

Abstract — The Formal description of existing simulation

methods with the help of process algebra is considered in the

report. Mathematical representation of simulation process by

means of operations group performed onto it is given.

Index Terms—Simulation, process, alphabet, class, event

I. INTRODUCTION

ODAY several methods of the simulation have gotten a

wide distribution. They allow to display most naturally

the essence of the concrete simulated system for solving

problems of certain scientific or technical area. However,

there is a problem of absence of formal apparatus describing

construction of such systems. This work is directed on the

solution of this problem owing to the process algebra

application, which describes the essence of the simulation

process in the form of regular set of algebraic laws.

The ultimate goal is to form the transparency of systems

construction, which will make it possible to see both current

and future problems in a new light. Owing to this, it will

become possible to solve these problems more

economically, reliable and which is still more important to

minimize their number.

II. THE BASIC CONCEPTS OF PROCESS ALGEBRA

For the beginning we’ll describe the basic concepts which

are necessary as mathematical basis.

We’ll consider event as base concept - any action done in

a context of process. The term process is introduced to

denote behavior of an object which can be described within

a limited set of events chosen as its alphabet. The alphabet

is understood as a set of names of the events chosen for the

concrete description of the object. The alphabet is

considered to be constant, the predetermined property of the

object. Participating in the event beyond its alphabet is

logically impossible for the object.

Manuscript received March 14, 2009. This work was supported in part

by the Ukrainian Department of GRID systems research.

S. O. Olishchuk is with the Kharkiv National University of Radio

Electronics, Electronic Computers Department. Address: Ukraine, 61166,

Kharkov, tel. (057)-702-13-54, e-mail: serg_olish@mail.ru.

M. O. Volk is with the Kharkov National University of Radio

Electronics, Electronic Computers Department. Address: Ukraine, 61166,

Kharkov, tel. (057)-702-13-54, e-mail: volk@kture.kharkov.ua.

It’s considered that concrete event in object's lifetime

occurs instantly i.e. a basic action, not having extents in

time. Continuous, i.e., demanding time, action should be

considered as a pair of events, the first of which marks the

beginning of action, and the second - its end. Duration of the

action is defined by an interval between its onset-event and

end-event; during all this time there can be other events.

Two continuous events can overlap in time, if the beginning

of each of them precedes the end of another.

Let's introduce following agreements:

1. We’ll denote the names of the events by the words

composed of lowercase letters, for example: event1, event2,

as well as the letters a, b, c, d, e.

2. We’ll denote the names of the concrete processes by

the words made of capital letters, for example:

SIMULATION, SERVING.

3. Letters A, B, C are used to denote of set of events.

4. Letters X, Y are used for the variables, denoting

processes.

5. The alphabet of process P is denoted αР, for example:

αSIMULATION = {start, stop}

Process with the alphabet A is such that it doesn’t happen

any event from A in it, we’ll name it STOP A. This process

describes the behavior of a broken object: having physical

ability to participate in events from A, it never uses it. We

distinguish objects with different alphabets even if these

objects do nothing.

In summary, we define simple system of designations

which will help in describing the objects, which already

have ability to some actions.

Let think x - event, P - process. Then (x → P) (is read as

“P for х”) describes the object, which participates in event х

in the beginning, and then behaves in accuracy as P. Process

(x → P) has by definition the same alphabet, as P; therefore

this designation can be used only under the condition that х

belongs to the same alphabet. More formally: α(x→ P) = αР,

if→ αР.[1]

III. THE PROCESS ALGEBRA USAGE

Depending on the concept that is at the basis of

simulation model, the methods are divided into event-

oriented, transact-oriented and agent-oriented [2]. The latter

method is used less frequently, so we will focus our

attention on the first two.

In the event-oriented simulation system there are

following agreements:

The Process Algebra Usage for Simulation

Purposes

Olishchuk S., Volk M.

T

68 R&I, 2009, No2

• model moves through time from event to event,

which alter the state of the model;

• the logic of events determines the sequence of

changing states of the model that are associated

with the occurrence of these events;

• the time is moving from event to event;

The algorithm description is given in [2].

Fig. 1. Block diagram of the event-oriented simulation system

Translation of the algorithm into the language of the

process algebra is defined like following. First we should

define alphabet of simulation process:

αSIMULATION = {start, init, set_cycle1_parameter,

inc_cycle1_iter_cnt, check_event, insert_event_to_list,

is_end_of_cycle1, is_list_empty, set_cycle2_parameter,

get_event_from_list, serve_event, modify_next_event_time,

is_end_of_cycle2, correct_time, is_imitation_finished,

deinit, finish}, where

start – start of the simulating process (1)

init – initialization of the simulating process (2)

set_cycle1_parameter - set parameters of the cycle (3)

inc_cycle1_iter_cnt - increase counter of the cycle (4)

check_event - checking the conditions of implementation

of the event (5)

insert_event_to_list - adding the event to the list for

processing (6)

is_end_of_cycle1 - check the end conditions of the

cycle1(7)

is_list_empty - check if the list of events is empty for

processing (8)

set_cycle2_parameter - set parameters of the cycle2 (9)

get_event_from_list - receive events from the list (10)

serve_event - servicing of the event (11)

modify_next_event_time - modification of the moment of

the next event (12)

 is_end_of_cycle2 - check the end conditions of the

cycle2 (13)

correct_time-adjustment of the model time (14)

is_imitation_finished - check the end conditions of

simulation(15)

deinit - the simulating process deinitialization (16)

finish – the end of the simulating process (17)

The model’s behavior is defined as consequent events

changing like following:

SIMULATION = start → init → CYCLE1_EXEC → if

not is_list_empty then CYCLE2_EXEC else correct_time

→ if not is_imitation_finished then CYCLE1_EXEC else

deinit → finish

CYCLE1_EXEC_AUX = inc_cycle1_iter_cnt → if

check_event then insert_event_to_list → if not

is_end_of_cycle1 then CYCLE1_EXEC_AUX

CYCLE1_EXEC = set_cycle1_parameter →

CYCLE1_EXEC_AUX

CYCLE2_EXEC_AUX = set_cycle2_parameter →

get_event_from_list → serve_event → correct_time → if

is_end_of_cycle2 then CYCLE1_EXEC else

CYCLE2_EXEC_AUX

CYCLE2_EXEC = set_cycle2_parameter →

CYCLE2_EXEC_AUX

A SIMULATION name refers to the process (in fact,

process modeling).

The transact-oriented simulating systems are

characterized by:

• the model is a stream of transacts to promote them

from one process step to another.

• the state of the model is changed in discrete

moments of time, each step of the process is

associated with the start of sequence of events.

• the steps are repeated during the whole simulation

time.

• the model is as flexible and effective, as event-

oriented, but less abstract.

Today transact-oriented simulating systems are widely

adopted.

The algorithm description is given in [2].

Translation of the algorithm into the language of the

process algebra:

αSIMULATION = {start, initialization, scan_sources,

create, is_all_sources_considered, scan_absorbers, destroy,

is_all_absorbers_considered, create_list, is_list_empty,

stop_serving, start_serving, shift_time,

is_simulation_finished, deinit, finish}, where

start – start of the simulating process (1)

initialization – initialization of the simulating

process(2)

scan_sources – scanning the source of transacts (3)

create – creating transacts with given density (4)

R&I, 2009, No2 69

is_all_sources_considered – checking if all the sources

of transacts are scanned (5)

scan_absorbers – scanning the absorber of transacts(6)

destroy – destruction of transacts (7)

is_all_absorbers_considered – checking if all the

absorbers are considered (8)

create_list – creation of the transaction list (9)

is_list_empty – checking if the list of transacts is

empty(10)

stop_serving – stop serving the transacts (11)

start_serving – start serving the transacts (12)

shift_time – shifting of the simulating time (13)

is_simulation_finished – checking the end conditions

of modeling (14)

deinit – deinitialization of the simulating process (15)

finish – the end of the simulating process (16)

3 2

4

5

6 7

10

12

11

9

1

16

15

14

13

8

no

yes

yesno

no

yes

yes

no

Fig. 2. Block diagram of the transact-oriented simulation system

SIMULATION = start → initialization →

TRANZAKTS_CREATION →

TRANZAKTS_DESTROYING → create_list →

TRANZAKTS_SERVING → shift_time → if not

is_simulation_finished then TRANZAKTS_CREATION →

deinit → finish

TRANZAKTS_CREATION = scan_sources → create

→ if not is_all_sources_considered then

TRANZAKTS_CREATION

TRANZAKTS_DESTROYING = scan_absorbers →

destroy → if not is_all_absorbers_considered then

TRANZAKTS_DESTROYING

TRANZAKTS_SERVING = if not is_list_empty then

stop_serving → start_serving

Comparing these two simulation methods we can see that

they have similar alphabets and behavior description which

can give us opportunity to describe them as a common

formal model. Thus way we can approach by the HLA

general purpose architecture [6], which is just parameterized

with some specific parameters. This helps us to make such

systems decomposition and distributed development easier.

IV. CONCLUSION

The most obvious area of the approach outlined in the

article application is specification, development and

computer systems implementation which continuously act

and interact with their surroundings.

The basic idea is that using process algebra a system can

be decomposed easily into parallel subsystems interacting

with each other and with their general surroundings. Parallel

decomposition of subsystems gets not more complicated

than sequential combination of lines or operators in the

conventional programming languages. Such approach

includes many of actual ideas of structuring used in the

contemporary research on language and programming

methodology, such as monitors, classes, modules, packages,

critical sections, envelopes, forms, and even ordinary sub-

programs. And finally, this approach is a sound basis for

avoiding such errors as the divergence, deadlocks, loops,

and to prove the correctness of the design and development

of computing systems.

REFERENCES

[1] Ch.Hoar. Interacting sequential processes. M.: Mir, 1989 . 264 pp.

[2] Maksimey IV Simulation on the EC. M.: Radio & Communications,

1988. 232 pp.

[3] H. Miller, J. Sanders. Scoping the Global Market: Size Is Just

Part of the Story. IT Professional, 1(2):49-54, 1999.

[4] http://en.wikipedia.org/wiki/IEEE_1516

Sergey O. Olishchuk – PhD Student of Kharkov

National University of Radio Electronics.

Maxim O. Volk – PhD, Prof. Assistant of Kharkov

National University of Radio Electronics.

70 R&I, 2009, No2

