions.

Notations

The following sets of directions will be used:

D := {N,E, S,W},

Dt :=

{
{N,S}, if t ∈ {E,W},
{E,W}, if t ∈ {N,S}.

t ∈ D.

Since the polygonal region Ω is assumed to be con-
vex the following denotations and abbreviations are
meaningful. We identify Ω defining functions visible
from different directions as follows:

INW
Ω := {j ∈ IΩ :

δgj

δx
< 0,

δgj

δy
> 0},

mNW := |INW
Ω |,

INE
Ω := {j ∈ IΩ :

δgj

δx
> 0,

δgj

δy
> 0},

mNE := |INE
Ω |,

ISW
Ω := {j ∈ IΩ :

δgj

δx
< 0,

δgj

δy
< 0},

mSW := |ISW
Ω |,

ISE
Ω := {j ∈ IΩ :

δgj

δx
> 0,

δgj

δy
< 0},

mSE := |ISE
Ω |,

Moreover, let

mrs = msr ∀r ∈ Ds, s ∈ D.

In order to characterize the relation between two rect-
angles we define the constants

aij :=

{
1, ai > aj ,

0, ai ≤ aj ,

bij :=

{
1, bi > bj,

0, bi ≤ bj,

i, j ∈ In, i 6= j. (6)

These constants are used to combine different cases,
and therefore, to shorten the description.

For a given 0/1-vector α = (α1, . . . , αn) and a given
vector u = (u1, . . . , un) ∈ IR2n of placement parame-
ters ui ∈ IR2, i ∈ In let

P (u, α) :=
⋃

i:αi=1

Ri(ui),

H(u, α) := IR2 \ int(P (u, α)).

Polygonal set P (u, α) represents the point set covered
by the chosen rectangles whereas H(u, α) denotes the
closure of the complement of P (u, α). For technical
purposes let

dt :=

{
4, if t ∈ {N,W},

2, if t ∈ {S,E},
t ∈ D. (7)
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Placement Parameters

As already introduced above, we denote the place-
ment parameters (translation vectors) to be found
by ui = (xi, yi), i ∈ In. Hence,

Ri(xi, yi) = {(x, y) :

xi − ai ≤ x ≤ xi + ai, yi − bi ≤ y ≤ yi + bi}

represents the region covered by the translated rect-
angle Ri.

Selection Variables

In order to indicate those rectangles Ri, i ∈ In which
are used to cover the polygonal region Ω we define
0/1-variables αi according to

αi =

{
1, Ri(ui) is used for the cover,

0, Ri(ui) is not used for the cover.

Let Ri be given in the form

Ri(xi, yi) = {(x, y) : f r
i (x, y) ≥ 0, r ∈ D},

i ∈ In,

where

fN
i (x, y) := yi + bi − y,

fE
i (x, y) := xi + ai − x,

fS
i (x, y) := y + bi − yi,

fW
i (x, y) := x+ ai − xi.

In case that Ω fits within a single rectangle Ri(ui)
and in related situations the following conditions on
the translation vector ui = (xi, yi) are probably non-
trivial since they form the boundary of H(u, α):

f̃N
i (xi, yi) := yi + bi − YN ≥ 0,

f̃E
i (xi, yi) := xi + ai −XE ≥ 0,

f̃S
i (xi, yi) := YS + bi − yi ≥ 0,

f̃W
i (xi, yi) := XW + ai − xi ≥ 0.

These inequalities should hold only if rectangle Ri

is used. Therefore we modify them by adding some
term depending on αi:

f̃ r
i (xi, yi) +M(1 − αi) ≥ 0,

r ∈ D, i ∈ In,
(8)

where M is a sufficient large number, e. g. M =
max{L0,W0}. For every i ∈ In these four restric-
tions (in a somewhat modified manner) have to be
added to an ILP model.

If more then one rectangle is used to cover Ω not all of
these restrictions have to be fulfilled depending on the
relative positions of the rectangles. Here we assume
that no coverings are of interest where some cover-
ing rectangle Ri(ui) is completely contained within
another covering rectangle Rj(uj). Such a configura-
tion cannot be optimal because of assumption ci > 0,
i ∈ In.

Relative Position Variables

If rectangles Ri and Rj are both used to cover Ω, i. e.
if αi = αj = 1, 0/1-variables

φr
ij and ψr

ij , i, j ∈ In, i 6= j, r ∈ {1, . . . , 5}

are introduced to characterize the relative position of
the two rectangles to each other. In doing so we con-
sider five different situations in horizontal and ialso n
vertical direction (cf. Fig. ??). Consequently, using
both rectangles Ri and Rj that means we have

i

r = 1

r = 2

r = 3

r = 4

r = 5

Figure 1: labelfig-1 Different relative horizontal posi-
tions

5∑

r=1

φr
ij = 1 and

5∑

r=1

ψr
ij = 1. (9)

With other words, equations (9) should be fulfilled
if and only if both rectangles Ri and Rj are used to
cover Ω in order to get a unique description of the
different configurations/interactions of the two rect-
angles which are as follows.

We define φ1
ij = 1 if and only if Rj(uj) is completely

left to Ri(ui) which leads to the inequality

xj + aj ≤ xi − ai +M(1 − φ1
ij)

(non-trivial if φ1
ij = 1)

whereM is a sufficient large number, e. g. M = XE+
ai + aj . The case when Rj(uj) is completely right to
Ri(ui) is characterized by φ5

ij = 1. If int(Ri(ui)) ∩
Rj(uj) 6= ∅ then we have three subcases, namely

r = 2: xj − aj ≤ xi − ai ≤ xj + aj ,
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r = 3: either xj − aj ≤ xi − ai < xi + ai ≤ xj + aj

or xi − ai ≤ xj − aj < xj + aj ≤ xi + ai,

r = 4: xj − aj ≤ xi + ai ≤ xj + aj .

Obviously, only one of two cases with r = 3 can occur
according to the definition of aij and bij in formula
(6). Altogether, we have the following restrictions
(describing the relative horizontal position of Ri and
Rj) which are non-trivial if some φ-variable has value
one:

h1
ij(x, φ) :=
xi − ai − xj − aj +M(1 − φ1

ij) ≥ 0,

h2
ij(x, φ) :=
xj + aj − xi + ai +M(1 − φ2

ij) ≥ 0,

h3
ij(x, φ) :=
xi − ai − xj + aj +M(1 − φ2

ij) ≥ 0,

h4
ij(x, φ) := (aij − aji)(xj − aj − xi + ai)
+M(1 − φ3

ij) ≥ 0,

h5
ij(x, φ) := (aij − aji)(xi + ai − xj − aj)
+M(1 − φ3

ij) ≥ 0,

h6
ij(x, φ) :=
xj + aj − xi − ai +M(1 − φ4

ij) ≥ 0,

h7
ij(x, φ) :=
xi + ai − xj + aj +M(1 − φ4

ij) ≥ 0,

h8
ij(x, φ) :=
xj − aj − xi − ai +M(1 − φ5

ij− ≥ 0.

(10)

In a similar way the ψ-variables are defined to char-
acterize the relative vertical position of the two rect-
angles:

h̃1
ij(y, ψ) :=
yi − bi − yj − bj +M(1 − ψ1

ij) ≥ 0,

h̃2
ij(y, ψ) :=
yj + bj − yi + bi +M(1 − ψ2

ij) ≥ 0,

h̃3
ij(y, ψ) :=
yi − bi − yj + bj +M(1 − ψ2

ij) ≥ 0,

h̃4
ij(y, ψ) := (bij − bji)(yj − bj − yi + bi)
+M(1 − ψ3

ij) ≥ 0,

h̃5
ij(y, ψ) := (bij − bji)(yi + bi − yj − bj)
+M(1 − ψ3

ij) ≥ 0,

h̃6
ij(y, ψ) :=
yj + bj − yi − bi +M(1 − ψ4

ij) ≥ 0,

h̃7
ij(y, ψ) :=
yi + bi − yj + bj +M(1 − ψ4

ij) ≥ 0,

h̃8
ij(y, ψ) :=
yj − bj − yi − bi +M(1 − ψ5

ij) ≥ 0.

(11)

Because of definition we have

φr
ij = φ6−r

ji , ψr
ij = ψ6−r

ji ,

r ∈ {1, . . . , 5}, i, j ∈ In, i 6= j.

Notice, every combination of φ- and ψ-values which
fulfills conditions (9) defines a subset of IR4 of pos-
sible placement parameters ui = (xi, yi) and uj =
(xj , yj).

Overlap Characterizing Variables

If two rectangles Ri and Rj are used to cover Ω then
two essential different situations have to be consid-
ered: is the intersection of the two rectangles empty
or not. For that reason 0/1-variables βij can be in-
troduced which gets value one if and only if the in-
tersection of Ri(ui) and Rj(uj) is non-empty.

It is obvious, the β-variables are dependent on the φ-
and ψ-variables. It holds

βij =

4∑

r=2

φr
ij ·

4∑

r=2

ψr
ij , i, j ∈ In, i 6= j.

Note that although in cases r = 1 or r = 5 some
”touching” is allowed, these situations cannot lead to
a real overlap.

Inner Corners

Every pair Ri and Rj of used rectangles with non-
empty intersection (i. e. βij = 1) determines some
points, called inner corners which probably define a
cone usable in the representation of H(u, α)

In order to obtain a description of H(u, α) we con-
sider all eight possibilities of inner corners which can
arise. By means of 0/1-variables we identify in depen-
dence of the φ- and ψ-variables these inner corners
which are formed with respect to this configuration.
Using further 0/1-variables we characterize those in-
ner corners which form cones for the description of
H(u, α).

In total, there are eight different types of inner cor-
ners. We define

Est
ij , s ∈ D, t ∈ Ds, i, j ∈ In, i 6= j,

as follows:

ENW
ij := (xj−aj , yi+bi), ENE

ij := (xj+aj , yi+bi),

ESW
ij := (xj−aj, yi−bi), ESE

ij := (xj+aj , yi−bi),

EEN
ij := (xi+ai, yj+bj), EES

ij := (xi+ai, yj−bj),

EWN
ij := (xi−ai, yj+bj), EWS

ij := (xi−ai, yj−bj).
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In order to identify those inner corners which are in-
duced by Ri, Rj , and the φ- and ψ-variables we define
0/1-variables εst

ij as follows.

The variable εNW
ij which corresponds to point

ENW
ij = (xj − aj , yi + bi) has to be one if and only if

αi = αj = 1, ENW
ij ∈ Ri(ui) ∩Rj(uj).

In this case, the set

{(x, y) : x ≤ xj − aj , y ≥ yi + bi}

forms a cone in North-West direction. There are sev-
eral situations where point ENW

ij forms an inner cor-
ner, namely:

1. φ4
ij = 1, ψ4

ij = 1,

2. φ4
ij = 1, ψ3

ij = 1, bji = 1,

3. φ3
ij = 1, aij = 1, ψ4

ij = 1,

4. φ3
ij = 1, aij = 1, ψ3

ij = 1, bji = 1.

These four situations are depicted in Ffigure 2.

i

j1.

i

j2.

i

j3.

i

j

4.

Figure 2: Situations where inner corner ENW
ij can

arise

Linear equations or inequalities are needed which en-
sure that εNW

ij becomes one in exactly these four
cases. It holds for i 6= j:

εNW
ij = (φ4

ij + aijφ
3
ij)(ψ

4
ij + bjiψ

3
ij),

εNE
ij = (φ2

ij + aijφ
3
ij)(ψ

4
ij + bjiψ

3
ij),

εSW
ij = (φ4

ij + aijφ
3
ij)(ψ

2
ij + bjiψ

3
ij),

εSE
ij = (φ2

ij + aijφ
3
ij)(ψ

2
ij + bjiψ

3
ij).

Furthermore, for i 6= j we have

εrs
ij = εsr

ji , r ∈ D, s ∈ Dr.

If we suppose that εNW
ij = 1 and thatENW

ij ∈ H(u, α)
then at least one of the following inequalities, illus-
trated in Fig. 3,

must be fulfilled for the convex region Ω to ensure
non-overlapping:

1.

��
@@

@@
��
Ω

3.

��
@@

@@
��
Ω

2. ��
@@

@@
��
Ω

Figure 3: Interaction between ENW
ij and target region

Ω

1. Either Ω ⊂ {(x, y) : y ≤ yi + bi}, or

2. Ω ⊂ {(x, y) : x ≥ xj − aj}, or

3. gl(E
NW
ij ) ≥ 0 for at least one l ∈ INW

Ω .

This can be modelled using the ε-variables as follows::

max {yi + bi − YN , XW − xj + aj,

max{gl(E
NW
ij ) : l ∈ INW

Ω }
}

+M(1 − εNW
ij ) ≥ 0.

(12)

For every pair of rectangles and every kind of poten-
tial inner corner such an inequality has to be consid-
ered, i. e. approximately 4n2 restrictions. But this
inequality should be redundant if the point ENW

ij is
covered by a third rectangle.

Similar conditions hold for the other types of inner
corners.

If only two rectangles are needed to cover Ω, i. e.∑
i∈In

αi = 2 and βij = 1, then the resulting two
or four inner corners determine cones usable in the
description of H(u, α).

If more than two rectangles are needed to cover Ω
then some of the resulting inner corners can be cov-
ered by another third rectangle, and hence, are not
useful for the description of H(u, α).

Active Inner Corners

In case of more than two rectangles used to cover Ω
it may happen that some inner corner, e. g. ENW

ij , is

covered by a third rectangleRk so that ENW
ij does not

form a part of the complement of the union of cover-
ing rectangles as drawn in Fig. 4. In order to charac-

i

j

k

Figure 4: Inner corner ENW
ij is not active
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terize such situation we introduce a 0/1-variable ρNW
ij

which has to be one if and only if ENW
ij is not cov-

ered by another rectangle. More precisely, ρNW
ij = 1

should hold true if and only if there does not exist
any k ∈ In \ {i, j} with

1. φ4
kj + akjφ

3
kj = 1, and

2. ψ4
ik + bkiψ

3
ik = 1.

Hence, we define

ρNW
ij = 1 ⇐⇒∑

k 6=i,j(φ
4
kj + akjφ

3
kj)(ψ

4
ik + bkiψ

3
ik) = 0.

In case of ρNW
ij = 1 the bounding constraints in

North-direction for Ri and in West-direction for Rj

(according to (1)) must be removed. This can be
achieved as follows:

f̃N
i (xi, yi) +M(1 − αi)

+M
∑

j:j 6=i ρ
NW
ij ≥ 0,

f̃W
j (xj , yj) +M(1 − αj)

+M
∑

j:j 6=i ρ
NW
ij ≥ 0.

(13)

Instead of the two removed restrictions, another con-
dition has to become relevant which guaranties that
Ω is either in one of the two half-planes determined
by fN

i or fW
j or that ENW

ij 6∈ int(Ω):

max{f̃N
i (xi, yi), f̃

W
j (xj , yj),

max{gl(E
NW
ij ) : l ∈ INW

Ω }}

+M(1 − ρNW
ij ) ≥ 0.

Similar restrictions have to be introduced for the
other types of active inner corners:

max{f̃ r
i (xi, yi), f̃

s
j (xj , yj),

max{gl(E
rs
ij ) : l ∈ Irs

Ω }}

+M(1 − ρrs
ij ) ≥ 0,

r ∈ D, s ∈ Dr, i, j ∈ In, i 6= j.

(14)

Constraint Selection Variables

In case of an active inner corner Ers
ij , i. e. with ρrs

ij =
1, 0/1-variables λrs

ijt, t = 0, . . . ,mrs + 1, are needed
to identify a single constraint which ensures the non-
overlapping similar to (12). Because of

mrs+1∑

t=0

λrs
ijt = ρrs

ij , ∀r, s, i, j. (15)

restriction (14) can be formulated as

λrs
ij0 f̃

r
i (xi, yi) +

∑mst

t=1 λ
rs
ijt g

rs
t (Ers

ij )

+λrs
ij,mrs+1 f̃

s
j (xj , yj) ≥ 0,

r ∈ D, s ∈ Dr, i, j ∈ In, i 6= j,

(16)

where grs
t are the functions corresponding to Irs

Ω .

Summation

If for all relations between the α-, φ-, ψ-, ρ-, mad
λ- variables linear inequalities or equalities can be
found then an ILP model for the problem of covering
a convex polygon by rectangles can be obtained. As
an intermediate result we have the following formu-
lation of the CPR problem:

Compute placement parameters xi, yi, i ∈ In and
0/1-variables αi, i ∈ In, φp

ij , ψ
p
ij p ∈ {1, . . . , 5}, ρrs

ij ,
and λrs

ijt, r ∈ D, s ∈ Dr, t ∈ {0, . . . ,mrs + 1}, i, j ∈
In, i 6= j such that

∑

i∈In

ciαi → min, (17)

subject to

5∑

r=1

φr
ij = αiαj ,

5∑

r=1

ψr
ij = αiαj , ∀i, j, (18)

ht
ij(x, φ) ≥ 0, t ∈ {1, . . . , 8}, ∀i 6= j, (19)

h̃t
ij(y, ψ) ≥ 0, t ∈ {1, . . . , 8}, ∀i 6= j, (20)

εrs
ij = (φds

ij + aijφ
3
ij)(ψ

dr

ij + bjiψ
3
ij),

r ∈ D, s ∈ Dr, i 6= j.
(21)

εrs
ij = εsr

ji , r ∈ D, s ∈ Dr. (22)

ρrs
ij ≤ εrs

ij , ∀r ∈ D, s ∈ Dr, i 6= j, (23)

ρrs
ij = εrs

ij ⇔
∑

k 6=i,j(φ
ds

kj

+akjφ
3
kj)(ψ

dr

ik + bkiψ
3
ik) = 0,

∀r ∈ D, s ∈ Dr, i 6= j,

(24)

f̃ r
i (xi, yi) +M(1 − αi)

+M
∑

j 6=i

∑
s∈Dr

ρrs
ij ≥ 0,

r ∈ D, i 6= j,

(25)

∑mrs|+1
t=0 λrs

ijt

= ρrs
ij , ∀r, s, i, j.

(26)

λrs
ij0f̃

r
i (xi, yi) +

∑mst

t=1 λ
rs
ijtg

rs
t (Ers

ij )

+λrs
ij,mrs+1f̃

s
j (xj , yj) ≥ 0,

r ∈ D, s ∈ Dr, i, j ∈ In, i 6= j.

(27)

In the following we are going to develop a correspond-
ing ILP model.
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ILP Model 2

In order to get an ILP formulation with polynomial
number of variables and constraints, all conditions
in basic model (17) – (27) have to be formulated as
linear restrictions.

Restricting the Placement Parameters

In order to ensure that Ri does not overlap Ω if Ri

is not used, i. e. if αi = 0, we define the following
inequalities:

−ai ≤ xi ≤ (XE + 2ai)αi − ai,

−bi ≤ yi ≤ (YN + 2bi)αi − bi, i ∈ In.
(28)

Relations Between α-, φ- and ψ-

Variables

Lower bounds for φ- and ψ-variables:

0 ≤ φr
ij , 0 ≤ ψr

ij ,

∀i, j ∈ In, i 6= j, r = 1, . . . , 5.
(29)

Symmetry conditions (source of reducing the number
of variables):

φr
ij = φ6−r

ji , ψr
ij = ψ6−r

ji ,

r ∈ {1, . . . , 5}, i, j ∈ In, i 6= j.
(30)

Realization of the logical AND:

∑5
r=1 φ

r
ij ≤ αi,

∑5
r=1 φ

r
ij ≤ αj ,∑5

r=1 φ
r
ij ≥ αi + αj − 1, i, j ∈ In, i 6= j.

(31)

∑5
r=1 ψ

r
ij ≤ αi,

∑5
r=1 ψ

r
ij ≤ αj ,∑5

r=1 ψ
r
ij ≥ αi + αj − 1, i, j ∈ In, i 6= j.

(32)

Moreover, inequalities (19) and (20) have to be ful-
filled.

Relations Between β-, φ- and ψ-

Variables

According to basic model (17) – (27) where no β-
variables are used the following inequalities are not
needed. On the other hand, if it is intended to exploit
β-variables then these inequalities yield the relations
between β-, φ- and ψ-variables.

Realization of the logical AND:

0 ≤ βij , ∀i, j ∈ In, i 6= j,

βij ≤
4∑

r=2

φr
ij , βij ≤

4∑

r=2

ψr
ij ,

βij ≥
4∑

r=2

φr
ij +

4∑

r=2

ψr
ij − 1.

Relations Between ε-, φ- and ψ-

Variables

Naturally, we have

0 ≤ εst
ij , ∀s ∈ D, t ∈ Ds, i, j ∈ In, i 6= j, (33)

Realization of the logical AND:

εrs
ij ≤ φds

ij + aijφ
3
ij , εrs

ij ≤ ψdr

ij + bjiψ
3
ij ,

r ∈ D, s ∈ Dr, i 6= j,
(34)

εrs
ij ≥ φds

ij + aijφ
3
ij + ψdr

ij + bjiψ
3
ij − 1,

r ∈ D, s ∈ Dr, i 6= j,
(35)

Because of definition:

εrs
ij = εsr

ji ∀i, j, r, s. (36)

Relations Between ε- and ρ-Variables

By definition we have

0 ≤ ρrs
ij ≤ εrs

ij , ∀r ∈ D, s ∈ Dr, i 6= j, (37)

In order to get an ILP formulation for (24), i. e. for

ρrs
ij = εrs

ij ⇔
∑

k 6=i,j(φ
ds

kj + akjφ
3
kj)(ψ

dr

ik + bkiψ
3
ik) = 0,

∀r ∈ D, s ∈ Dr, i 6= j,

we introduce 0/1-variables ρrs
ijk by

ρrs
ijk = 1 ⇔ (φds

kj + akjφ
3
kj)(ψ

dr

ik + bkiψ
3
ik) = 1,

∀r ∈ D, s ∈ Dr, i 6= j, k ∈ In \ {i, j}.

This can be modelled as follows:

0 ≤ ρrs
ijk ≤ φds

kj + akjφ
3
kj ,

ρrs
ijk ≤ ψdr

ik + bkiψ
3
ik,

ρrs
ijk ≥ φds

kj + akjφ
3
kj + ψdr

ik + bkiψ
3
ik − 1,

∀r ∈ D, s ∈ Dr, i 6= j, k ∈ In \ {i, j}.

(38)

Now we have the condition

ρrs
ij = 1 ⇔

∑

k 6=i,j

ρrs
ijk = 0
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which is modelled as

εrs
ij − ρrs

ij ≤
∑

k 6=i,j ρ
rs
ijk,

(n− 2)(εrs
ij − ρrs

ij ) ≥
∑

k 6=i,j ρ
rs
ijk,

∀r ∈ D, s ∈ Dr, i 6= j.

(39)

In the last condition it is assumed that at least two
rectangles are available to build a cover, i. e. n ≥ 2.

Moreover, we have

ρrs
ij = ρsr

ji , ∀r, s, i, j. (40)

and, last but not least,

f̃ r
i (xi, yi) +M(1 − αi)

+M
∑

j 6=i

∑
s∈Dr

ρrs
ij ≥ 0, r ∈ D, i 6= j,

(41)

mrs|+1∑

t=0

λrs
ijt = ρrs

ij , ∀r, s, i, j. (42)

λrs
ij0f̃

r
i (xi, yi) +

∑mst

t=1 λ
rs
ijtg

rs
t (Ers

ij )

+λrs
ij,mrs+1f̃

s
j (xj , yj) ≥ 0,

r ∈ D, s ∈ Dr, i, j ∈ In, i 6= j.

(43)

Feasibility

In this model, objective function (17) and restric-
tions (28) – (43), it is possible that no covering exists.
For computational purposes it may be better to have
the existence of feasible solutions in the optimization
problem.

There are several possibilities to guarantee feasible
solutions, e. g. by adding artificial rectangles with
sufficient high costs, or by weakening some of the
restrictions similar to [9].

The Linear Model

Besides the linear objective function (17) and the lin-
ear restrictions (19), (20), (22), (23), (25) – (27) of
the basic model now we have to add all linear con-
straints (28) – (43) to get a linear formulation of the
CPR problem with continuous and binary variables.
In this formulation we have
2n continuous variables xi, yi, i ∈ In,
n rectangle selection variables αi, i ∈ In,
10n(n − 1) relative position variables φr

ij and ψr
ij ,

i 6= j ∈ In, r ∈ {1, . . . , 5},
8n(n − 1) inner corner identification variables ǫrs

ij ,
i 6= j ∈ In, r ∈ D, s ∈ Dr,
8n(n− 1) active inner corner identification variables

ρrs
ij , i 6= j ∈ In, r ∈ D, s ∈ Dr,

O(n2m) constraint selection variables λrs
itj , i 6= j ∈

In, r ∈ D, s ∈ Dr, t ∈ IΩ, and
O(n3) variables ρrs

ijk, i 6= j 6= k ∈ In, r ∈ D, s ∈ Dr.
Hence, the total number of variables is proportional
to n2 · max{n,m}.

The number of constraints has the same order of mag-
nitude.

Extensions

Here we propose directions of further research.

ILP Model 3: Non-convex Region Ω

If Ω is the union of a finite number of convex poly-
gons, i. e.

Ω =
⋃

q

Ωq where Ωq is convex for all q, (44)

then, in analogy to [9], for every subset Ωq a com-
plete set of λ-variables has to be introduced. The
placement parameters xi and yi and the α-, φ- and
ψ-variables are maintained.

An Alternative ILP Model

Another way of modelling is as follows. Given the
φ- and ψ-values we can obtain the ε-values. For a
certain subset Ωq we derive the ρ-values regarding
only these rectangles which are used to cover Ωq. For
every Ωq a set of α-, ρ- and λ-variables is needed.

Restricting the Placement Parameters

For every q ∈ Q 0/1-variables αiq are defined. Then,
a rectangle Ri, i ∈ In, is used to cover Ω if for at least
one q ∈ Q αiq = 1 holds true. In order to ensure that
Ri does not overlap Ω =

⋃
q∈Q Ωq if Ri is not used

for any subset of Ω, i. e. if
∑

q∈Q αiq = 0, we define
the following inequalities:

−ai ≤ xi ≤ (XE + 2ai)
∑

q∈Q αiq − ai,

−bi ≤ yi ≤ (YN + 2bi)
∑

q∈Q αiq − bi,

i ∈ In.

(45)
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Conclusions

Two ILP models have been developed for problem
CPR. In the first one, the number of variables and
constraints is dependent on the size of the target re-
gion; in the second model it is polynomially bounded
but even large. Investigations to reduce this number
as well as numerical experiments are needed. More-
over, alternative formulations can possibly help.
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