
Solving Parallel Multi Component Automata
Equations

Natalia Shabaldina, Nina Yevtushenko

Abstract — The problem of designing the unknown
component of a system of interacting automata that combined
with the known part of the system meets the specification, is
well known. However, most publications are devoted to solving
the problem for the proper composition of two automata. In
this paper, we consider a parallel multi component automata
equation and propose two methods for deriving a largest
solution to this equation (if the equation is solvable). In
particular, we show that the union of alphabets over all known
components and of that of the specification is the largest
alphabet of actions over which a solution for a solvable
equation should exist, and show how a solution over an
appropriate alphabet can be derived from such a largest
solution.

Index Terms — Automata, Equations, Discrete event systems

I. INTRODUCTION
any problems over discrete event systems can be
reduced to solving a language inequality A @ X ⊆ S

or to solving a language equation A @ X = S where X is a
free variable and @ is the composition operator. For
different applications, appropriate equations are formulated
and their solutions were investigated by various researchers.
Most papers in process algebra [see, for example, 1-5] are
devoted to solving equations over parallel composition
which allows arbitrary delay between communication
events. In this paper, we consider a parallel multi
component automata equation and propose two methods for
deriving a largest solution to this equation (if the equation is
solvable). In particular, we show that the union of alphabets
over all known components and of that of the specification
is the largest alphabet of actions over which a solution for a
solvable equation should exist, and show how a solution
over an appropriate alphabet can be derived from such a
largest solution.

Manuscript received March 17, 2008. F. A. Author is with the National

Institute of Standards and Technology, Boulder, CO 80305 USA
(corresponding author to provide phone: 303-555-5555; fax: 303-555-
5555; e-mail: author@ boulder.nist.gov).

Natalia Shabaldina is with the Tomsk State University, 36 Lenin Str.,
Tomsk, 634050, Russia (e-mail: snv@kitidis.tsu.ru)

Nina Yevtushenko is with the Tomsk State University, 36 Lenin Str.,
Tomsk, 634050, Russia (e-mail: yevtushenko@elefot.tsu.ru).

Acknowledgments. The authors gratefully acknowledge the partial
support of the RFBR-NSC Grant 06-08-89500.

II. PARALLEL EQUATIONS OVER AUTOMATA

A. Parallel composition operator
Let A be an alphabet, and a language L is defined over

the alphabet A. Given a non-empty subset A1 of the alphabet
A and a sequence α over alphabet A, the A1-restriction of α,
denoted α

1A⇓ , is a sequence obtained from α by erasing

symbols in A\A1. The language L
1A⇓ = {β

1A⇓ : β ∈ L} is the

restriction of language L onto the subset A1. For each word
β ∈ L that does not have symbols of alphabet A1 the
restriction of β is the empty word ε. Let now language L be
defined over alphabet A1 ⊆ A. The language
L A⇑ = {β: β

1A⇓ ∈L} is the expansion of language L over

the alphabet A.
In this paper, we consider equation solving over finite

automata. A finite automaton (or simply an automaton
throughout this paper) is a quintuple S = 〈S, A, δ S, s0, FS〉,
where S is a finite nonempty set of states with the initial
state s0 and a subset FS of final (or accepting) states, A is an
alphabet of actions, and δS ⊆ A ×S × S is a transition
relation. We say that there is a transition from a state s to a
state s' labeled with an action a, if and only if the triple
(a,s,s') is in the transition relation δS. The automaton S is
called deterministic, if for each state s ∈ S and any action a
∈ A there exists at most one state s', such that (a,s,s')∈δ S. If
S is not deterministic, then it is called nondeterministic. As
usual, the transition relation δS of the automaton S can be
extended to sequences over the alphabet A. Given a state s
of the automaton S, the set Ls(S) = {α ∈A * | ∃ s '∈FS
((s, α, s ')∈δ S)} is called the language, generated at the state
s. The language, generated by the automaton S at the initial
state, is called the language generated or accepted by the
automaton S and is denoted by L(S), for short. Automata S
and T are called equivalent (T ≅ S) if L(T) = L(S).
Automaton T is a reduction of automaton S (T ≤ S) if
L(T) ⊆ L(S). In the same way, the equivalence and the
reduction relations are defined between two states of an
automaton. Well-known results state that for each non-
deterministic automaton, there exists an equivalent
deterministic automaton [6]. It also is well-known how the
union, intersection, complementation, restriction and
expansion over deterministic automata [4-6] can be derived.

M

R&I, 2008, No 1 55

Given k automata F1, F2, …, Fk, let the automaton Fj
accept the language Lj, j = 1, 2, …, k, over alphabet Aj, A =
A1 ∪ A2 ∪ … ∪ Ak and E is a non-empty subset of A. The
parallel composition ◊Ε (F1, F2, …, Fk) is the automaton
(F1 A⇑ ∩ F2 A⇑ ∩ ... ∩ Fk A⇑) E⇓ .1 The automaton ◊Ε (F1, F2,
…, Fk) has the empty language if one component automaton
has the empty language.

B. Parallel language equations
In this section, we extend the notion of an automata

equation to k automata, k > 2, and determine a largest
alphabet over which the equation should be solvable.

Extending the formula for a largest solution to a multi
component automata equation

Given k automata F1, F2, …, Fk-1, F, let the automaton Fj
accept the language Lj, j = 1, 2, …, k - 1, over alphabet Aj,
while the automaton F accepting the language L over
alphabet E, A = A1 ∪ A2 ∪ … ∪ Ak-1 ∪ E and R is a non-
empty subset of A. Consider an automata inequality
◊Ε (F1, F2, …, x) ≤ F and an automata equation
◊Ε (F1, F2, …, X) ≅ F with a free variable X that is an
automaton over alphabet R. An automaton FR over the
alphabet R is a solution to the inequality ◊Ε (F1, F2, …, FR)
≤ F if ◊Ε (F1, F2, …, FR) ≤ F. An automaton FR is a solution
to the equation ◊Ε (F1, F2, …, FR) ≅ F if ◊Ε (F1, F2, …,
FR) ≅ F. A solution MR over the alphabet R is a largest
solution to the inequality ◊Ε (F1, F2, …, x) ≤ F (to the
equation ◊Ε (F1, F2, …, X) ≅ F) if each solution over
alphabet R is a reduction of MR.

Similar to a parallel equation over two automata, a multi
component parallel automata inequality as well as a
solvable parallel automata equation has always a largest
solution2.

Theorem 1. 1. Given k automata F1, F2, …, Fk-1, F, let
the automaton Fj accept the language Lj, j = 1, 2, …, k-1,
over alphabet Aj, while the automaton F accepting the
language L over alphabet E, A = A1 ∪ A2 ∪ … ∪ Ak-1 ∪ E
and R is a non-empty subset of A. A largest solution to the
automata inequality ◊Ε (F1, F2, …, x) ≤ F is the automaton

) ,,…,(11 FFF kR −〈〉 . 2. Given a language equation
◊Ε (F1, F2, …, x) ≅ F, the equation is solvable if and only if

◊Ε (F1, F2, …,) ,,…,(11 FFF kR −〈〉) ≅ F. If the equation is

solvable then the automaton) ,,…,(11 FFF kR −〈〉 is a
largest solution to the equation.

Determining a largest alphabet over which the equation is
solvable

The formula of the previous section has the exponential
complexity. However, the complexity of checking if there

1 This definition can be viewed as an extension of the parallel

composition of two automata [4]
2 With respect to the reduction relation.

exists an alphabet s.t. the equation is solvable over this
alphabet can be reduced. In this section, we propose an
algorithm for deriving a largest solution over alphabet A
without using the complementation and restriction operators
and state that if the equation has no solution over alphabet
A then the equation is not solvable over any subset R of the
alphabet A.

A largest solution to the inequality ◊Ε (F1, F2, …, Fk-1,
x)≤F over alphabet A can be derived using the following
procedure. Derive the automaton MΑ by adding the
designated accepting Don’t Care state (DNC) to the set of
states of F1 A⇑ ∩ … ∩ Fk-1 A⇑ ∩ F A⇑ . Given a state f1…fk-1

f of the automaton F1 A⇑ ∩ … ∩ Fk-1 A⇑ ∩ F A⇑ and an

action a ∈ A, the automaton MΑ has a transition (f1…fk-1f, a,
DNC) if there exists a component automaton Fj that has no
transition under a from state fj. There is a loop at the DNC
state for each action a ∈ A.

Theorem 2. 1. Given an automata inequality ◊Ε (F1, F2,
…, Fk-1, x) ≤ F, the automaton MΑ is a largest solution to the
inequality. 2. Given an automata equation ◊Ε (F1, F2, …, Fk-

1, x) ≅ F, if the automata ◊Ε (F1, F2, …, Fk-1, MΑ) and F are
equivalent then MΑ is a largest solution to the equation. If
the automata ◊Ε (F1, F2, …, Fk-1, MΑ) and F are not
equivalent then the equation is not solvable over any
alphabet R ⊆ A.

The following proposition gives a guide how a solution
can be derived over a subset R ⊂ A (if such a solution
exists).

Proposition 3. Given an automata inequality ◊Ε (F1, F2,
…, Fk-1, x) ≤ F, a largest solution MΑ to the inequality over
alphabet A and a proper subset R ⊂ A, an automaton MR
over alphabet R is a solution to the inequality over alphabet
R if and only if the expansion of MR A⇑ is a reduction of MΑ.

Corollary. Given an automata inequality ◊Ε (F1, F2, …,
Fk-1, x) ≤ F, a largest solution MΑ to the inequality over
alphabet A and a proper subset R ⊂ A, a largest solution to
the inequality over alphabet R is a largest automaton MR
(w.r.t. the language) over alphabet R s.t. the expansion of
MR A⇑ is a reduction of MΑ.

Based on the above statements a largest solution MR over
alphabet R to the automata inequality ◊Ε (F1, F2, …, Fk-1, x)
≤ F can be derived in the following steps.

Step 1. Derive a largest solution MΑ to the inequality
◊Ε (F1, F2, …, Fk-1, x)≤F over alphabet A. If a largest
solution MΑ is trivial (the language is empty) then a solution
over each alphabet is trivial.

Step 2. Derive the largest complete submachine N of
MΑ over alphabet A\R. If there is no complete submachine
then the inequality has only a trivial solution over alphabet
R. Otherwise, let N be a set of states of N. Delete each
transition in MΑ to every state that is not in the set N. Denote
PΑ the obtained automaton.

56 R&I, 2008, No 1

Step 3. Derive the set K1 of all states reachable in
MΑ from the initial state under actions of the alphabet A\R.
Assign K = {K1}; i = 1; MR be a trivial automaton with the
initial state K1 over the alphabet R.

Step 4. For each action a ∈ R do:
if the transition under a is defined at each state of the set

Ki then derive the set Di of all states where a takes MΑ from
states of the set Ki and the set Li of all states reachable in
MΑ from the states of the set Di under actions of the
alphabet A\R. Add a transition (Ki, a, Li) to the automaton
MR and if Li ∉ K then add Li to the set K.

Step 5. Increment i by 1. If i < |K| then Step 4. Else END;
the automaton MR is a largest solution to the inequality over
alphabet R.

Theorem 4. 1. Given an automata inequality ◊Ε (F1, F2,
…, Fk-1, x) ≤ F, a largest solution MΑ to the inequality over
alphabet A and a proper subset R ⊂ A, the automaton MR
obtained in Step 5 of the above algorithm is a largest
solution to the inequality over alphabet R. 2. If ◊Ε (F1, F2,
…, Fk-1, MR) is equivalent to F then MR is a largest solution
over alphabet R to the equation ◊Ε (F1, F2, …, Fk-1, MR) ≅ F;
otherwise the equation has no solution over alphabet R.

We also remind that not each subset of the largest
solution to a parallel language equation inherits the property
to be a solution and the complete characterization of the set
of solutions to a parallel language equation is still an open
issue.

III. EXAMPLE

In this section, we briefly consider a simple example.
We solve the equation ◊Ε(F1, X) ≅ F for automata F1 and F
in Figures 1 and 2 where all states are accepting states. A
largest solution over A = {x, o, u, v} is shown in Figure 3.

Fig. 1. Automaton F

Fig. 2. Automaton F1

Fig. 3. Largest solution over A = {x, o, u, v} (after merging equivalent

states)

We now derive a largest solution over R={x,u,v}=A\{o}.

A transition at state 5 under o is undefined; thus, we delete
state 5. The initial state of the obtained automaton is K1 =
{1, 2, 3, 4}. There is no transition from this state under v, as
the transition under v is undefined at state 3. However, there
is a transition (K1, x, K2), where K2 = {2, 4}. The resulting
automaton is shown in Figure 4.

Fig. 4. A largest solution over alphabet R = {x, u, v}

IV. CONCLUSION

In this paper we have studied the problem of solving
multi component language equations over a parallel
composition operator. In particular, the largest alphabet
over which a solution exists, is characterized. A number of
restricted solutions which are considered for a parallel
equation over two automata [5] can be defined in the same
way for multi component automata inequalities and
equations. The complexity of the proposed method seems to
be lower than that of the known method since we do not use
the automata complements in our method.

REFERENCES
[1] P. Merlin and G. Bochmann, “On the construction of submodule
specifications and communication protocols”, ACM Transactions on
Programming Language and Systems, 5(1): 1–25, January 1983.
[2] H. Qin, P. Lewis, “Factorisation of Finite State Machines under strong
and observational equivalences”, Formal Aspects of Computing, 3:284–
307, Jul.–Sept. 1991.
[3] A. Petrenko, N. Yevtushenko, “Solving asynchronous equations”,
Formal description techniques/Protocol specification, testing and
verification. Kluwer Academic Publishers, 1998, pp. 125–140.
[4] K. El-Fakih, N. Yevtushenko, S. Buffalov, G. v. Bochmann,
“Progressive solutions to a parallel automata equation”, Theoretical
Computer Science, 362, 2006, pp. 17-32 (The preliminary version was
published in Lectures Notes in Computer Science, 2003, vol. 2767, pp. 367
– 382).
[5] N.Yevtushenko, T.Villa. R.K.Brayton, A.Petrenko, A.Sangiovanni-
Vincentelli, “Solving a parallel language equation”, In Proceedings оf the
ICCAD’01, USA, 2001. pp. 103-110.
[6] J. E. Hopcroft and J. D. Ullman, Introduction to automata theory,
Languages, and Computation, Addison-Wesley, 1979.

R&I, 2008, No 1 57

