EXCITON ABSORPTION SPECTRUM OF KPb2Br5THIN FILMS

Olga YUNAKOVA¹, Olena KOVALENKO², Mykola YUNAKOV³

¹ Physical optics Department, Faculty of Physics, V. N. Karazin Kharkiv National University, Kharkiv, Ukraine

² Department of Physics, Faculty ACT, Kharkiv National University of Radio Electronics, Kharkiv, Ukraine

³Department of Materials for Reactor Constructing, Physics and Technology Faculty, V. N. Karazin Kharkiv National

University, Kharkiv, Ukraine

The KPb₂Br₅ compound exists in two modifications – tetragonal (I) (space group *I4/mcm*, a = 8.14 Å, c = 14.10 Å, z = 4) and monoclinic (II), (space group *P2*₁/c, lattice parameters are a = 9.264 Å, b = 8.380 Å, c = 13.063 Å, $\gamma = 90.06^{\circ}$, z = 4). [1, 2]

 KPb_2Br_5 thin films were prepared by evaporation in vacuum of a melt mixture of pure KBr and PbBr₂ powders of stoichiometric molar composition on cold quartz substrates $T_s = 278$ K. The films, prodused by this method, correspond to KPb₂Br₅ (I). The phase composition of the films was monitored from the absorption spectra measured at T = 90K. Such control is possible due to the difference in the spectral position of the long-wavelength exciton bands in KPb₂Br₅ (3.66 – 3.84 eV), PbBr₂ (3.98 eV), and KBr (6.76 eV).

The absorption spectrum of the KPb₂Br₅ (I) thin film (Fig.1a) contains a long-wavelength A^{I} band and a wide C^{I} band (the spectral positions of the bands are given in Table 1).

E_.eV

3.9 - a

3.8 3.7 3,6 100 200 300 400 T.K Г.eV 0.5 b) 0.4 0.3 0.2 300 ΤК 100 200 400

Fig. 1. Absorption spectra of a thin film of KPb_2Br_5 a) tetragonal structure (I) at T = 282K (1) and 90K (2) and b) monoclinic (II) (2) and tetragonal (I) (1) structures at T = 90K.

Fig. 2. Temperature dependence of the spectral position $E_{\rm m}(T)$ (a) and half-width $\Gamma(T)$ (b) of the long-wavelength exciton band A in the KPb₂Br₅ thin film.

The A^{I} band with increasing temperature shifts linearly to the long-wavelength region of the spectrum with $dE_m/dT = -=$ $(1,87\pm0,04)\cdot10^{-4}$ eV/K (Fig. 2) in the temperature range 90-282 K. At $T_c = 293$ K there are short-wavelength shift of the longwavelength exciton AI band, which indicates an increase of the unit cell volume, narrowing and sharpening of the band. A jump in the temperature dependences of the spectral position and half-width of the long-wavelength exciton band A at Tc = 293K indicates a first-order phase transition. This transition is irreversible. Cooling of the film down to a temperature 90 K does not restore the spectrum (Fig. 1b). Apparently, upon evaporation of the melt mixture on a cold tetragonal compound substrate, the KPb₂Br₅ (I) crystallizes. When the film is heated to $T \ge T_c$, a phase transition occurs to the monoclinic structure of KPb₂Br₅ (II).

The structure of the absorption spectra of KPb_2Br_5 thin films (I, II) is similar to the $PbBr_2$ spectrum and close in the position of the exciton bands, which is due to the similarity of the crystal structures of the compounds. Apparently, in thin films of KPb_2Br_5 (I, II), as in $PbBr_2$, excitons have a cationic character, which is indicated by the similarity of their spectra in structure and the close spectral position of the absorption bands. And also the close position of the long-wavelength exciton bands to the Pb_2^+ impurity band in KBr. In this case, exciton excitations are localized in the compound sublattice containing lead ions

Table 1: Spectral position of exciton bands E_m , band gap E_g , and exciton binding energy R_{ex} in KPb₂Br₅ (I, II) and PbBr₂.

	m [,] U	1 0	U U	0, 1,	2 3 (, , ,
Compound	$E_{\rm mA}$, eV	$E_{\rm mC1}$, eV	\underline{E}_{mC2} , eV	$E_{\rm g}, {\rm eV}$	$R_{\rm ex}$, eV
$KPb_2Br_5(I)$ (thin film)	3.72	4.95		3.95	0.23
$KPb_2Br_5(II)$ (thin film)	3.84	4.8	5.5	4.08	0.24
PbBr ₂	3.98	4.86	5.69	4.23	0.25

In the cationic exciton model, the KPb_2Br_5 (I, II) spectrum, like the PbBr_2 spectrum, is determined by transitions in the Pb_2^+ ion. The long-wavelength shift of the absorption edge in the series of compounds PbBr_2 , $\text{KPb}_2\text{Br}_5(I)$, $\text{KPb}_2\text{Br}_5(I)$ is due to a decrease in the ionicity of the compounds due to a decrease in the number of Br^- ions surrounded by the Pb^+ ion. In PbBr_2 , the coordination number of Br^- ions is 9, in $\text{KPb}_2\text{Br}_5(I)$ is 8.5, in $\text{KPb}_2\text{Br}_5(I)$ is 7.

The temperature dependence of the spectral position $E_{mI,II}(T)$ and half-widths $\Gamma_{I,II}(T)$ in KPb₂Br₅ (I, II) is determined by the exciton-phonon interaction. An analysis of the temperature dependence of $\Gamma_{I,II}(T)$ established the two-dimensional 2D character of exciton excitations in KPb₂Br₅ (I, II).

REFERENCES

[1] H.P. Beck, G. Clicque, H. Nau, Z. anorg. allg. Chem. 1986; 536: 35

[2] B.V. Beznosikov, RAS Siberian Branch Institute of Physics 2005, preprint N830 F, Krasnoyarsk.