CONDENSED-MATTER SPECTROSCOPY

The Exciton Absorption Spectrum of KPbI₃ Thin Films

O. N. Yunakova^a, V. K. Miloslavsky^a, and E. N. Kovalenko^b

^a Kharkiv National University, Kharkiv, 61077 Ukraine
 ^b Kharkiv National University of Radioelectronics, Kharkiv, 61166 Ukraine
 e-mail: V.Miloslavsky@karasin.ua, O.Yunakova@karasin.ua, kovalenko.elena@bk.ru
 Received May 20, 2013

Abstract—The absorption spectrum of KPbI₃ thin films is studied in the spectral range 2-6 eV within the temperature interval 90–470 K. Localization of excitons in the sublattice of the compound containing lead ions is established. Excitons are shown to be of two-dimensional nature.

DOI: 10.1134/S0030400X1401024X

INTRODUCTION

The halogenides with the general formula APbX₃ (A = K, Cs, Rb; X = Cl, Br, I) iodides—specifically, KPbI₃—are the least studied. There is not even a general view regarding the molar composition of the compound formed in the system KI-PbI₂. According to [1, 2], the compound KPbI₃ is formed in the system $KI-PbI_2$, while, according to [3, 4], it is the compound K₂PbI₄. At the same time, from studies of luminescence spectra of single crystals KI:Pb²⁺ [5], it has been deduced that, in the KI-PbI₂ system, two ternary compounds are formed with different spectra ascribed by the authors to the compounds KPbI₃ and K₂PbI₄. From analysis of the absorption spectra of thin films $(KI)_{1-x}(PbI_2)_x$ (0.1 $\le x \le 0.5$) [6], the authors drew the conclusion that there is formation of compounds KPbI₃ and K₄PbI₆. This conclusion is supported by the linear dependence of the spectral position of the long-wavelength excitonic bands in the series of compounds PbI₂, KPbI₃, and K₄PbI₆ on the concentration of $PbI_2 x$, converging, at $x \to 0$, to the spectral position of the impurity bands of Pb²⁺ in KI [6].

In spite of numerous X-ray structural studies of the alloy salts of KI and PbI₂ [2, 3], no data are available concerning the crystal structure of the compounds formed in the KI–PbI₂ system. From comparison of the X-ray diffraction pattern of KPbI₃ and CsPbI₃ [2], one can draw a conclusion regarding their isostructural lattices. In contrast to KPbI₃, the crystal structure of CsPbI₃ has been studied rather well [7, 8]. The compound KPbI₃, like CsPbI₃, presumably crystal-lizes into an orthorhombic perovskite-type structure, with its structural elements in the form of double chains consisting of octahedra (PbI₆)^{4–} aligned along the minor axis of the crystal.

The reflection spectrum of the KPbI₃ single crystals in the region of the long-wavelength excitonic band at T = 4.2 K was studied in [9].

In this paper, we study the absorption spectra of the $KPbI_3$ thin films in a wide temperature range including temperatures of possible phase transitions.

EXPERIMENTAL

 $KPbI_3$ thin films were prepared by evaporating a mixture of pure powders of KI and PbI_2 with a proper molar composition onto a silica substrate heated up to 100°C with subsequent annealing of the samples at 130°C for 2 h. The mixture of the powders was preliminarily melted under a shield mounted between the vaporizer and substrate. Under these conditions, there was no admixture of the phase K_4PbI_6 in the films. We failed to obtain single-phase films of K_4PbI_6 . This compound is quite likely to be unstable and is preserved only partially upon fast cooling of the film down to room temperature.

The phase composition of the films was monitored by the absorption spectra measured at T = 90 K. Such monitoring was possible due to significant difference between the spectral positions of the long-wavelength excitonic bands in KPbI₃ (3.027 eV), K₄PbI₆ (3.388 eV [6]), and PbI₂ (2.5 eV), and KI (5.8 eV).

The absorption spectra were measured in the spectral range 2–6 eV at T = 90 and 290 K using an SF-46 spectrophotometer. In the narrower spectral range of 2.4–3.7 eV (in the region of the long-wavelength excitonic band), the absorption spectrum was measured in the wide temperature range of 90–470 K including temperatures of possible phase transitions. For spectral measurement in the temperature range of 90–350 K, the sample was placed into a vacuum cryostat supplied with a carbon-adsorption pump. For high-temperature measurements, the sample was placed into a furnace with a tungsten heater.

Parameters of the long-wavelength excitonic bands were approximated, in accordance with [10], by a symmetric single-oscillator mixed profile having a shape intermediate between Lorentzian and Gaussian and representing their linear combination. This mixed profile does not differ much from that of Voigt. The parameters of the excitonic bands (position E_m ; halfwidth Γ ; and $\varepsilon_{2m} \equiv \varepsilon(E_m)$, the imaginary part of the permittivity at the peak of the excitonic band) were chosen to obtain the best fit of the calculated profile to the measured spectrum at the long-wavelength slope of the band.

TEMPERATURE DEPENDENCE OF PARAMETERS OF THE LONG-WAVELENGTH EXCITONIC BAND IN KPbI₃

The absorption spectrum of the KPbI₃ thin film at T = 90 K reveals, at the edge of the intrinsic absorption band, a narrow excitonic A_1 -band at 3.027 eV (Fig. 1). Positions of shorter-wavelength C- and D-bands are given in the table. The A_1 -band, in its spectral position, is close to the long-wavelength excitonic bands in CsPbI₃ (3.013 eV [11, 12]) and RbPbI₃ (2.975 eV [13]). Close spectral positions of the long-wavelength excitonic bands in the compounds $MPbI_3$ (M = K, Rb, Cs) indicated localization of excitons in the sublattice containing Pb ions. As was mentioned above, we assume the compound KPbI₃ to be isostructural with the compounds CsPbI₃ and RbPbI₃, with the structural elements of their crystal lattice being octahedra (PbI₆)^{4–} [7, 8]. This assumption is supported by the similarity of the spectra of MPbI₃ (M = K, Rb, and Cs) in terms of structure and position of the main absorption bands (Fig. 1 and table). Thus, excitons in $KPbI_3$, as well as in $CsPbI_3$ [11, 12] and $RbPbI_3$ [13], are localized in the complexes $(PbI_6)^{4-}$ and the excitonic spectrum is interpreted in terms of electron transitions in the $(PbI_6)^{4-}$ octahedron like spectra of impurity ions Pb²⁺ in the alkali-halide crystals [14]. In other words, the A-bands in the MPbI₃ spectra correspond to the transitions ${}^{1}A_{1g} \rightarrow {}^{3}T_{1u}$, while the C-bands correspond to the transitions ${}^{1}A_{1g} \rightarrow {}^{1}T_{1u}$.

The absorption spectrum of the KPbI₃ thin films in the range of the long-wavelength excitonic band (2.4– 3.7 eV) was measured in the temperature range of 90– 470 K upon heating and cooling of the sample.

With increasing temperature, the A_1 -band in KPbI₃ shifts to longer wavelengths, broadens, and becomes weaker due to exciton—phonon interaction (EPI) (Fig. 2). However, the temperature behavior of spectral position $E_m(T)$ of the A_1 -band (Fig. 2a) obtained by heating of the sample shows some specific features. In the narrow temperature interval from 205 to 247 K, we observed a short-wavelength shift of the A_1 -band by 0.03 eV; in the range of 247–276 K, the A_1 -band shifts

Fig. 1. Absorption spectra of the KPbI₃, RbPbI₃, and CsPbI₃ thin films (T = 90 K).

linearly to shorter wavelengths with $dE_m/dT = -1.7 \times 10^{-4} \text{ eV/K}$; and, in the range of 276–321 K, it sharply shifts toward longer wavelengths by 0.07 eV.

The short-wavelength shift of the A_1 -band with increasing T in the range of 205–247 K indicates an increasing volume of a unit cell. This increase may be related either to a phase transition or to intercalation of the film by CO₂ molecules effused from the carbonadsorption pump of the cryostat upon heating. The latter is supported by the fact that starting temperature of the short-wavelength shift $T_{c2} = 205$ K is close to that of sublimation of CO₂, T = 194.5 K, and by the absence of specific features in the temperature behavior of $E_m(T)$ measured under cooling of the sample.

Spectral position of the $MPbI_3$ absorption bands (M = K, Rb, Cs)

Compound	$E_{\rm A1}$, eV	$E_{\rm C1}$, eV	$E_{\rm C2}$, eV	$E_{\rm C3}$, eV	$E_{\rm D}$, eV
KPbI ₃	3.027	3.58	3.97	3.36	4.56
RbPbI ₃ [13]	2.975	3.73	4.105	4.4	4.63
CsPbI ₃ [12]	3.013	3.69	4.22	4.4	4.461

Fig. 2. Temperature dependence of (a) spectral position $E_m(T)$ and (b) halfwidth $\Gamma(T)$ (b) of the long-wavelength excitonic band A_1 in KPbI₃ (t = 135 nm): (dots) experiment (open circles correspond to heating and filled circles to cooling of the sample), (solid lines) calculation by (a) Eq. (1) and (b) Eqs. (2) and (3).

Temperature dependence $E_m(T)$ under cooling of the sample, as well as under heating of the sample in the temperature regions from 90 to 205 K and from 321 to 468 K, is described by the linear dependence

$$E_m(T) = E_m(0) + \alpha T, \tag{1}$$

where $E_m(0) = 3.06 \text{ eV}$ and $\alpha = dE_m/dT = -3.11 \times 10^{-4} \text{ eV/K}$.

Intercalation of the films with CO₂ upon heating in the cryostat was observed earlier in ZnI_2 and K_2ZnI_4 thin films [15, 16] and was accompanied by a noticeable short-wavelength shift of the absorption edge. It should be noted that the short-wavelength shift of $E_m(T)$ within the interval of 205–321 K was observed in all KPbI₃ samples upon heating. However, the value of the greatest shift was not the same, which is likely to be related to different degrees of intercalation of the $KPbI_3$ films by CO_2 molecules. It is possible that, after heating up to $T \sim 195$ K, CO₂ molecules start to effuse from the carbon pump and partially intercalate into the KPbI₃ film, which causes the short-wavelength shift of the A_1 -band. This process is saturated at 247 K, and later, in the interval 247-276 K, a long-wavelength shift of the excitonic band in the intercalated film occurs due to the EPI. Further heating of the KPbI₃ film leads to gradual removal of the intercalant accompanied by a sharp long-wavelength shift of the A_1 -band in the interval 276–321 K. Starting from $T_{c1} = 321$ K, the short-wavelength shift of the excitonic band is related exclusively to the EPI and is described by Eq. (1), which indicates total removal of the intercalant from the film. Upon cooling of the cryostat, the CO₂ molecules are frozen out and intercalation of the KPbI₃ film occurs only upon heating.

Intercalation of the KPbI₃ film by CO₂ molecules indicates a layered structure of crystal lattice of the compound under study. Unfortunately, we are not aware of the KPbI₃ crystal structure, but, since the spectra of the MPbI₃ (M = K, Rb, Cs) are isostructural, we suggest that these compounds are isostructural as well. The compounds RbPbI₃ and CsPbI₃ crystallize, at room temperature, into a perovskite-like orthorhombic lattice with four molecules in a unit cell and close parameters a = 10.27; 10.46 Å, b = 17.38; 17.78 Å, and c = 4.77; 4.8 Å (space group *Pnma*) for $RbPbI_3$ and $CsPbI_3$, respectively [7, 8]. In spite of the layered structure, intercalation of the RbPbI₃ and $CsPbI_3$ films by CO_2 molecules was not observed [12, 13]. The layered crystals are characterized by van der Waals bonding between the layers. Intercalation of the KPbI₃ films indicates, most likely, a weaker van der Waals bonding as compared to the RbPbI₃ and CsPbI₃. However, to draw an unambiguous conclusion regarding manifestation of intercalation in KPbI₃, one has to know the lattice parameters of the compound under study. It is also interesting to examine the effect of other, more efficient, intercalants on spectra of the compounds.

In order of magnitude, the values of dE_m/dT in KPbI₃ are typical for most ionic crystals, including this compound. As is known, in ionic crystals, excitons predominantly interact with longitudinal optical (LO) phonons and the most essential temperature changes in parameters of the excitonic bands may occur at $\hbar\omega_{\rm LO} \le kT$. We estimated the unknown values of $\hbar\omega_{\rm LO}$ in KPbI₃ using known values of $\hbar\omega_{\rm LO} = 13.7$ meV in PbI₂ [17] and $\hbar\omega_{\rm LO} = 17.5$ meV in KI [18]. Taking into account the molar composition of the KPbI₃ compound, $\hbar\omega_{\rm LO} \sim 15.6$ meV.

In spite of the jumps in temperature dependence of the spectral position $E_m(T)$ of the A_1 -band (Fig. 2a), the temperature dependence of halfwidth $\Gamma(T)$ is smooth, with no characteristic features (Fig. 2b).

In conformity with theory [19], broadening of excitonic bands associated with excitonic interaction for excitons of different dimensionality d (d = 1, 2, 3) is defined as follows as

$$\Gamma(T) \approx \left[\frac{\pi D^2}{\gamma (d/2) (2\pi B)^{d/2}}\right]^{\frac{2}{4-d}},$$
(2)

where $\gamma(d/2)$ is the Γ -function dependent on d, B is the width of the excitonic band, $D^2 = 0.5C^2\hbar\omega_{\rm LO}\coth(\hbar\omega_{\rm LO}/2kT)$, $C^2/2$ is the lattice relaxation energy related to formation of excitons. With allowance for the residual broadening $\Gamma(0)$ of the excitonic band due to the lattice defects and Gaussian shape of the excitonic bands A_1 in the studied temperature range, the whole width Γ is given by the relationship

$$\Gamma = \left[\Gamma^{2}(0) + \Gamma^{2}(T)\right]^{1/2},$$
(3)

where $\Gamma(T)$ obeys Eq. (2) with an unknown temperature-independent factor *A*. Processing of experimental dependence $\Gamma(T)$ using Eq. (2) for different *d* gives the best fit with the experimental data at d = 2. In this case,

$$\Gamma(T) = A \coth(\hbar\omega_{\rm LO}/2kT), \qquad (4)$$

and the dependence $\Gamma(T)$ in the coordinates Γ^2 on $\cosh^2(\hbar\omega_{\text{LO}}/2kT)$ appears to be linear. Processing of this dependence by the least-squares method yields the values $\Gamma(0) = 0.075 \pm 0.004$ eV and $A = 0.059 \pm 0.0005$ eV. The computed temperature dependence $\Gamma(T)$ from Eqs. (2) and (3) with the found values of $\Gamma(0)$ and *A* well agrees with the experiment (Fig. 2b).

Thus, analysis of temperature dependence $\Gamma(T)$ of the A_1 band indicates a two-dimensional nature of excitons in KPbI₃, which confirms the layered structure of the compound. It should be noted that, in spite of the layered structure of the compounds RbPbI₃ and CsPbI₃, the excitons in these compounds are threedimensional [12, 13]. It is most likely that, in the series of compounds KPbI₃, RbPbI₃, and CsPbI₃, the first one is the most layered, which is supported not only by the two-dimensional nature of excitons in this compound, but also by intercalation of the film by CO₂ molecules.

CONCLUSIONS

As follows from the structure of the spectrum and positions of the main absorption bands, the spectrum of the KPbI₃ thin films is isostructural with those of MPbI₃ (M = Rb, Cs) and, like the spectra of MPbI₃, is interpreted based on electronic transitions in the octahedron (PbI₆)^{4–}.

In the studies of the temperature dependence of spectral position $E_m(T)$ of the long-wavelength A_1 -

band obtained under heating of the sample, the shortwavelength shift of the band is found at $T_{c2} = 205$ K, which is likely to be associated with intercalation of the film by CO₂ molecules, giving rise to an increase of the unit cell volume. The temperature behavior of $\Gamma(T)$ indicates creation of 2D excitons in KPbI₃.

REFERENCES

- 1. I. I. Il'yasov and A. G. Bergman, Zh. Obshchei Khim. 26, 981 (1956).
- I. I. Il'yasov, D. G. Barsegov, I. G. Berikashvili, and L. P. Danilenko, Zh. Neorg. Khim. 14, 1484 (1969).
- E. A. Ziger, V. V. Kukol', G. A. Babich, L. M. Nikitina, and I. M. Koshkin, Zh. Neorg. Khim. 25, 2168 (1980).
- I. N. Belyaev, E. A. Shurginov, and N. S. Kudryashov, Zh. Neorg. Khim. 17, 2812 (1972).
- A. S. Voloshinovskii, S. V. Myagkota, and A. V. Gloskovskii, Zh. Fizichnikh Doslidzh. 4 (3), 335 (2000).
- 6. O. N. Yunakova, V. K. Miloslavskiy, and E. N. Kovalenko, Func. Mater. **20** (1), 59 (2013).
- 7. C. K. Moller, Nature 182, 1436 (1958).
- D. M. Trots and S. V. Myagkota, J. Phys. Chem. Solids 69, 25203 (2008).
- 9. N. S. Pidzyrailo, A. S. Voloshinovskii, and S. V. Myagkota, Opt. Spektrosk. **64**, 1187 (1988).
- O. N. Yunakova, V. K. Miloslavskii, and E. N. Kovalenko, Opt. Spektrosk. **104** (5), 631 (2008).
- S. Kondo, K. Amaya, and T. Saito, J. Phys.: Condens. Matter 15, 971 (2003).
- 12. O. N. Yunakova, V. K. Miloslavskii, and E. N. Kovalenko, Opt. Spektrosk. **112** (1), 90 (2012).
- O. N. Yunakova, V. K. Miloslavskii, E. N. Kovalenko, and E. V. Ksenofontova, Fiz. Nizk. Temp. 38 (10), 1191 (2012).
- 14. K. Schmitt, Phys. Stat. Sol. b 135, 389 (1986).
- 15. O. N. Yunakova, V. K. Miloslavskii, and E. N. Kovalenko, Opt. Spektrosk. **105** (6), 984 (2008).
- O. N. Yunakova, V. K. Miloslavsky, E. N. Kovalenko, and E. D. Makovetsky, Funct. Mater. 16 (2), 130 (2009).
- G. Lukovsky, R. M. White, J. A. Benda, W. Y. Liang, R. Zallem, and P. H. Schmidt, Solid State Commun. 18, 811 (1976).
- 18. *Excitons*, Ed. by E. I. Rashba (Nauka, Moscow, 1985) [in Russian].
- 19. M. Schreiber and Y. Toyasawa, J. Phys. Soc. Jap. **51**, 1528 (1982).

Translated by V. Zapasskii