

Innovative Data Collecting System of Services
Provided by Medical Laboratories

Adam Migodzinski, Robert Ritter, Marek Kaminski, Jakub Chlapinski, Bartosz Sakowicz

Abstract – The article presents features of an innovative

system that provides data collection of services provided by
medical laboratories. System has been developed based on Java
Enterprise Edition platform with usage of Spring and Hibernate
frameworks combined with jQuery library.

Keywords – Spring Framework, Hibernate, Java, Java EE

I. INTRODUCTION
ECENTLY Internet has become the main source of
information, entertainment, knowledge and platform for

the rapid exchange of information. However, this is just one
of the possibilities of using this powerful tool. In the last few
years, strong growth of Internet’s commercial use has marked.
More and more companies began to share their databases of
products and prices with the possibility to purchase them via
Internet. A growing number of online shops caused creation
of price comparison services - websites thanks to which users
can quickly find an interesting product in the lowest price.

Presented application is innovative because there has not
been introduced any website offering such set of services. Its
introduction in future may be significantly easier for
physicians and patients.

The aim of the work was to create a site collecting data on
services provided by medical laboratories, with usage of open-
source solutions (jQuery, Hibernate, MySQL, Tomcat) and
technology based on Java EE and Spring framework [1,2].

II. TOOLS USED TO DEVELOP THE SYSTEM
Main idea of the project was to create a site, making use

only of open-source libraries and projects. Authors decided to
use Java and the Spring Framework as the foundation of the
whole project, together with other supplementary technologies
such as Hibernate or jQuery. Apache Tomcat has been chosen
as application’s server. System security has been assured
through the use of Spring Security framework. Good
knowledge of mentioned frameworks allows to accelerate the
application development process. Unfortunately, their use
does not guarantee success itself. Much depends on the
programmer, who must remember to apply certain rules such

Manuscript received November 09, 2011.
Katedra Mikroelektroniki I Technik Informatycznych
ul. Wolczanska 221/223 budynek B18, 90-924 Lodz, POLSKA
al. Politechniki 11, 90-924 Lodz, POLSKA
NIP 727-002-18-95
tel. +48 (42) 631 26 45 faks +48 (42) 636 03 27

as three-layer application architecture. Thanks to the program
code becomes transparent and the development of applications
in the future – easier.

III. SYSTEM GOALS AND FUNCTIONALITY
The main aim of the project was to design system that

would be a database of laboratories together with their offered
medical examinations. Furthermore, it should provide quick
searching of any examination with the possibility of price
comparison. Such a system would constitute a huge
convenience to both doctors and their patients searching for
the best place to do the required tests [6].

System is addressed to various range of users. Due to this
fact, division into four main roles of users was implemented.
The roles are: laboratory worker, administrator, client and
registered client. Each role has different functionality.
Laboratory worker role functionality:

- registration in the system
- adding examinations
- submitting newsletter content
- adding comments and files

Registered client can:
- search for examinations
- add opinion about laboratory
- register for newsletter

Client:
- search for examinations

Administrator functions are:
- moderating laboratory’s opinions
- editing and sending newsletter
- placing commercial banners

IV. ARCHITECTURE

Application has been designed in accordance with three-tier

layer architecture (Fig. 1).

Fig. 1. Application’s architecture

It distinguishes three independent modules. These modules
are associated with each other by means of appropriate
mechanisms to ensure communication between them and the

R

Web browser

Pr
es

en
ta

tio
n

la
ye

r

Database

B
us

in
es

sl
ay

er

D
at

ab
as

e
ac

ce
ss

la
ye

r

Se
cu

rit
y

la
ye

r

80 R&I, 2011, No 4

data transfer. The three modules are: presentation layer,
business layer and database access layer. The correct model
layer should be constructed so that the given layer uses the
interface provided by the “lower” layer to communicate and
have no knowledge of any “higher” layer. Such architecture is
demanded by Spring Framework, which requires object-
oriented programming with interfaces, loose-coupling
between classes and modularity.

V. BUSINESS LOGIC LAYER

Business logic layer in the application has specific tasks. It
collects data from a “lower” layer through its interfaces.
Persistence layer forwards data to the logic layer as objects.
It is run by:

service-Java interfaces providing class’ methods for
implementing the service,

Java classes that define methods for implementing business
logic depending on user requests. Responsible for the retrieval
of data from layers responsible for the access to the database,
saving new objects mapped to the appropriate records in the
database, editing existing ones or deleting them.

VI. PERSISTENCE LAYER

Persistence layer is the lowest layer in the application [3,7].
It is responsible for retrieving data from a database using
annotated POJO classes pursuing an object-relational
mapping. It is implemented with:

– DAO interfaces – which share methods of classes to
implement the DAO interface;

– Java classes that inherit from class
HibernateDAOSupport, giving access to a wide range of
methods for ease of use of data, such as adding to the database
or erasing them, without worrying about releasing the session
objects, transactions, or cleaning the cache memory. They
operate on the class’s entities;

– entities – POJO class with JPA annotations implements
the object-relational mapping to the appropriate tables in the
database.

This design does not require changes in source code after
changing data persistence technology.

All data is stored in a MySQL 5.1 database. However,
implementation of applications that run on a relational
database in object-oriented programming languages such as
Java can be time consuming and tedious. Facilitate and
accelerate the action has been obtained by the usage of
Hibernate, that is performing the mapping application
skeleton representation of the object model of the relational
model, using SQL. Hibernate’s configuration is stored in
XML file. There is defined connection through JDBC to the
database and SQL dialect, so that system specific metadata
can be generated. Example of Hibernate configuration is
shown below:

<hibernate-configuration>
 <session-factory>
 <property name="hibernate.dialect">
 org.hibernate.dialect.MySQLInnoDBDialect
 </property>

 <property
name="hibernate.connection.driver_class">
 com.mysql.jdbc.Driver
 </property>
 <property name="hibernate.connection.url">
 jdbc:mysql://localhost:3306/mediclabsdb
 </property>
 <property
name="hibernate.connection.username">root</pro
perty>
 </session-factory>
</hibernate-configuration>

In the project entities with annotations were used. Annotations
in Hibernate are implemented in the Hibernate Core in the
form of two independent packages: Hibernate Annotations
and Hibernate EntityManager. Hibernate Annotations
implements all annotations JPA / EJB 3.0. Java classes with
annotations are replacing traditional XML mapping files.
Below is presented Java class with annotations usage.
@Entity
@Table(name="authorities"
 ,catalog="mediclabsdb"
 , uniqueConstraints =
@UniqueConstraint(columnNames={"username",
"authority"})
)
public class Authorities implements
java.io.Serializable {
 private Integer id;
 private Users users;

 public Authorities() {}
 public Authorities(Users users, String
authority) {
 this.users = users;
 this.authority = authority;
 }
 @Id @GeneratedValue(strategy=IDENTITY)
 @Column(name="id", unique=true,
nullable=false)
 public Integer getId() {
 return this.id;
 }
 public void setId(Integer id) {
 this.id = id;
 }
 @ManyToOne(fetch=FetchType.LAZY)
 @JoinColumn(name="username",
nullable=false)
 public Users getUsers() {
 return this.users;
 }
 public void setUsers(Users users) {
 this.users = users;
 }

VII. PRESENTATION LAYER

Presentation layer is located at the top of three-tier
architecture. It is responsible for implementing user’s
interface logic and contains the code navigating between web
pages or displaying the forms. In presented application

R&I, 2011, No 4 81

presentation layer has been implemented in accordance with
the MVC (model-view-controller) pattern, which includes:

– JSP pages – which are views responsible for presenting
data to the user. Data is imported through the middle tier from
database. Pages are operated by controllers;

– Controllers – Java classes that inherit from one of
Controller class, depending on the kind of ongoing user
request. Controllers communicate with the "lower" layer using
the interfaces provided by it, import the required information
and return the results to the appropriate view. One controller
can support several views (Fig. 2).

Fig. 2. Processing user’s request step-by-step

Of course incoming request needs to be dispatched in some
way. In other words it has to be known which controller is
responsible of delivering essential data to JSP page. Spring
provides several mapping methods but in presented project
SimpleUrlHandleMapping was used. It maps controllers to
URL adresses using a property collection defined in the
Spring application context, as presented below:

<bean id="urlMapping"
class="org.springframework.web.servlet.handler
.SimpleUrlHandlerMapping">
 <property name="mappings">
 <props>
 <prop key="index*.htm">
 indexController
 </prop>
 <prop key="image/*.htm">

imageController
 </prop>

 </props>
 </property>

</bean>

User interface has been enriched by jQuery plugins such as:
tablesorter, masked input, autocomplete input field or ligthbox
gallery [4]. jQuery is a cross-browser JavaScript library
designed to simplify client-side HTML scripting.
Implementing any plugin from those mentioned above is very
easy. Basically it boils down to import appropriate plugin’s
script and putting path to it in <head> section. Next step is
putting in separate JavaScript file methods that the plugin

implements or extends and a single line “$(document).ready()
executing specific actions. Sample usage of Autocomplete
plugin is presented on Fig. 3 and the code is introduced
below:

$(document).ready(function(){
$("input#cities").autocomplete({
source:["Zgierz", "Zgorzelec"]
 });
 });

Fig. 3. jQuery UI autocomplete plugin in action

VIII. SECURITY LAYER
Ensuring application security is a critical aspect of its

proper work [5,8,9]. When one needs to divide access to
resources depending on user role, the help comes from the
Spring Security framework. To work properly, "Spring
Security" needs two tables to be created in the database:
USERS and AUTHORITIES. First of these two must be fields
storing two fields: username and password. In the second
table must be username (which is a foreign key) and the name
of the his role (authority). Spring Security configuration has
been defined in a separate file - applicationContext-
security.xml. It identifies the access to websites based on user
role, the name of the page responsible for logging in, redirects
to the appropriate page when one logs on, logs off or if the
login fails:

<http auto-config="true" lowercase-
comparisons="false" access-denied-
page="/index.jsp">
<intercept-url pattern="/login.jsp"
access="IS_AUTHENTICATED_ANONYMOUSLY" />
<intercept-url pattern="/index*.jsp"
access="IS_AUTHENTICATED_ANONYMOUSLY"/>
 ...
<intercept-url pattern="/profile.jsp"
access="ROLE_USER, ROLE_ADMIN" />
<form-login login-page="/login.jsp"
authentication-failure
url="/login.jsp?login_error=1" />
<logout logout-url="/logout" logout-success-
url="/index.jsp" />
</http>

To enable the security methods for applications, filers
capturing users requests need to be configured in the
application descriptor (web.xml file), as shown below:
<filter>
 <filter-name>springSecurityFilterChain

 </filter-name>
 <filter-class>
org.springframework.web.filter.DelegatingFilte
rProxy
 </filter-class>
</filter>

<filter-mapping>
 <filter-name>springSecurityFilterChain

82 R&I, 2011, No 4

 </filter-name>
 <url-pattern>/*</url-pattern>
</filter-mapping>

IX. USAGE OF JMS AND CKEDITOR
The system introduces the ability to send newsletters to users
who have expressed their desire to receive it. Spring
Framework has an abstract API that makes sending e-mails a
relatively simple process. A main element of that API is an
interface MailSender, which has two different
implementations. In the project JavaMailSenderImpl was
used. The reason why this one has been chosen is its
possibility of sending the MIME messages. Responsible for
sending emails is method sendEmail, located in the class
EmailServiceImpl class. This method creates and send
messages to each customer. For the proper work of the
mechanism, relevant beans must have been defined in the
applicationContext.xml file:

<bean id="mailsender"
class="org.springframework.mail.javamail.JavaM
ailSenderImpl">

<property name="host">
<value>${host}</value></property>

<property name="port">
<value>${port}</value></property>

<property name="username">
<value>${username}</value></property>

<property name="password">
<value>${password}</value></property>

<property name="javaMailProperties">
 <props>
 <prop key="mail.smtp.auth">true</prop>
 <prop
key="mail.smtp.starttls.enable">true</prop>
 </props>
 </property>
</bean>

PropertyPlaceholderConfigurer loads properties from one or
more external property files and uses those properties to fill in
placeholder variables in the bean wiring XML file.

<bean id="propertyPlaceholder"
class="org.springframework.beans.factory.confi
g.PropertyPlaceholderConfigurer">
<property name="location"
value="mailsystem.properties"></property>
</bean>

Fig. 4. Properties import from external property file

X. CONCLUSIONS
In recent years much has changed in approach of creating
applications that run on the web server. Role of frameworks,
which support creation of application, its development and
testing has increased. Examples are the Spring Framework
(for Java), Code Igniter (PHP). NET Framework and many
others. The aim of this study was to establish a system for
collecting information of medical laboratories and their
services. It would greatly facilitate the work of doctors and
saved patient’s time who is searching for relevant laboratory
to do the examination. Such a system could improve the
quality of services due to the possibility of comparing prices
or adding an opinion of the laboratory.

ACKNOWLEDGEMENTS
The authors are a scholarship holders of project entitled
"Innovative education ..." supported by European Social Fund.

REFERENCES
[1] Craig Walls, Ryan Breidenbach, „Spring in Action – Second Edition“,

Manning Publications, 2007, ISBN: 1-9339-8813-4.
[2] R. Johnson, J. Hoeller, A. Arendsen, T. Risberg, C. Sampaleanu,

„Professional Java Development with the Spring Framework, John
Wiley & Sons, 2005, ISBN: 0-7645-7483-3.

[3] Christian Bauer, Gavin King, “Hibernate w akcji”, Helion, 2007, ISBN:
978-83-246-0527-9.

[4] Bear Bibeault, Yehuda Katz, “jQuery in Action”, Manning Publications,
2008, ISBN: 1-9339-8835-5.

[5] John Arthur, Shiva Azadegan, "Spring Framework for Rapid Open
Source J2EE Web Application Development: A Case Study," snpd-
sawn, pp.90-95, Sixth International Conference on Software
Engineering, Artificial Intelligence, Networking and Parallel/Distributed
Computing and First ACIS International Workshop on Self-Assembling
Wireless Networks (SNPD/SAWN'05), 2005.

[6] Niziałek, A.; Zabierowski, W.; Napieralski, A.: "Application of JEE 5
technologies for a system to support dental clinic management"; Modern
Problems of Radio Engineering, Telecommunications and Computer
Science, 2008 , ISBN978-966-553-678-9

[7] Ziemniak Piotr, Sakowicz Bartosz, Napieralski Andrzej: "Object
oriented application cooperation methods with relational database
(ORM) based on J2EE Technology"; CADSM'2007; 9th International
Conference The Experience Of Designing And Application Of Cad
Systems In Microelectronics, Polyana, Ukraina, 20 - 24 February 2007,
str. 327-330, s.593, A4, ISBN 978-966-553-587-4, wyd. Publishing
House of Lviv Polytechnic National University 2007.

[8] PilichowskiI M., Sakowicz B., Chłapiński J.; “Real-time Auction
Service Application Based on Frameworks Available for J2EE
Platform”, pp. 166-169, Proceedings of the Xth International
Conference TCSET’2010, “Modern Problems of Radio Engineering,
Telecommunications and Computer Science”, Lviv-Slavsko, Ukraina,
23-27 February 2010, s.380, A4, wyd. Publishing House of Lviv
Polytechnic National University 2010, ISBN 978-966-553-875-2

[9] Marcin Mela, Bartosz Sakowicz, Jakub Chlapinski: "Advertising
Service Based on Spring Framework", 9th International Conference
Modern Problems of Radio Engineering, Telecommunications and
Computer Science, TCSET’2008, 19-23 February 2008, Lviv-Slavsko,
Ukraine, ISBN 978-966-553-678-9

R&I, 2011, No 4 83

