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Abstract — The problem of designing the unknown 
component of a system of interacting automata that combined 
with the known part of the system meets the specification, is 
well known. However, most publications are devoted to solving 
the problem for the proper composition of two automata. In 
this paper, we consider a parallel multi component automata 
equation and propose two methods for deriving a largest 
solution to this equation (if the equation is solvable). In 
particular, we show that the union of alphabets over all known 
components and of that of the specification is the largest 
alphabet of actions over which a solution for a solvable 
equation should exist, and show how a solution over an 
appropriate alphabet can be derived from such a largest 
solution.  

 
Index Terms — Automata, Equations, Discrete event systems 
 

I. INTRODUCTION 
any problems over discrete event systems can be 
reduced to solving a language inequality A @ X ⊆ S 

or to solving a language equation A @ X = S where X is a 
free variable and @ is the composition operator. For 
different applications, appropriate equations are formulated 
and their solutions were investigated by various researchers. 
Most papers in process algebra [see, for example, 1-5] are 
devoted to solving equations over parallel composition 
which allows arbitrary delay between communication 
events. In this paper, we consider a parallel multi 
component automata equation and propose two methods for 
deriving a largest solution to this equation (if the equation is 
solvable). In particular, we show that the union of alphabets 
over all known components and of that of the specification 
is the largest alphabet of actions over which a solution for a 
solvable equation should exist, and show how a solution 
over an appropriate alphabet can be derived from such a 
largest solution. 
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II. PARALLEL EQUATIONS OVER AUTOMATA 

A. Parallel composition operator 
Let A be an alphabet, and a language L is defined over 

the alphabet A. Given a non-empty subset A1 of the alphabet 
A and a sequence α over alphabet A, the A1-restriction of α, 
denoted α

1A⇓ , is a sequence obtained from α by erasing 

symbols in A\A1. The language L
1A⇓ = {β

1A⇓ : β ∈ L} is the 

restriction of language L onto the subset A1. For each word 
β ∈ L that does not have symbols of alphabet A1 the 
restriction of β is the empty word ε. Let now language L be 
defined over alphabet A1 ⊆ A. The language 
L A⇑ = {β: β

1A⇓ ∈L} is the expansion of language L over 

the alphabet A.  
In this paper, we consider equation solving over finite 

automata. A finite automaton (or simply an automaton 
throughout this paper) is a quintuple S = 〈S, A, δ S, s0, FS〉, 
where S is a finite nonempty set of states with the initial 
state s0 and a subset FS of final (or accepting) states, A is an 
alphabet of actions, and δS ⊆ A ×S × S is a transition 
relation. We say that there is a transition from a state s to a 
state s' labeled with an action a, if and only if the triple 
(a,s,s') is in the transition relation δS. The automaton S is 
called deterministic, if for each state s ∈ S and any action a 
∈ A there exists at most one state s', such that (a,s,s')∈δ S. If 
S is not deterministic, then it is called nondeterministic. As 
usual, the transition relation δS of the automaton S can be 
extended to sequences over the alphabet A. Given a state s 
of the automaton S, the set Ls(S) = {α ∈A * | ∃ s '∈FS 
((s, α, s ')∈δ S)} is called the language, generated at the state 
s. The language, generated by the automaton S at the initial 
state, is called the language generated or accepted by the 
automaton S and is denoted by L(S), for short. Automata S 
and T are called equivalent (T ≅ S) if L(T) = L(S). 
Automaton T is a reduction of automaton S  (T ≤ S) if 
L(T) ⊆ L(S). In the same way, the equivalence and the 
reduction relations are defined between two states of an 
automaton. Well-known results state that for each non-
deterministic automaton, there exists an equivalent 
deterministic automaton [6]. It also is well-known how the 
union, intersection, complementation, restriction and 
expansion over deterministic automata [4-6] can be derived.  
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Given k automata F1, F2, …, Fk, let the automaton Fj 
accept the language Lj, j = 1, 2, …, k, over alphabet Aj, A = 
A1 ∪ A2 ∪ … ∪ Ak and E is a non-empty subset of A. The 
parallel composition ◊Ε (F1, F2, …, Fk) is the automaton 
(F1 A⇑ ∩ F2 A⇑ ∩ ... ∩ Fk A⇑ ) E⇓ .1 The automaton ◊Ε (F1, F2, 
…, Fk) has the empty language if one component automaton 
has the empty language.  

B. Parallel language equations 
In this section, we extend the notion of an automata 

equation to k automata, k > 2, and determine a largest 
alphabet over which the equation should be solvable. 
 
Extending the formula for a largest solution to a multi 
component automata equation 

Given k automata F1, F2, …, Fk-1, F, let the automaton Fj 
accept the language Lj, j = 1, 2, …, k - 1, over alphabet Aj, 
while the automaton F accepting the language L over 
alphabet E, A = A1 ∪ A2 ∪ … ∪ Ak-1 ∪ E and R is a non-
empty subset of A. Consider an automata inequality 
◊Ε (F1, F2, …, x) ≤ F and an automata equation         
◊Ε (F1, F2, …, X) ≅ F with a free variable X that is an 
automaton over alphabet R. An automaton FR over the 
alphabet R is a solution to the inequality ◊Ε (F1, F2, …, FR) 
≤ F if ◊Ε (F1, F2, …, FR) ≤ F. An automaton FR is a solution 
to the equation ◊Ε (F1, F2, …, FR) ≅ F if ◊Ε (F1, F2, …, 
FR) ≅ F. A solution MR over the alphabet R is a largest 
solution to the inequality ◊Ε (F1, F2, …, x) ≤ F (to the 
equation ◊Ε (F1, F2, …, X) ≅ F) if each solution over 
alphabet R is a reduction of MR.  

Similar to a parallel equation over two automata, a multi 
component parallel automata inequality as well as a 
solvable parallel automata equation has always a largest 
solution2.  

Theorem 1. 1. Given k automata F1, F2, …, Fk-1, F, let 
the automaton Fj accept the language Lj, j = 1, 2, …, k-1, 
over alphabet Aj, while the automaton F accepting the 
language L over alphabet E, A = A1 ∪ A2 ∪ … ∪ Ak-1 ∪ E 
and R is a non-empty subset of A. A largest solution to the 
automata inequality ◊Ε (F1, F2, …, x) ≤ F is the automaton 

) ,,…,( 11 FFF kR −〈〉 . 2. Given a language equation 
◊Ε (F1, F2, …, x) ≅  F, the equation is solvable if and only if 

◊Ε (F1, F2, …, ) ,,…,( 11 FFF kR −〈〉 ) ≅ F. If the equation is 

solvable then the automaton ) ,,…,( 11 FFF kR −〈〉  is a 
largest solution to the equation. 
 
Determining a largest alphabet over which the equation is 
solvable 

The formula of the previous section has the exponential 
complexity. However, the complexity of checking if there 
                                                           
1 This definition can be viewed as an extension of the parallel 

composition of two automata [4] 
2 With respect to the reduction relation. 

exists an alphabet s.t. the equation is solvable over this 
alphabet can be reduced. In this section, we propose an 
algorithm for deriving a largest solution over alphabet A 
without using the complementation and restriction operators 
and state that if the equation has no solution over alphabet 
A then the equation is not solvable over any subset R of the 
alphabet A. 

A largest solution to the inequality ◊Ε (F1, F2, …, Fk-1, 
x)≤F over alphabet A can be derived using the following 
procedure. Derive the automaton MΑ by adding the 
designated accepting Don’t Care state (DNC) to the set of 
states of F1 A⇑  ∩ … ∩ Fk-1 A⇑ ∩ F A⇑ . Given a state f1…fk-1 

f of the automaton F1 A⇑  ∩ … ∩ Fk-1 A⇑ ∩ F A⇑ and an 

action a ∈ A, the automaton MΑ has a transition (f1…fk-1f, a, 
DNC) if there exists a component automaton Fj that has no 
transition under a from state fj. There is a loop at the DNC 
state for each action a ∈ A.  

Theorem 2. 1. Given an automata inequality ◊Ε (F1, F2, 
…, Fk-1, x) ≤ F, the automaton MΑ is a largest solution to the 
inequality. 2. Given an automata equation ◊Ε (F1, F2, …, Fk-

1, x) ≅ F, if the automata ◊Ε (F1, F2, …, Fk-1, MΑ) and F are 
equivalent then MΑ is a largest solution to the equation. If 
the automata ◊Ε (F1, F2, …, Fk-1, MΑ) and F are not 
equivalent then the equation is not solvable over any 
alphabet R ⊆ A. 

The following proposition gives a guide how a solution 
can be derived over a subset R ⊂ A (if such a solution 
exists). 

Proposition 3. Given an automata inequality ◊Ε (F1, F2, 
…, Fk-1, x) ≤ F, a largest solution MΑ to the inequality over 
alphabet A and a proper subset R ⊂ A, an automaton MR 
over alphabet R is a solution to the inequality over alphabet 
R if and only if the expansion of MR A⇑  is a reduction of MΑ. 

Corollary. Given an automata inequality  ◊Ε (F1, F2, …, 
Fk-1, x) ≤ F, a largest solution MΑ to the inequality over 
alphabet A and a proper subset R ⊂ A, a largest solution to 
the inequality over alphabet R is a largest automaton MR 
(w.r.t. the language) over alphabet R s.t. the expansion of 
MR A⇑  is a reduction of MΑ. 

Based on the above statements a largest solution MR over 
alphabet R to the automata inequality ◊Ε (F1, F2, …, Fk-1, x) 
≤ F can be derived in the following steps. 

Step 1. Derive a largest solution MΑ to the inequality 
◊Ε (F1, F2, …, Fk-1, x)≤F over alphabet A. If a largest 
solution MΑ  is trivial (the language is empty) then a solution 
over each alphabet is trivial. 

Step 2. Derive the largest complete submachine N  of 
MΑ  over alphabet A\R.  If there is no complete submachine 
then the inequality has only a trivial solution over alphabet 
R. Otherwise, let N be a set of states of N. Delete each 
transition in MΑ  to every state that is not in the set N. Denote 
PΑ  the obtained automaton. 
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Step 3. Derive the set K1 of all states reachable in 
MΑ  from the initial state under actions of the alphabet A\R. 
Assign K = {K1}; i = 1; MR be a trivial automaton with the 
initial state K1  over the alphabet R. 

Step 4. For each action a ∈ R do: 
if the transition under a is defined at each state of the set 

Ki then derive the set Di of all states where a takes MΑ  from 
states of the set Ki and the set Li of all states reachable in 
MΑ  from the states of the set Di under actions of the 
alphabet A\R. Add a transition (Ki, a, Li) to the automaton 
MR and if Li ∉ K then add Li to the set K.  

Step 5. Increment i by 1. If i < |K| then Step 4. Else END; 
the automaton MR is a largest solution to the inequality over 
alphabet R. 

Theorem 4. 1. Given an automata inequality ◊Ε (F1, F2, 
…, Fk-1, x) ≤ F, a largest solution MΑ to the inequality over 
alphabet A and a proper subset R ⊂ A, the automaton MR 
obtained in Step 5 of the above algorithm is a largest 
solution to the inequality over alphabet R. 2. If ◊Ε (F1, F2, 
…, Fk-1, MR) is equivalent to F then MR is a largest solution 
over alphabet R to the equation ◊Ε (F1, F2, …, Fk-1, MR) ≅ F; 
otherwise the equation has no solution over alphabet R. 

We also remind that not each subset of the largest 
solution to a parallel language equation inherits the property 
to be a solution and the complete characterization of the set 
of solutions to a parallel language equation is still an open 
issue. 

III. EXAMPLE 

In this section, we briefly consider a simple example. 
We solve the equation ◊Ε(F1, X) ≅ F for automata F1 and F 
in Figures 1 and 2 where all states are accepting states. A 
largest solution over A = {x, o, u, v} is shown in Figure 3. 
 

 
 

Fig. 1. Automaton F 
 

 
 

Fig. 2. Automaton F1 

 
Fig. 3. Largest solution over A = {x, o, u, v} (after merging equivalent 

states) 
 
We now derive a largest solution over R={x,u,v}=A\{o}. 

A transition at state 5 under o is undefined; thus, we delete 
state 5. The initial state of the obtained automaton is K1 = 
{1, 2, 3, 4}. There is no transition from this state under v, as 
the transition under v is undefined at state 3. However, there 
is a transition (K1, x, K2), where K2 = {2, 4}. The resulting 
automaton is shown in Figure 4. 

 

 
Fig. 4. A largest solution over alphabet R = {x, u, v} 

 

IV. CONCLUSION 

In this paper we have studied the problem of solving 
multi component language equations over a parallel 
composition operator. In particular, the largest alphabet 
over which a solution exists, is characterized. A number of 
restricted solutions which are considered for a parallel 
equation over two automata [5] can be defined in the same 
way for multi component automata inequalities and 
equations. The complexity of the proposed method seems to 
be lower than that of the known method since we do not use 
the automata complements in our method.  
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